123 research outputs found

    Functional reorganization during the recovery of contralesional target selection deficits after prefrontal cortex lesions in macaque monkeys

    Get PDF
    © 2019 The Authors Visual extinction has been characterized by the failure to respond to a visual stimulus in the contralesional hemifield when presented simultaneously with an ipsilesional stimulus (Corbetta and Shulman, 2011). Unilateral damage to the macaque frontoparietal cortex commonly leads to deficits in contralesional target selection that resemble visual extinction. Recently, we showed that macaque monkeys with unilateral lesions in the caudal prefrontal cortex (PFC) exhibited contralesional target selection deficits that recovered over 2–4 months (Adam et al., 2019). Here, we investigated the longitudinal changes in functional connectivity (FC) of the frontoparietal network after a small or large right caudal PFC lesion in four macaque monkeys. We collected ultra-high field resting-state fMRI at 7-T before the lesion and at weeks 1–16 post-lesion and compared the functional data with behavioural performance on a free-choice saccade task. We found that the pattern of frontoparietal network FC changes depended on lesion size, such that the recovery of contralesional extinction was associated with an initial increase in network FC that returned to baseline in the two small lesion monkeys, whereas FC continued to increase throughout recovery in the two monkeys with a larger lesion. We also found that the FC between contralesional dorsolateral PFC and ipsilesional parietal cortex correlated with behavioural recovery and that the contralesional dorsolateral PFC showed increasing degree centrality with the frontoparietal network. These findings suggest that both the contralesional and ipsilesional hemispheres play an important role in the recovery of function. Importantly, optimal compensation after large PFC lesions may require greater recruitment of distant and intact areas of the frontoparietal network, whereas recovery from smaller lesions was supported by a normalization of the functional network

    Structural alterations in cortical and thalamocortical white matter tracts after recovery from prefrontal cortex lesions in macaques

    Get PDF
    Unilateral damage to the frontoparietal network typically impairs saccade target selection within the contralesional visual hemifield. Severity of deficits and the degree of recovery have been associated with widespread network dysfunction, yet it is not clear how these behavioural and functional brain changes relate with the underlying structural white matter tracts. Here, we investigated whether recovery after unilateral prefrontal cortex (PFC) lesions was associated with changes in white matter microstructure across large-scale frontoparietal cortical and thalamocortical networks. Diffusion-weighted imaging was acquired in four male rhesus macaques at pre-lesion, week 1, and week 8-16 post-lesion when target selection deficits largely recovered. Probabilistic tractography was used to reconstruct cortical frontoparietal fiber tracts, including the superior longitudinal fasciculus (SLF) and transcallosal fibers connecting the PFC or posterior parietal cortex (PPC), as well as thalamocortical fiber tracts connecting the PFC and PPC to thalamic nuclei. We found that the two animals with small PFC lesions showed increased fractional anisotropy in both cortical and thalamocortical fiber tracts when behaviour had recovered. However, we found that fractional anisotropy decreased in cortical frontoparietal tracts after larger PFC lesions yet increased in some thalamocortical tracts at the time of behavioural recovery. These findings indicate that behavioural recovery after small PFC lesions may be supported by both cortical and subcortical areas, whereas larger PFC lesions may have induced widespread structural damage and hindered compensatory remodeling in the cortical frontoparietal network

    Functional and Structural Brain Reorganization After Unilateral Prefrontal Cortex Lesions In Macaques

    Get PDF
    Visually exploring the surrounding environment relies on attentional selection of behaviourally relevant stimuli for further processing. The prefrontal cortex contributes to target selection as part of a frontoparietal network that controls shifts of gaze and attention towards relevant stimuli. Evidence from stroke patients and nonhuman primate lesion studies have shown that unilateral damage to the prefrontal cortex commonly impairs the ability to allocate attention toward stimuli in the contralesional visual hemifield. Although these impairments often exhibit a gradual improvement over time, the neural plasticity that underlies recovery of function remains poorly understood. The main objective of this dissertation was to study the relationship between large-scale network reorganization and the recovery of lateralized target selection deficits. To that aim, endothelin-1 was used to produce unilateral ischemic lesions in the caudal lateral prefrontal cortex of four rhesus macaques. Longitudinal behavioural and neuroimaging data were collected before and after the lesions, including eye-tracking while monkeys performed free-choice and visually guided saccades, resting-state fMRI, and diffusion-weighted imaging. Chapter 2 investigated the effects of unilateral prefrontal cortex lesions on saccade target selection and oculomotor parameters to disentangle attentional and motor impairments in the lasting contralesional target selection deficit. Chapter 3 examined the resting-state functional reorganization in a frontoparietal network during recovery of contralesional target selection. Finally, Chapter 4 investigated microstructural changes in cortical white matter tracts from diffusion-weighted imaging after behavioural recovery compared to pre-lesion. In general, spatiotemporal patterns of functional and structural network reorganization differed based on the extent of prefrontal damage. Altogether, these studies characterized the recovery of lateralized target selection deficits in a macaque model of focal cerebral ischemia and demonstrated involvement of both contralesional and ipsilesional networks throughout behavioural recovery. The broad implication of this research is that a network perspective is fundamental to understanding compensatory mechanisms of brain reorganization underlying recovery of function

    The impact of ischemic injury on behavioral outcomes and cortical interactions in rats

    Full text link
    L’accident vasculaire cérébral (AVC) est une maladie débilitante qui a rendu des centaines de milliers de personnes handicapées. Les lésions du cortex moteur entraînent des déficiences motrices dont certaines sont permanentes. Le rat est le modèle animal le plus populaire dans la recherche sur les AVC. Il est capable de mouvements adroits d'atteinte et de préhension malgré un système moteur cortical beaucoup plus simple qui se compose de deux régions motrices des membres antérieurs, une plus grande région, l’aire caudale de la patte antérieure (CFA), considérée comme un équivalent du M1; et une plus petite, l’aire rostrale de la patte antérieure (RFA), considérée comme prémoteur. Leur contribution exacte à la production de mouvement, et leurs effets modulateurs sur le cortex moteur controlatéral ne sont pas clairs. L'effet des AVC sur les différentes modalités de mouvement et sur la réorganisation ipsi- et contralésionnelle n'a pas non plus été quantifié chez le rat. L'ensemble actuel d'expériences vise à établir l'impact de l'AVC ischémique sur les résultats comportementaux et les interactions corticales chez le rat. Dans le chapitre 1, le contexte scientifique et les connaissances actuelles de l’AVC comme trouble moteur du système nerveux central sont revus. Dans le chapitre 2, une relation entre les accidents vasculaires cérébraux de différentes tailles et les troubles du comportement et la récupération sur différentes modalités comportementales a été établie. Dans le chapitre 3, nous avons caractérisé les différences de retour moteur de deux régions corticales du membre antérieur et quantifié les effets modulateurs du cortex moteur du membre antérieur controlatéral sur ledit retour moteur. Enfin, nous avons quantifié la réorganisation du retour moteur et la modulation controlatérale suite à un accident vasculaire cérébral dans le cortex moteur des membres antérieurs au chapitre 4. Le chapitre 5 conclue la thèse avec une discussion générale et des orientations futures pour la recherche. Les résultats présentés ici établissent un lien clair entre les dommages aux sous-régions corticales et l'altération de domaines moteurs spécifiques. La caractérisation des différences dans les retours moteurs du CFA et du RFA ainsi que leurs interactions interhémisphériques ont confirmé leurs rôles distincts dans le contrôle moteur et établit une base pour des comparaisons avec les primates. Enfin, des preuves nouvelles et surprenantes de réorganisation bilatérale après un AVC ont été définies et caractérisées.Stroke is a debilitating condition that has left hundreds of thousands of people disabled. Injury to the motor cortex leads to motor impairments, some of which are permanent. The rat is the most popular animal model in stroke research. It is capable of dexterous reach and grasp movements, despite having a much simpler cortical motor system, which consists of two forelimb motor regions; the larger area is the caudal forelimb area (CFA), thought to be an M1 equivalent, and the smaller one is rostral forelimb area (RFA), considered to be premotor. Neither their exact contribution to movement production nor modulatory effects on the contralateral motor cortex are clear. The effect of strokes on different movement modalities and the ipsi- and contralesional reorganization has not been quantified in the rat either. The current set of experiments set out to establish the impact of ischemic stroke on behavioral outcomes and cortical interactions in the rat. Chapter 1 introduces the scientific background and the present understanding of stroke as a motor disorder of the central nervous system. In Chapter 2, a relationship between strokes of various sizes and behavioral impairment and recovery on different behavioral modalities was established. In Chapter 3, we characterized the differences in motor outputs from two cortical forelimb regions and quantified the modulatory effects of the contralateral forelimb motor cortex on said motor outputs. Lastly, we quantified the reorganization of motor outputs and contralateral modulation following a stroke in the forelimb motor cortex in Chapter 4. Chapter 5 concludes the thesis with the general discussion and future directions. The results presented here establish a clear link between damage to cortical subregions and impairment to specific motor domains. Characterization of differences in motor outputs of the CFA and RFA as well as their interhemispheric interactions confirmed their distinct roles in motor control and lay the groundwork for comparisons to primates. Lastly, novel and surprising evidence of bilateral reorganization after stroke was defined and characterized

    Bihemispheric reorganization of neuronal activity during hand movements after unilateral inactivation of the primary motor cortex

    Full text link
    Le cortex moteur primaire (M1) est souvent endommagé lors des lésions cérébrales telles que les accidents vasculaires cérébraux. Ceci entraîne des déficits moteurs tels qu'une perte de contrôle des membres controlatéraux. La récupération des lésions M1 s'accompagne d'une réorganisation hémodynamique dans les zones motrices intactes des deux hémisphères. Cette réorganisation est plus prononcée dans les premiers jours et semaines qui suivent la lésion. Toutefois, nous avons une compréhension limitée de la réorganisation neuronale rapide qui se produit dans ce réseau moteur cortical complexe. Ces changements neuronaux nous informent sur l’évolution possible de la plasticité subaiguë impliquée dans la récupération motrice. Par conséquent il était grand temps qu’une caractérisation de la réorganisation rapide de l'activité neuronale dans les régions motrices des deux hémisphères soit entreprise. Dans cette thèse nous avons exploré l'impact d'une lésion corticale localisée, unilatérale et réversible dans M1 sur l'activité neuronale des zones motrices des hémisphères ipsi et contralésionnel lorsque des primates non humains ont effectués des mouvements d’atteinte et de saisie. Notre modèle d'inactivation nous a permis d'enregistrer en continu des neurones isolés avant et après l'apparition des déficits moteurs. Dans une première étude, la réorganisation rapide qui se produit dans le cortex prémoteur ventral (PMv) des deux hémisphères a été étudiée (Chapitre 2). Le PMv est une zone connue pour être impliquée dans le contrôle moteur de la main et la récupération des lésions M1. Dans une seconde étude, la réorganisation rapide du M1 contralésionnel (cM1) a été étudiée et comparée à celles se produisant dans les PMv bilatérales (Chapitre 3). Le cM1 joue un rôle complexe dans la récupération des mouvements de précision de la main suite à une blessure à son homologue. Nous révélons une réorganisation neuronale importante et beaucoup plus complexe que prévu dans les deux hémisphères lors de l’apparition initiale des déficiences motrices. Nos données démontrent que les changements neuronaux survenant quelques minutes après une lésion cérébrale sont hétérogènes à la fois dans et entre les zones du réseau moteur cortical. Ils se produisent dans les deux hémisphères lors des mouvements des bras parétiques et non parétiques, et ils varient au cours des différentes phases du mouvement. Ces découvertes constituent une première étape nécessaire pour démêler les corrélats neuronaux complexes de la réorganisation au travers du réseau moteur des deux hémisphères à la suite d’une lésion cérébrale.After brain injuries such as stroke, the primary motor cortex (M1) is often damaged leading to motor deficits that include a loss of fine motor skills of the contralateral limbs. Recovery from M1 lesions is accompanied by hemodynamic reorganization in motor areas distal to the site of injury in both hemispheres that are most pronounced early after injury. However, we have limited understanding of the rapid neuronal reorganization that occurs in this complex and distributed cortical motor network. As these neural changes reflect the landscape on which subacute plasticity involved in motor recovery will take place, an exploration of the rapid reorganization in neural activity that occurs in motor regions of both hemispheres is long overdue. In the current thesis, we set out to explore the impact of a localized, unilateral and reversible cortical injury to the M1 hand area on neuronal activity in motor-related areas of both the ipsi and contralesional hemispheres as non-human primates performed a reach and grasp task. Our inactivation model allowed us to continuously record isolated neurons before and after the onset of motor deficits. In a first study, the rapid reorganization taking place in the ventral premotor cortex (PMv) of both hemispheres was investigated (Chapter 2). The PMv is an area well-known to be critically involved in hand motor control and recovery from M1 lesions. In a second study, the rapid reorganization taking place in the contralesional M1 (cM1) was studied and compared to those occurring in bilateral PMv (Chapter 3). The cM1 has a complex role in recovery of dexterous hand movements following injury to its homologue. We reveal extensive, and much more complex than expected, neuronal reorganization in both hemispheres at the very onset of motor impairments. Our data demonstrate that neuronal changes occurring within minutes after brain injury are heterogenous both within and across areas of the cortical motor network. They occur in the two hemispheres during movements of both the paretic and non-paretic arms, and they vary during different phases of movement. These findings constitute a first step in a much needed and timely effort to unravel the complex neuronal correlates of the reorganization that takes place across the distributed motor network after brain injury

    Lateral intraparietal area (LIP) is largely effector-specific in free-choice decisions

    Get PDF
    Despite many years of intense research, there is no strong consensus about the role of the lateral intraparietal area (LIP) in decision making. One view of LIP function is that it guides spatial attention, providing a “saliency map” of the external world. If this were the case, it would contribute to target selection regardless of which action would be performed to implement the choice. On the other hand, LIP inactivation has been shown to influence spatial selection and oculomotor metrics in free-choice decisions, which are made using eye movements, arguing that it contributes to saccade decisions. To dissociate between a more general attention role and a more effector specific saccade role, we reversibly inactivated LIP while non-human primates freely selected between two targets, presented in the two hemifields, with either saccades or reaches. Unilateral LIP inactivation induced a strong choice bias to ipsilesional targets when decisions were made with saccades. Interestingly, the inactivation also caused a reduction of contralesional choices when decisions were made with reaches, albeit the effect was less pronounced. These findings suggest that LIP is part of a network for making oculomotor decisions and is largely effector-specific in free-choice decisions

    White Matter Integrity as a Biomarker for Stroke Recovery: Implications for TMS Treatment

    Get PDF
    White matter consists of myelinated axons which integrate information across remote brain regions. Following stroke white matter integrity is often compromised leading to functional impairment and disability. Despite its prevalence among stroke patients the role of white matter in development of post-stroke rehabilitation has been largely ignored. Rehabilitation interventions like repetitive transcranial magnetic stimulation (rTMS) are promising but reports on its efficacy have been conflicting. By understanding the role of white matter integrity in post-stroke motor recovery, brain reorganization and TMS efficacy we may be able to improve the development of future interventions. In this dissertation we set out answer these questions by investigating the relationship between white matter integrity and 1) bimanual motor performance following stroke, 2) cortical laterality following stroke and 3) TMS signal propagation (in a group of cocaine users without stroke). We identified white matter integrity of the corpus callosum as a key structure influencing bimanual performance using kinematic measures of hand symmetry (Chapter 2). Second, we found that reduced white matter integrity of corpus callosum was correlated with loss of functional laterality of the primary motor cortex during movement of the affected hand (Chapter 3). Lastly, we found that reduced white matter tract integrity from the site of stimulation to a downstream subcortical target, was correlated to the ability to modulate that target (Chapter 4). Taken together these studies support white matter integrity as a valuable biomarker for future rTMS trials in stroke. To emphasize the implications of these findings, we provide an example of how to incorporate white matter integrity at multiple levels of rTMS study design

    Lateral intraparietal area (LIP) is largely effector-specific in free-choice decisions

    Get PDF
    Despite many years of intense research, there is no strong consensus about the role of the lateral intraparietal area (LIP) in decision making. One view of LIP function is that it guides spatial attention, providing a “saliency map” of the external world. If this were the case, it would contribute to target selection regardless of which action would be performed to implement the choice. On the other hand, LIP inactivation has been shown to influence spatial selection and oculomotor metrics in free-choice decisions, which are made using eye movements, arguing that it contributes to saccade decisions. To dissociate between a more general attention role and a more effector specific saccade role, we reversibly inactivated LIP while non-human primates freely selected between two targets, presented in the two hemifields, with either saccades or reaches. Unilateral LIP inactivation induced a strong choice bias to ipsilesional targets when decisions were made with saccades. Interestingly, the inactivation also caused a reduction of contralesional choices when decisions were made with reaches, albeit the effect was less pronounced. These findings suggest that LIP is part of a network for making oculomotor decisions and is largely effector-specific in free-choice decisions

    Functional Magnetic Resonance Imaging

    Get PDF
    "Functional Magnetic Resonance Imaging - Advanced Neuroimaging Applications" is a concise book on applied methods of fMRI used in assessment of cognitive functions in brain and neuropsychological evaluation using motor-sensory activities, language, orthographic disabilities in children. The book will serve the purpose of applied neuropsychological evaluation methods in neuropsychological research projects, as well as relatively experienced psychologists and neuroscientists. Chapters are arranged in the order of basic concepts of fMRI and physiological basis of fMRI after event-related stimulus in first two chapters followed by new concepts of fMRI applied in constraint-induced movement therapy; reliability analysis; refractory SMA epilepsy; consciousness states; rule-guided behavioral analysis; orthographic frequency neighbor analysis for phonological activation; and quantitative multimodal spectroscopic fMRI to evaluate different neuropsychological states

    The effect of lesion size on cortical reorganization in the ipsi and contralesional hemispheres

    Full text link
    Bien que la plasticité ipsilesionnelle suite à un accident vasculo-cérébral (AVC) soit bien établie, la réorganisation du cortex contralésionnel et son effet sur la récupération fonctionnelle restent toujours non élucidés. Les études publiées présentent des points de vue contradictoires sur le rôle du cortex contralésionnel dans la récupération fonctionnelle. La taille de lésion pourrait être le facteur déterminant la réorganisation de ce dernier. Le but principal de cette étude fut donc d’évaluer l’effet des AVC de tailles différentes dans la région caudal forelimb area (CFA) du rat sur la réorganisation physiologique et la récupération comportementale de la main. Suite à une période de récupération spontanée pendant laquelle la performance motrice des deux membres antérieurs fut observée, les cartes motrices bilatérales du CFA et du rostral forelimb area (RFA) furent obtenues. Nous avons trouvé que le volume de lésion était en corrélation avec le niveau de récupération comportementale et l’étendue de la réorganisation des RFA bilatéraux. Aussi, les rats ayant de grandes lésions avaient des plus grandes représentations de la main dans le RFA de l’hémisphère ipsilésionnel et un déficit de fonctionnement plus persistant de la main parétique. Dans l’hémisphère contralésionnel nous avons trouvé que les rats avec des plus grandes représentations de la main dans le RFA avaient des lésions plus grandes et une récupération incomplète de la main parétique. Nos résultats confirment l’effet du volume de lésion sur la réorganisation du cortex contralésionnel et soulignent que le RFA est l’aire motrice la plus influencée dans le cortex contralésionnel.While our understanding of ipsilesional plasticity and its role in recovery of hand function following ischemic stroke has increased dramatically, the reorganization of the contralesional motor cortex and its effect on recovery remain unclear. Currently published studies offer contradictory views on the role of contralesional motor cortex in recovery. Lesion extent has been suggested as the factor determining the type of reorganization of the contralesional motor cortex. The primary goal of this study was thus to evaluate the effect of unilateral strokes of different sizes in caudal forelimb area (CFA) of the rat on both physiological reorganization and behavioral recovery. At the end of a period of spontaneous recovery during which we monitored motor performance of both limbs, we obtained bilateral maps of the CFA and the putative premotor area of the rat – rostral forelimb area (RFA). We found that lesion volume in the CFA correlates with both the extent of behavioral recovery of the paretic hand and the extent of both ipsi and contralesional cortical reorganization. We found that rats with bigger lesions had larger hand representations in the ipsilesional hemisphere and more persistent deficits of the paretic hand. In the contralesional hemisphere we found that rats with larger hand representation in the RFA had bigger lesions and incomplete recovery of the paretic hand. Our results confirm the effect of lesion volume on the reorganization of the contralesional motor cortex and highlight contralesional RFA as the motor cortical area most influenced by lesion volume for future investigations
    • …
    corecore