189,793 research outputs found

    Teaching photonic integrated circuits with Jupyter notebooks : design, simulation, fabrication

    Get PDF
    At Ghent University, we have built a course curriculum on integrated photonics, and in particular silicon photonics, based on interactive Jupyter Notebooks. This has been used in short workshops, specialization courses at PhD level, as well as the M.Sc. Photonics Engineering program at Ghent University and the Free University of Brussels. The course material teaches the concepts of on-chip waveguides, basic building blocks, circuits, the design process, fabrication and measurements. The Jupyter notebook environment provides an interface where static didactic content (text, figures, movies, formulas) is mixed with Python code that the user can modify and execute, and interactive plots and widgets to explore the effect of changes in circuits or components. The Python environment supplies a host of scientific and engineering libraries, while the photonic capabilities are based on IPKISS, a commercial design framework for photonic integrated circuits by Luceda Photonics. The IPKISS framework allows scripting of layout and simulation directly from the Jupyter notebooks, so the teaching modules contain live circuit simulation, as well as integration with electromagnetic solvers. Because this is a complete design framework, students can also use it to tape out a small chip design which is fabricated through a rapid prototyping service and then measured, allowing the students to validate the actual performance of their design against the original simulation. The scripting in Jupyter notebooks also provides a self-documenting design flow, and the use of an established design tool guarantees that the acquired skills can be transferred to larger, real-world design projects

    Reliability improvement of electronic circuits based on physical failure mechanisms in components

    Get PDF
    Traditionally the position of reliability analysis in the design and production process of electronic circuits is a position of reliability verification. A completed design is checked on reliability aspects and either rejected or accepted for production. This paper describes a method to model physical failure mechanisms within components in such a way that they can be used for reliability optimization, not after, but during the early phase of the design process. Furthermore a prototype of a CAD software tool is described, which can highlight components likely to fail and automatically adjust circuit parameters to improve product reliability

    A writable programmable logic array

    Get PDF
    This thesis contains the analysis, design, and implementation of a writable programmable logic array integrated circuit. The WPLA is able to be reprogrammed any number of times as needed. A content addressable scheme is proposed to conduct READ, WRITE, and SEARCH operations in the WPLA. The WPLA is programmed by writing binary data into storage cells associated with each node in the AND/OR planes of the array; the binary data then form the personalities of the PLA. The layout of the WPLA will be implemented using Mentor Graphic\u27s CHIPGRAPH layout editor with 2 ”m NMOS technology and MOSIS design rules. The event-driven logic level simulator QUICKSIM, and a MOS circuit level simulator MSIMON, are used to verify the functional and timing behavior of the WPLA

    Self-Reconfigurable Analog Arrays: Off-The Shelf Adaptive Electronics for Space Applications

    Get PDF
    Development of analog electronic solutions for space avionics is expensive and lengthy. Lack of flexible analog devices, counterparts to digital Field Programmable Gate Arrays (FPGA), prevents analog designers from benefits of rapid prototyping. This forces them to expensive and lengthy custom design, fabrication, and qualification of application specific integrated circuits (ASIC). The limitations come from two directions: commercial Field Programmable Analog Arrays (FPAA) have limited variability in the components offered on-chip; and they are only qualified for best case scenarios for military grade (-55C to +125C). In order to avoid huge overheads, there is a growing trend towards avoiding thermal and radiation protection by developing extreme environment electronics, which maintain correct operation while exposed to temperature extremes (-180degC to +125degC). This paper describes a recent FPAA design, the Self-Reconfigurable Analog Array (SRAA) developed at JPL. It overcomes both limitations, offering a variety of analog cells inside the array together with the possibility of self-correction at extreme temperatures
    • 

    corecore