9,614 research outputs found

    Building a path-integral calculus: a covariant discretization approach

    Full text link
    Path integrals are a central tool when it comes to describing quantum or thermal fluctuations of particles or fields. Their success dates back to Feynman who showed how to use them within the framework of quantum mechanics. Since then, path integrals have pervaded all areas of physics where fluctuation effects, quantum and/or thermal, are of paramount importance. Their appeal is based on the fact that one converts a problem formulated in terms of operators into one of sampling classical paths with a given weight. Path integrals are the mirror image of our conventional Riemann integrals, with functions replacing the real numbers one usually sums over. However, unlike conventional integrals, path integration suffers a serious drawback: in general, one cannot make non-linear changes of variables without committing an error of some sort. Thus, no path-integral based calculus is possible. Here we identify which are the deep mathematical reasons causing this important caveat, and we come up with cures for systems described by one degree of freedom. Our main result is a construction of path integration free of this longstanding problem, through a direct time-discretization procedure.Comment: 22 pages, 2 figures, 1 table. Typos correcte

    The Separation Principle in Stochastic Control, Redux

    Full text link
    Over the last 50 years a steady stream of accounts have been written on the separation principle of stochastic control. Even in the context of the linear-quadratic regulator in continuous time with Gaussian white noise, subtle difficulties arise, unexpected by many, that are often overlooked. In this paper we propose a new framework for establishing the separation principle. This approach takes the viewpoint that stochastic systems are well-defined maps between sample paths rather than stochastic processes per se and allows us to extend the separation principle to systems driven by martingales with possible jumps. While the approach is more in line with "real-life" engineering thinking where signals travel around the feedback loop, it is unconventional from a probabilistic point of view in that control laws for which the feedback equations are satisfied almost surely, and not deterministically for every sample path, are excluded.Comment: 23 pages, 6 figures, 2nd revision: added references, correction

    Learning flexible representations of stochastic processes on graphs

    Full text link
    Graph convolutional networks adapt the architecture of convolutional neural networks to learn rich representations of data supported on arbitrary graphs by replacing the convolution operations of convolutional neural networks with graph-dependent linear operations. However, these graph-dependent linear operations are developed for scalar functions supported on undirected graphs. We propose a class of linear operations for stochastic (time-varying) processes on directed (or undirected) graphs to be used in graph convolutional networks. We propose a parameterization of such linear operations using functional calculus to achieve arbitrarily low learning complexity. The proposed approach is shown to model richer behaviors and display greater flexibility in learning representations than product graph methods

    Markov Processes, Hurst Exponents, and Nonlinear Diffusion Equations with application to finance

    Full text link
    We show by explicit closed form calculations that a Hurst exponent H that is not 1/2 does not necessarily imply long time correlations like those found in fractional Brownian motion. We construct a large set of scaling solutions of Fokker-Planck partial differential equations where H is not 1/2. Thus Markov processes, which by construction have no long time correlations, can have H not equal to 1/2. If a Markov process scales with Hurst exponent H then it simply means that the process has nonstationary increments. For the scaling solutions, we show how to reduce the calculation of the probability density to a single integration once the diffusion coefficient D(x,t) is specified. As an example, we generate a class of student-t-like densities from the class of quadratic diffusion coefficients. Notably, the Tsallis density is one member of that large class. The Tsallis density is usually thought to result from a nonlinear diffusion equation, but instead we explicitly show that it follows from a Markov process generated by a linear Fokker-Planck equation, and therefore from a corresponding Langevin equation. Having a Tsallis density with H not equal to 1/2 therefore does not imply dynamics with correlated signals, e.g., like those of fractional Brownian motion. A short review of the requirements for fractional Brownian motion is given for clarity, and we explain why the usual simple argument that H unequal to 1/2 implies correlations fails for Markov processes with scaling solutions. Finally, we discuss the question of scaling of the full Green function g(x,t;x',t') of the Fokker-Planck pde.Comment: to appear in Physica

    Beyond the Spectral Theorem: Spectrally Decomposing Arbitrary Functions of Nondiagonalizable Operators

    Full text link
    Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, often the linear operator techniques that one would then use simply fail since the operators cannot be diagonalized. This curse is well known. It also occurs for finite-dimensional linear operators. We circumvent it by developing a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. It extends the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics are relevant, including memoryful stochastic processes, open non unitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator. In particular, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a general method to construct it. We provide new formulae for constructing projection operators and delineate the relations between projection operators, eigenvectors, and generalized eigenvectors. By way of illustrating its application, we explore several, rather distinct examples.Comment: 29 pages, 4 figures, expanded historical citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/bst.ht

    Directly Coupled Observers for Quantum Harmonic Oscillators with Discounted Mean Square Cost Functionals and Penalized Back-action

    Full text link
    This paper is concerned with quantum harmonic oscillators consisting of a quantum plant and a directly coupled coherent quantum observer. We employ discounted quadratic performance criteria in the form of exponentially weighted time averages of second-order moments of the system variables. A coherent quantum filtering (CQF) problem is formulated as the minimization of the discounted mean square of an estimation error, with which the dynamic variables of the observer approximate those of the plant. The cost functional also involves a quadratic penalty on the plant-observer coupling matrix in order to mitigate the back-action of the observer on the covariance dynamics of the plant. For the discounted mean square optimal CQF problem with penalized back-action, we establish first-order necessary conditions of optimality in the form of algebraic matrix equations. By using the Hamiltonian structure of the Heisenberg dynamics and related Lie-algebraic techniques, we represent this set of equations in a more explicit form in the case of equally dimensioned plant and observer.Comment: 11 pages, a brief version to be submitted to the IEEE 2016 Conference on Norbert Wiener in the 21st Century, 13-15 July, Melbourne, Australi

    Hurst exponents, Markov processes, and nonlinear diffusion equations

    Get PDF
    We show by explicit closed form calculations that a Hurst exponent H≠1/2 does not necessarily imply long time correlations like those found in fractional Brownian motion. We construct a large set of scaling solutions of Fokker-Planck partial differential equations where H≠1/2. Thus Markov processes, which by construction have no long time correlations, can have H≠1/2. If a Markov process scales with Hurst exponent H≠ 1/2 then it simply means that the process has nonstationary increments. For the scaling solutions, we show how to reduce the calculation of the probability density to a single integration once the diffusion coefficient D(x,t) is specified. As an example, we generate a class of student-t-like densities from the class of quadratic diffusion coefficients. Notably, the Tsallis density is one member of that large class. The Tsallis density is usually thought to result from a nonlinear diffusion equation, but instead we explicitly show that it follows from a Markov process generated by a linear Fokker-Planck equation, and therefore from a corresponding Langevin equation. Having a Tsallis density with H≠1/2 therefore does not imply dynamics with correlated signals, e.g., like those of fractional Brownian motion. A short review of the requirements for fractional Brownian motion is given for clarity, and we explain why the usual simple argument that H≠1/2 implies correlations fails for Markov processes with scaling solutions. Finally, we discuss the question of scaling of the full Green function g(x,t;x',t') of the Fokker-Planck pde.Hurst exponent; Markov process; scaling; stochastic calculus; autocorrelations; fractional Brownian motion; Tsallis model; nonlinear diffusion

    G-Brownian Motion as Rough Paths and Differential Equations Driven by G-Brownian Motion

    Full text link
    The present paper is devoted to the study of sample paths of G-Brownian motion and stochastic differential equations (SDEs) driven by G-Brownian motion from the view of rough path theory. As the starting point, we show that quasi-surely, sample paths of G-Brownian motion can be enhanced to the second level in a canonical way so that they become geometric rough paths of roughness 2 < p < 3. This result enables us to introduce the notion of rough differential equations (RDEs) driven by G-Brownian motion in the pathwise sense under the general framework of rough paths. Next we establish the fundamental relation between SDEs and RDEs driven by G-Brownian motion. As an application, we introduce the notion of SDEs on a differentiable manifold driven by GBrownian motion and construct solutions from the RDE point of view by using pathwise localization technique. This is the starting point of introducing G-Brownian motion on a Riemannian manifold, based on the idea of Eells-Elworthy-Malliavin. The last part of this paper is devoted to such construction for a wide and interesting class of G-functions whose invariant group is the orthogonal group. We also develop the Euler-Maruyama approximation for SDEs driven by G-Brownian motion of independent interest
    corecore