2,393 research outputs found

    Common envelope ejection in massive binary stars - Implications for the progenitors of GW150914 and GW151226

    Full text link
    The recently detected gravitational wave signals (GW150914 and GW151226) of the merger event of a pair of relatively massive stellar-mass black holes (BHs) calls for an investigation of the formation of such progenitor systems in general. We analyse the common envelope (CE) stage of the "traditional" formation channel in binaries where the first-formed compact object undergoes an in-spiral inside the envelope of its evolved companion star and ejects the envelope in that process. We calculate envelope binding energies of donor stars with initial masses between 4 and 115 Msun for metallicities of Z=Zsun/2 and Z=Zsun/50, and derive minimum masses of in-spiralling objects needed to eject these envelopes. We find that CE evolution, besides from producing WD-WD and NS-NS binaries, may, in principle, also produce massive BH-BH systems with individual BH component masses up to ~50-60 Msun, in particular for donor stars evolved to giants. However, the physics of envelope ejection of massive stars remains uncertain. We discuss the applicability of the energy-budget formalism, the location of the bifurcation point, the recombination energy and the accretion energy during in-spiral as possible energy sources, and also comment on the effect of inflated helium cores. Massive stars in a wide range of metallicities and with initial masses up to at least 115 Msun may possibly shed their envelopes and survive CE evolution, depending on their initial orbital parameters, similarly to the situation for intermediate mass and low-mass stars with degenerate cores. We conclude that based on stellar structure calculations, and in the view of the usual simple energy budget analysis, events like GW150914 and GW151226 could possibly be produced from the CE channel. Calculations of post-CE orbital separations, however, and thus the estimated LIGO detection rates, remain highly uncertain. [Abridged]Comment: 13 pages, 7 figures, A&A accepte

    Simulations of stripped core-collapse supernovae in close binaries

    Get PDF
    We perform smoothed-particle hydrodynamical simulations of the explosion of a helium star in a close binary system, and study the effects of the explosion on the companion star as well as the effect of the presence of the companion on the supernova remnant. By simulating the mechanism of the supernova from just after core bounce until the remnant shell passes the stellar companion, we are able to separate the various effects leading to the final system parameters. In the final system, we measure the mass stripping and ablation from, and the velocity kick imparted to, the companion star, as well as the structure of the supernova shell. The presence of the companion star produces a conical cavity in the expanding supernova remnant, and loss of material from the companion causes the supernova remnant to be more metal-rich on one side and more hydrogen-rich (from the companion material) around the cavity. Following the removal of mass from the companion, we study its subsequent evolution and compare it with a single star not subjected to a supernova impact.Comment: 20 pages, 14 figures, submitted to Computational Astrophysics and Cosmolog

    Possible confirmation of the existence of ergoregion by the Kerr quasinormal mode in gravitational waves from Pop III massive black hole binary

    Get PDF
    The existence of the ergoregion of the Kerr space-time has not been confirmed observationally yet. We show that the confirmation would be possible by observing the quasinormal mode in gravitational waves. As an example, using the recent population synthesis results of Pop III binary black holes, we find that the peak of the final merger mass (MfM_f) is about 50 M50~\rm M_{\odot}, while the fraction of the final spin qf=af/Mf>0.7q_f = a_f/M_f > 0.7 needed for the confirmation of a part of ergoregion is 77%\sim 77\%. To confirm the frequency of the quasinormal mode, SNR>35{\rm SNR} > 35 is needed. The standard model of Pop III population synthesis tells us that the event rate for the confirmation of more than 50%50\% of the ergoregion by the second generation gravitational wave detectors is 2.3\sim 2.3 events yr1 (SFRp/(102.5 Myr1 Mpc3))([fb/(1+fb)]/0.33){\rm events\ yr^{-1}\ (SFR_p/(10^{-2.5}\ M_\odot yr^{-1}\ Mpc^{-3}))} \cdot (\rm [f_b/(1+f_b)]/0.33) where SFRp{\rm SFR_p} and fb{\rm f_b} are the peak value of the Pop III star formation rate and the fraction of binaries, respectively.Comment: Accepted for publication in PTEP. Comments welcom

    Ultra-luminous X-ray sources and neutron-star-black-hole mergers from very massive close binaries at low metallicity

    Full text link
    Gravitational waves from the binary black hole (BH) merger GW150914 may enlighten our understanding of ultra-luminous X-ray sources (ULXs), as BHs>30Msun can reach luminosities>4x10^39 erg s^-1 without exceeding their Eddington limit. It is then important to study variations of evolutionary channels for merging BHs, which might instead form accreting BHs and become ULXs. It was recently shown that massive binaries with mass ratios close to unity and tight orbits can undergo efficient rotational mixing and evolve chemically homogeneously, resulting in a compact BH binary. We study similar systems by computing ~120000 detailed binary models with the MESA code covering a wide range of initial parameters. For initial mass ratios M2/M1~0.1-0.4, primaries >40Msun can evolve chemically homogeneously, remaining compact and forming a BH without undergoing Roche-lobe overflow. The secondary then expands and transfers mass to the BH, initiating a ULX phase. We predict that ~1 out of 10^4 massive stars evolves this way, and that in the local universe 0.13 ULXs per Msun yr^-1 of star-formation rate are observable, with a strong preference for low-metallicities. At metallicities log Z>-3, BH masses in ULXs are limited to 60Msun due to the occurrence of pair-instability supernovae which leave no remnant, resulting in an X-ray luminosity cut-off. At lower metallicities, very massive stars can avoid exploding as pair-instability supernovae and instead form BHs with masses above 130Msun, producing a gap in the ULX luminosity distribution. After the ULX phase, neutron-star-BH binaries that merge in less than a Hubble time are produced with a formation rate <0.2 Gpc^-3 yr^-1. We expect that upcoming X-ray observatories will test these predictions, which together with additional gravitational wave detections will provide strict constraints on the origin of the most massive BHs that can be produced by stars.Comment: Accepted for publication in A&A. 19 Pages plus 16 pages of appendices. Abstract abridge
    corecore