86,792 research outputs found

    Learning Generative Models of the Geometry and Topology of Tree-like 3D Objects

    Full text link
    How can one analyze detailed 3D biological objects, such as neurons and botanical trees, that exhibit complex geometrical and topological variation? In this paper, we develop a novel mathematical framework for representing, comparing, and computing geodesic deformations between the shapes of such tree-like 3D objects. A hierarchical organization of subtrees characterizes these objects -- each subtree has the main branch with some side branches attached -- and one needs to match these structures across objects for meaningful comparisons. We propose a novel representation that extends the Square-Root Velocity Function (SRVF), initially developed for Euclidean curves, to tree-shaped 3D objects. We then define a new metric that quantifies the bending, stretching, and branch sliding needed to deform one tree-shaped object into the other. Compared to the current metrics, such as the Quotient Euclidean Distance (QED) and the Tree Edit Distance (TED), the proposed representation and metric capture the full elasticity of the branches (i.e., bending and stretching) as well as the topological variations (i.e., branch death/birth and sliding). It completely avoids the shrinkage that results from the edge collapse and node split operations of the QED and TED metrics. We demonstrate the utility of this framework in comparing, matching, and computing geodesics between biological objects such as neurons and botanical trees. The framework is also applied to various shape analysis tasks: (i) symmetry analysis and symmetrization of tree-shaped 3D objects, (ii) computing summary statistics (means and modes of variations) of populations of tree-shaped 3D objects, (iii) fitting parametric probability distributions to such populations, and (iv) finally synthesizing novel tree-shaped 3D objects through random sampling from estimated probability distributions.Comment: under revie

    Querying Probabilistic Neighborhoods in Spatial Data Sets Efficiently

    Full text link
    \newcommand{\dist}{\operatorname{dist}} In this paper we define the notion of a probabilistic neighborhood in spatial data: Let a set PP of nn points in Rd\mathbb{R}^d, a query point qRdq \in \mathbb{R}^d, a distance metric \dist, and a monotonically decreasing function f:R+[0,1]f : \mathbb{R}^+ \rightarrow [0,1] be given. Then a point pPp \in P belongs to the probabilistic neighborhood N(q,f)N(q, f) of qq with respect to ff with probability f(\dist(p,q)). We envision applications in facility location, sensor networks, and other scenarios where a connection between two entities becomes less likely with increasing distance. A straightforward query algorithm would determine a probabilistic neighborhood in Θ(nd)\Theta(n\cdot d) time by probing each point in PP. To answer the query in sublinear time for the planar case, we augment a quadtree suitably and design a corresponding query algorithm. Our theoretical analysis shows that -- for certain distributions of planar PP -- our algorithm answers a query in O((N(q,f)+n)logn)O((|N(q,f)| + \sqrt{n})\log n) time with high probability (whp). This matches up to a logarithmic factor the cost induced by quadtree-based algorithms for deterministic queries and is asymptotically faster than the straightforward approach whenever N(q,f)o(n/logn)|N(q,f)| \in o(n / \log n). As practical proofs of concept we use two applications, one in the Euclidean and one in the hyperbolic plane. In particular, our results yield the first generator for random hyperbolic graphs with arbitrary temperatures in subquadratic time. Moreover, our experimental data show the usefulness of our algorithm even if the point distribution is unknown or not uniform: The running time savings over the pairwise probing approach constitute at least one order of magnitude already for a modest number of points and queries.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-44543-4_3

    Multivariate texture discrimination using a principal geodesic classifier

    Get PDF
    A new texture discrimination method is presented for classification and retrieval of colored textures represented in the wavelet domain. The interband correlation structure is modeled by multivariate probability models which constitute a Riemannian manifold. The presented method considers the shape of the class on the manifold by determining the principal geodesic of each class. The method, which we call principal geodesic classification, then determines the shortest distance from a test texture to the principal geodesic of each class. We use the Rao geodesic distance (GD) for calculating distances on the manifold. We compare the performance of the proposed method with distance-to-centroid and knearest neighbor classifiers and of the GD with the Euclidean distance. The principal geodesic classifier coupled with the GD yields better results, indicating the usefulness of effectively and concisely quantifying the variability of the classes in the probabilistic feature space
    corecore