142 research outputs found

    A review of arthritis diagnosis techniques in artificial intelligence era: Current trends and research challenges

    Get PDF
    Deep learning, a branch of artificial intelligence, has achieved unprecedented performance in several domains including medicine to assist with efficient diagnosis of diseases, prediction of disease progression and pre-screening step for physicians. Due to its significant breakthroughs, deep learning is now being used for the diagnosis of arthritis, which is a chronic disease affecting young to aged population. This paper provides a survey of recent and the most representative deep learning techniques (published between 2018 to 2020) for the diagnosis of osteoarthritis and rheumatoid arthritis. The paper also reviews traditional machine learning methods (published 2015 onward) and their application for the diagnosis of these diseases. The paper identifies open problems and research gaps. We believe that deep learning can assist general practitioners and consultants to predict the course of the disease, make treatment propositions and appraise their potential benefits

    Automatic diagnosis of knee osteoarthritis severity using Swin transformer

    Full text link
    Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint. Early detection and diagnosis are crucial for successful clinical intervention and management to prevent severe complications, such as loss of mobility. In this paper, we propose an automated approach that employs the Swin Transformer to predict the severity of KOA. Our model uses publicly available radiographic datasets with Kellgren and Lawrence scores to enable early detection and severity assessment. To improve the accuracy of our model, we employ a multi-prediction head architecture that utilizes multi-layer perceptron classifiers. Additionally, we introduce a novel training approach that reduces the data drift between multiple datasets to ensure the generalization ability of the model. The results of our experiments demonstrate the effectiveness and feasibility of our approach in predicting KOA severity accurately.Comment: CBMI 202

    Improving Image Classification of Knee Radiographs: An Automated Image Labeling Approach

    Full text link
    Large numbers of radiographic images are available in knee radiology practices which could be used for training of deep learning models for diagnosis of knee abnormalities. However, those images do not typically contain readily available labels due to limitations of human annotations. The purpose of our study was to develop an automated labeling approach that improves the image classification model to distinguish normal knee images from those with abnormalities or prior arthroplasty. The automated labeler was trained on a small set of labeled data to automatically label a much larger set of unlabeled data, further improving the image classification performance for knee radiographic diagnosis. We developed our approach using 7,382 patients and validated it on a separate set of 637 patients. The final image classification model, trained using both manually labeled and pseudo-labeled data, had the higher weighted average AUC (WAUC: 0.903) value and higher AUC-ROC values among all classes (normal AUC-ROC: 0.894; abnormal AUC-ROC: 0.896, arthroplasty AUC-ROC: 0.990) compared to the baseline model (WAUC=0.857; normal AUC-ROC: 0.842; abnormal AUC-ROC: 0.848, arthroplasty AUC-ROC: 0.987), trained using only manually labeled data. DeLong tests show that the improvement is significant on normal (p-value<0.002) and abnormal (p-value<0.001) images. Our findings demonstrated that the proposed automated labeling approach significantly improves the performance of image classification for radiographic knee diagnosis, allowing for facilitating patient care and curation of large knee datasets.Comment: This is the preprint versio

    Automatic quantification of radiographic knee osteoarthritis severity and associated diagnostic features using deep convolutional neural networks

    Get PDF
    “Automatic Quantification of Radiographic Knee Osteoarthritis Severity and Associated Diagnostic Features using Deep Convolutional Neural Networks” A. Joseph Antony Due to the increasing prevalence of knee Osteoarthritis (OA), a debilitating kneejoint degradation, and total joint arthoplasty as a serious consequence, there is a need for effective clinical and scientific tools to assess knee OA in its early stages. This thesis investigates the use of machine learning algorithms and deep learning architectures, in particular convolutional neural networks (CNN), to quantify the severity and clinical radiographic features of knee OA. The goal is to offer novel and effective solutions to automatically assess the severity of knee OA achieving on par with human accuracy. Instead of conventional hand-crafted features, it is proposed in this thesis that automatically learning features in a supervised manner can be more effective for fine-grained knee OA image classification. The main contributions of this thesis are as follows. First, the use of off-the-shelf CNNs are investigated for classifying knee OA images through transfer learning by fine-tuning the CNNs. Second, CNNs are trained from scratch to quantify the knee OA severity optimising a weighted ratio of two loss functions: categorical cross entropy and mean-squared error. Third, CNNs are jointly trained to quantify the clinical features of knee OA: joint space narrowing (JSN) and osteophytes along with the KL grades. This improves the overall quantification of knee OA severity producing simultaneous predictions of KL grades, JSN and osteophytes. Two public datasets are used to evaluate the approaches, the OAI and the MOST, with extremely promising results that outperform existing approaches. In summary, this thesis primarily contributes to the field of automated methods for localisation and quantification of radiographic knee OA

    Unsupervised Domain Adaptation for Automated Knee Osteoarthritis Phenotype Classification

    Full text link
    Purpose: The aim of this study was to demonstrate the utility of unsupervised domain adaptation (UDA) in automated knee osteoarthritis (OA) phenotype classification using a small dataset (n=50). Materials and Methods: For this retrospective study, we collected 3,166 three-dimensional (3D) double-echo steady-state magnetic resonance (MR) images from the Osteoarthritis Initiative dataset and 50 3D turbo/fast spin-echo MR images from our institute (in 2020 and 2021) as the source and target datasets, respectively. For each patient, the degree of knee OA was initially graded according to the MRI Osteoarthritis Knee Score (MOAKS) before being converted to binary OA phenotype labels. The proposed UDA pipeline included (a) pre-processing, which involved automatic segmentation and region-of-interest cropping; (b) source classifier training, which involved pre-training phenotype classifiers on the source dataset; (c) target encoder adaptation, which involved unsupervised adaption of the source encoder to the target encoder and (d) target classifier validation, which involved statistical analysis of the target classification performance evaluated by the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity and accuracy. Additionally, a classifier was trained without UDA for comparison. Results: The target classifier trained with UDA achieved improved AUROC, sensitivity, specificity and accuracy for both knee OA phenotypes compared with the classifier trained without UDA. Conclusion: The proposed UDA approach improves the performance of automated knee OA phenotype classification for small target datasets by utilising a large, high-quality source dataset for training. The results successfully demonstrated the advantages of the UDA approach in classification on small datasets.Comment: Junru Zhong and Yongcheng Yao share the same contribution. 17 pages, 4 figures, 4 table

    KNEE OSTEOARTHRITIS PREDICTION DRIVEN BY DEEP LEARNING AND THE KELLGREN-LAWRENCE GRADING

    Get PDF
    Degenerative osteoarthritis of the knee (KOA) affects the knee compartments and worsens over 10–15 years. Knee osteoarthritis is the major cause of activity restrictions and impairment in older persons. Clinicians' expertise affects visual examination interpretation. Hence, achieving early detection requires fast, accurate, and affordable methods. Deep learning (DL) convolutional neural networks (CNN) are the most accurate knee osteoarthritis diagnosis approach. CNNs require a significant amount of training data. Knee X-rays can be analyzed by models that use deep learning to extract the features and reduce number of training cycles. This study suggests the usage of DL system that is based on a trained network on five-class knee X-rays with VGG16, SoftMax (Normal, Doubtful, Mild, Moderate, Severe). Two deep CNNs are used to grade knee OA instantly using the Kellgren-Lawrence (KL) methodology. The experimental analysis makes use of two sets of 1650 different knee X-ray images. Each set consists of 514 normal, 477 doubtful, 232 mild, 221 moderate, and 206 severe cases of osteoarthritis of the knee. The suggested model for knee osteoarthritis (OA) identification and severity prediction using knee X-ray radiographs has a classification accuracy of more than 95%, with training and validation accuracy of 95% and 87%, respectively
    • 

    corecore