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Abstract
“Automatic Quantification of Radiographic Knee Osteoarthritis Severity and

Associated Diagnostic Features using Deep Convolutional Neural Networks”

A. Joseph Antony

Due to the increasing prevalence of knee Osteoarthritis (OA), a debilitating knee-

joint degradation, and total joint arthoplasty as a serious consequence, there is a

need for effective clinical and scientific tools to assess knee OA in its early stages.

This thesis investigates the use of machine learning algorithms and deep learning

architectures, in particular convolutional neural networks (CNN), to quantify the

severity and clinical radiographic features of knee OA. The goal is to offer novel and

effective solutions to automatically assess the severity of knee OA achieving on par

with human accuracy. Instead of conventional hand-crafted features, it is proposed

in this thesis that automatically learning features in a supervised manner can be

more effective for fine-grained knee OA image classification.

The main contributions of this thesis are as follows. First, the use of

off-the-shelf CNNs are investigated for classifying knee OA images through

transfer learning by fine-tuning the CNNs. Second, CNNs are trained from scratch

to quantify the knee OA severity optimising a weighted ratio of two loss functions:

categorical cross entropy and mean-squared error. Third, CNNs are jointly trained

to quantify the clinical features of knee OA: joint space narrowing (JSN) and

osteophytes along with the KL grades. This improves the overall quantification of

knee OA severity producing simultaneous predictions of KL grades, JSN and

osteophytes. Two public datasets are used to evaluate the approaches, the OAI

and the MOST, with extremely promising results that outperform existing

approaches. In summary, this thesis primarily contributes to the field of

automated methods for localisation and quantification of radiographic knee OA.



Chapter 1

Introduction

1.1 Chapter Overview

This chapter provides a general introduction to this thesis, presents the motivation

for this research, the hypotheses and research questions, and outlines the structure of

this thesis. Section 1.2 introduces knee osteoarthritis (OA), the diagnostic features

of knee OA, the clinical significance, and the clinical evaluation of knee OA using

the Kellgren and Lawrence (KL) grading scheme. Section 1.3 discusses the specific

motivations underpinning this research. Section 1.4 presents the hypotheses and

research questions derived from the previously reported work on early detection and

assessment of knee OA severity. Section 1.5 lists the research objectives. Section

1.6 outlines the organisation and structure of this thesis.

1.2 Knee Osteoarthritis

Knee OA is a debilitating joint disorder that mainly degrades the knee articular

cartilage. In general, knee OA is characterised by joint pain, cartilage wear, and

bony growths. Knee OA has a high-incidence among the elderly, obese, and those

with a sedentary lifestyle. In its severe stages, it causes excruciating pain and often

leads to total joint arthoplasty. Early diagnosis is crucial for clinical treatments and

pathology [1, 2].

1
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Figure 1.1: A healthy knee and a knee joint affected with OA.

Source: http://orthoinfo.aaos.org/figures/A00389F02.jpg

1.2.1 Diagnostic Features

Clinically, the major pathological features for knee OA include joint space narrowing,

osteophytes formation, and sclerosis [1,3]. Figure 1.1 shows the anatomy of a healthy

knee and a knee affected with osteoarthritis, and the characteristic features of knee

OA: joint space narrowing (JSN) due to cartilage loss and bone spurs (osteophytes).

The causes for knee OA include mechanical abnormalities such as degradation of

articular cartilage, menisci, ligaments, synovial tissue, and sub-chondral bone.

The major clinical features; joint space narrowing and osteophyte formation,

are easily visualised using radiographs [1, 4, 5]. Despite the introduction of several

imaging methods such as magnetic resonance imaging (MRI), computed

tomography (CT), and ultrasound for augmented OA diagnosis, radiographs have

traditionally been preferred [5,6], and remain as the main accessible tool and “gold

standard” for preliminary knee OA diagnosis [2, 7]. However, many argue that

MRI is the most useful imaging modality to study the structural variations and to

visualise soft tissues, and that MRI provides the structural evidence of knee

2
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OA [8]. Inspired by the previous successful approaches in the literature for early

identification [2] and automatic assessment of knee OA severity [1,6,9], the focus is

on radiographs in this thesis. More importantly, there are public datasets available

that contain radiographs with associated ground truth. Public datasets for knee

OA study, such as the OAI and the MOST datasets, provide radiographs with

Kellgren and Lawrence (KL) scores, and the OARSI1 readings for distinct knee

OA features such as JSN, osteophytes, and sclerosis. Section 1.2.3 discuses the KL

scores in detail. The details of OARSI readings are discussed in Chapter 6.

1.2.2 Clinical Significance of Knee OA Studies

Due to the increasing prevalence of knee OA, diminishing health-related quality

of life, and total joint arthoplasty as a serious consequence, there is a growing

need for effective clinical and scientific tools for early detection of knee OA reliably

[1, 2, 7]. Early identification of knee OA and assessment of the severity are crucial

for pathology, clinical decision making, and to study disease progression [6].

As per a recent study [10], more than 250 million people across the globe are

affected by knee OA alone. A study [11] on future projections of total hip and knee

arthoplasty in the UK estimates the total primary hip and knee replacement counts

in 2035 at 439,097 and 1,219,362 respectively. The National Institutes of Health

(NIH) has sponsored a research project called the Osteoarthritis Initiative (OAI)

to develop a public domain resource to facilitate knee OA research, to identify and

validate knee OA biomarkers that will help to better understand how to prevent

and treat knee OA.

1.2.3 Radiographic Classification of Knee OA

Knee OA develops gradually over years and progresses in stages. In general, the

severity of knee OA is divided into five stages. The first stage (stage 0)

corresponds to normal healthy knee and the final stage (stage 4) corresponds to

1Osteoarthritis Research Society International
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Figure 1.2: Stages of knee OA.

Source: https://www.anatomynow.com/products/human_osteoarthritic_knee_model

the most severe condition. Figure 1.2 illustrates the different stages of knee OA

severity. The most commonly used systems for grading knee OA are the

International Knee Documentation Committee (IKDC) system, the Ahlback

system, and the Kellgren & Lawrence system2. The other widely used

non-radiographic knee OA assessment system is WOMAC3, which measures pain,

stiffness, and functional limitation. As the public datasets used in the studies in

this thesis are provided with KL grades, they are used as the ground truth to

classify the knee OA X-ray images.

2https://radiopaedia.org/articles/kellgren-and-lawrence-system-for/

-classification-of-osteoarthritis-of-knee/
3http://www.womac.org/womac/index.htm
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Figure 1.3: The Kellgren and Lawrence grading system to assess the severity of knee
OA.

Source: http://www.adamondemand.com/clinical-management-of-osteoarthritis/

Kellgren and Lawrence Scores

The Kellgren and Lawrence (KL) grading scale was approved by the World Health

Organisation (WHO) as the reference standard for cross-sectional and longitudinal

epidemiologic studies [4, 5, 12, 13]. The KL grading system is still considered the

gold standard for initial assessment of knee osteoarthritis severity in radiographs

[1, 4, 7, 14]. Figure 1.3 shows the KL grading system. The KL grading system

categorises knee OA severity into five grades (grade 0 to 4). The KL grading scheme

for quantifying knee OA severity from X-ray images is defined as follows.

• Grade 0: absence of radiographic features (cartilage loss or osteophytes) of

OA.

• Grade 1: doubtful joint space narrowing (JSN), osteophytes sprouting, bone

marrow oedema (BME), and sub-chondral cyst.

• Grade 2: visible osteophytes formation and reduction in joint space width on

the antero-posterior weight-bearing radiograph with BME and sub-chondral

5
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cyst.

• Grade 3: multiple osteophytes, definite JSN, sclerosis, possible bone deformity.

• Grade 4: large osteophytes, marked JSN, severe sclerosis, and definite bone

deformity.

1.3 Motivation

Currently, experienced clinicians assess knee OA severity by grading the knee

joints in X-ray images [15]. The most commonly used gradings like the KL grading

scheme, and Ahlback system, use distinctive grades (0 to 4). However, clinical

features of knee OA are continuous in nature, and attributing distinctive grades is

the subjective opinion of the graders. There are also uncertainties and variations

in the subjective gradings. There is a need for automated methods to overcome

the limitations arising from this subjectivity, and to improve the reliability in the

measurements and classifications [15].

The automatic assessment of knee OA severity has been previously approached

in the literature as an image classification problem [2, 7, 9], with the KL grading

scale as the ground truth. WNDCHARM, a multi purpose biomedical image

classifier was used to classify knee OA images [9, 14]. High binary classification

accuracies (80% to 91%) have been reported using the WNDCHARM classifier for

classifying the extreme stages: grade 0 (normal) vs grade 4 (severe), grade 0 vs

grade 3 (moderate). However, the classification accuracies of the images belonging

to successive grades are low (55% to 65%) and the multi-class classification

accuracy is low (35%). The overall classification accuracies of knee OA needs

improvement for real-world computer aided diagnosis [1, 2, 7].

Radiographic features detected and learned through a computer-aided analysis

can be useful to quantify knee OA severity and to predict the future development

of knee OA [2]. Instead of manually designing features, the author proposes that

learning feature representations using deep learning architectures can be a more

6
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effective approach for the classification of knee OA images.

Traditionally, hand-crafted features based on pixel statistics, object and edge

statistics, texture, histograms, and transforms, are typically used for multi purpose

medical image classification [4, 9, 14]. However, these features are not efficient for

fine-grained classification such as classifying successive grades of knee OA images.

Manually designed or hand-engineered features often simplify machine learning

tasks. Nevertheless, they have a few disadvantages. The process of engineering

features requires domain related expert knowledge and is often very time

consuming [16]. These features are often low-level as prior knowledge is

hand-encoded and features in one domain do not always generalise to other

domains [17]. The next logical step is to automatically learn effective features for

the desired task.

In recent years, learning feature representations is preferred to hand-crafted

features, particularly for fine-grained classification, because rich appearance and

shape features are essential for describing subtle differences between

categories [18]. Feature learning correspond to techniques that learn to transform

raw data input to an effective representation for further higher-level processing

such as classification, automatic detection, and segmentation. Feature learning

approaches provide a natural way to capture cues by using a large number of code

words (sparse coding) or neurons (deep networks), while traditional computer

vision features, designed for basic-level category recognition, may eliminate many

useful cues during feature extraction [18]. Deep learning architectures are

multi-layered and they are used to learn feature representations in the hidden

layer(s). These representations are subsequently used for classification or

regression at the output layer. Feature learning is an integral part of deep

learning [16,19].

Even though many deep learning architectures have been proposed and have

existed for decades, in recent times convolutional neural networks (CNN) have

become highly successful in the field of computer vision [20, 21]. AlexNet [22] won

7
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the ILSVRC4 in 2012 by a large margin. CNNs have since become more popular,

widely-used and highly-successful in computer vision tasks such as image

recognition, automatic detection and segmentation, content based image retrieval,

and video classification [20]. Apart from computer vision tasks, CNNs are finding

applications in natural language processing, hyper-spectral image processing, and

medical image analysis [20, 23]. Recently, CNNs have become successful in medical

applications such as knee cartilage segmentation in MRI scans [24], brain tumour

segmentation in magnetic resonance imaging (MRI) scans [25], multi-modality

iso-intense infant brain image segmentation [26], pancreas segmentation in CT

images [27], and neuronal membrane segmentation in electron microscopy

images [28]. Inspired by these success stories, the author proposes CNNs for

classification of knee OA images and to improve the quantification of knee OA

severity and knee OA diagnostic features. The author believes that this can lead

to build a real-world knee OA diagnostic system that outperforms the existing

approaches.

1.4 Hypotheses and Research Questions

Based on the previously reported work in the early detection and computer aided

diagnosis of knee OA severity, and the preliminary investigations, the author

suggests the following hypotheses.

H1. Learning feature representations and classification using supervised deep

learning is more effective for assessing the severity of knee OA than

conventional classification using hand-crafted features.

H2. Evaluating the automatic knee OA predictions using a continuous

distance-based metric like mean squared error instead of classification

accuracy is more appropriate and KL grades predictions can be

approached as a regression problem. Training a CNN for optimising a

4ImageNet Large Scale Visual Recognition Challenge
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weighted ratio of two loss functions for simultaneous classification and

regression can improve the accuracy of quantifying knee OA severity.

H3. Jointly training a CNN for quantifying the clinical diagnostic features of

knee OA such as joint space narrowing (JSN) and osteophytes, along with

the KL grades will improve the overall quantification of knee OA severity.

H4. Using these improvements it is possible to build a computer aided

diagnostic system to assess knee OA that is sufficiently accurate for

practical application.

Research Questions

From the hypotheses, the author outlines the following research questions and

discusses how these questions are addressed by identifying potential solutions.

RQ1. What is the most efficient method for localising the ROI; i.e. the

knee joint regions in X-ray images, in terms of speed and accuracy

that also supports feature learning and classification using CNNs?

Radiologists and medical practitioners examine knee joint regions only in X-

ray images for assessing knee OA severity and according to the literature, the

region of interest (ROI) for classification is only the knee joint regions, i.e.

the left and right knees joints [1, 4, 7, 9, 14]. Hence, detecting and localising

the knee joint regions is an essential pre-processing step before classification.

Automatic methods are preferable for large datasets such as the OAI and the

MOST. The following methods are investigated to automatically localise the

knee joints in X-ray images:

• Shamir et al. [2] proposed the template matching approach for automatic

detection of knee joints. First, this method is implemented as a baseline

in this thesis. (Section 3.3.1)

9
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• Next, a SVM-based approach using Sobel horizontal image gradients as

features to automatically localise the knee joints is investigated. (Section

3.3.2)

• A novel deep learning based approach is proposed for localisation and a

fully convolutional network is trained. (Chapter 4)

RQ2. Instead of using hand-crafted features, is it possible to learn effective

feature representations using a supervised deep learning method, in

particular a convolutional neural network (CNN), for efficient and

accurate fine-grained classification of knee OA images?

Previous approaches for early diagnosis and assessment of knee OA severity

have used several hand-crafted features [1, 2, 4, 9, 29, 30] and conventional

classification techniques such as SVM [30], k-nearest neighbour classifier [29],

weighted nearest neighbour classifier [2, 9], random forest classifiers [15], and

even artificial neural networks (ANN) [31, 32]. As a baseline, the

state-of-the-art hand-crafted features successful in other computer vision

tasks for classification of knee OA images are investigated. Next, supervised

feature learning using CNNs for efficient classification of knee OA images is

investigated, instead of using hand-crafted features. Deep learning based

methods require large training data to generalise well after training the

networks. Existing CNNs are trained with datasets like ImageNet [33] that

contains more than 1 million images. Using deep learning based methods for

computer aided diagnostics involves two challenges: lack of training data in

comparison to datasets like ImageNet and it is unclear if deep learning

methods will work well due to domain shift. The following investigations and

solutions are proposed to address this research question:

• As a baseline approach, WNDCHARM proposed by Shamir et al. [9,34] to

classify the knee images is implemented. This will be used to benchmark

the classification results. (Section 3.4.1)

10
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• The features extracted from off-the-shelf CNNs are investigated to classify

knee OA images. (Section 3.4.3)

• The off-the-shelf pre-trained CNNs are fine-tuned through transfer

learning for knee OA images classification. (Section 5.2)

• CNNs are trained from scratch for classifying knee OA images. (Section

5.3)

RQ3. As knee OA is progressive, can the categorisation of knee OA images

be approached as a regression problem instead of classification?

Existing work on automatic assessment of knee OA severity treats it as an

image classification problem, assigning each KL grade to a distinct category [2].

To date, evaluation of automatic KL grading algorithms has been based on

binary and multi-class classification accuracy with respect to these discrete KL

grades [1,7,14]. KL grades are not, however, categorical, but rather represent

an ordinal scale of increasing severity. The quantisation of the KL grades

to discrete integer levels is essentially an artefact of convenience; the true

progression of the disease in nature is continuous, not discrete. The author

justifies the use of regression of knee OA assessment and proposes the following

methods to address this research question:

• The author argues it is more appropriate and useful to assess the

accuracy of automatic knee OA predictions using a continuous

distance-based metric like mean squared error than it is to use

classification accuracy. The pre-trained CNNs are fine-tuned using both

classification loss and regression loss. (Section 5.2)

• It is shown that a CNN fine-tuned with regression loss improves the

classification accuracy in comparison to the CNN fine-tuned with

classification loss. (Section 5.2.5)

RQ4. Can a CNN trained with a weighted ratio of two loss functions such

11
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as categorical cross entropy and mean squared error improve the

assessment of knee OA severity?

As pointed out before, it is more appropriate to use mean squared error as

an evaluation metric instead of classification accuracy. This leads to the

formulation of the prediction of KL grades as a regression problem.

Furthermore, to obtain a better learning representation the networks are

trained to learn using a weighted ratio of two loss functions: categorical cross

entropy for classification and mean-squared error for regression. This

question is solved with the following experiments:

• A CNN is jointly trained for simultaneous classification and regression of

knee OA images. (Section 5.4)

• It is shown that there is an improvement in the classification performance

of this jointly trained CNN in comparison to the CNN only trained for

classification. (Section 5.4.5)

RQ5. Can ordinal regression be applied to automatically assess knee OA

severity? How does this improve the overall assessment of knee OA

severity?

Ordinal regression is investigated as a next step to further improve the

quantification of knee OA severity. Ordinal regression is useful in particular

to classify patterns using a categorical scale which shows a natural order

between the labels [35, 36]. Ordinal regression5 can be considered as an

intermediate problem between classification and regression. The author

believes that the KL grades prediction using ordinal regression can further

improve the classification performance by reducing the margin of error (mean

squared error) considering the progressive nature of knee OA and the ground

truth or labels for training a CNN i.e. the KL grades are in ordinal scales

5https : //en.wikipedia.org/wiki/Ordinal regression
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(0–4). The following is investigated and experimented to address this

research question:

• An ordinal regression configuration is introduced for classifying knee OA

images. (Section 5.5.1)

• A CNN is trained from scratch for ordinal regression of knee OA images

(Section 5.5.2)

• It is shown that the CNN for ordinal regression gives better performance

in comparison to the normal regression of knee OA images. (Section

5.5.3)

RQ6. Can jointly training a CNN for quantifying knee OA clinical features

such as JSN and osteophytes along with KL grades further improve

the overall quantification of knee OA severity?

Previous studies on early diagnosis and automatic assessment of knee OA

severity [1,2, 4, 7, 9, 14] have mainly focused on classifying X-ray images using

KL grades as the ground truth. However, some studies claim that there have

been differences in descriptions of KL grades [5, 12, 13, 37, 38]. Furthermore,

there are studies claiming that KL grades are neither highly accurate nor

reliable for radiographic classification of knee OA [39–42]. After a detailed

study on the various grading scales used for knee OA assessment, Sheehy et

al. [39] and Shamir et al. [42] claim that OARSI grading is more accurate and

highly reliable for individual OA feature assessments. Thus, the prediction of

clinical features of knee OA based on the OARSI grading system is investigated

in this thesis. The investigations and experiments to address this research

question are as follows.

• CNNs are trained from scratch to quantify lateral and medial JSN

individually. (Section 6.3, Chapter 6)
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• CNNs are trained separately to quantify femoral and tibial osteophytes

in lateral and medial compartments. (Section 6.4)

• CNNs are jointly trained for quantifying KL grades, JSN and osteophytes

to explore further improvement in the overall quantification of knee OA.

(Section 6.5)

RQ7. How well do the results agree with the gold standard for assessing

knee OA? Can the proposed methods be applied in practical

computer aided diagnosis (CAD) of knee OA?

The suitability of the proposed methods are investigated for a real-world knee

OA CAD system by comparing the performance of the proposed methods to

the existing methods and the gold standard. The Cohen’s kappa statistics for

inter-rater agreement is used for this.

• Cohen weighted kappa values are calculated for the classification results

with 95% confidence intervals (CI) to find the inter-rater agreement

between the CNN predictions and the ground truth (KL grades).

(Section 6.7)

• The performance of the proposed system is compared to the OAI kXR SQ

reliability reading (BU), which is considered the gold standard for knee

OA assessment. The weighted kappa values are used for this. (Section

6.7)

• An end-to-end pipeline combining the FCN for localising the knee joints

and the CNN jointly trained for quantifying knee OA severity is

developed. (Section 6.8)

1.5 Research Objectives

First, the objective is to present an up-to-date review of the literature and the

state-of-the-art in the early detection and computer aided diagnosis of knee
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osteoarthritis. Next, by experimentally investigating and attaining suitable

solutions to the research questions, the hypotheses will ideally be shown to hold

true and the following research objectives will be achieved.

• Developing an efficient technique to automatically detect and localise the ROI:

the knee joint regions in the X-ray images.

• Developing and evaluating a supervised deep learning framework using a CNN

to classify the localised knee joint regions in an ordinal scale based on KL

grades.

• Testing a continuous distance-based metric like mean squared error instead

of classification accuracy to assess the automatic quantification of knee OA

severity to examine if this improves the knee OA assessment.

• Training a CNN to quantify knee OA severity using regression in a continuous

scale instead of a nominal scale, as knee OA is progressive by nature.

• Investigating joint training of a CNN with a weighted ratio of two loss functions

such as categorical cross entropy and mean squared error for simultaneous

multi-class classification and regression outputs.

• Investigating ordinal regression to improve the quantification of knee OA

severity in a continuous scale.

• Jointly training a CNN following the multi-objective convolutional learning

approach to quantify JSN, and osteophytes along with KL grades. The

objective is to improve the overall quantification results of knee OA severity

based on KL grades, JSN, and osteophytes.

• Comparing the performance of the proposed methods to the existing methods

and the gold standard in knee OA assessment, and identifying the practical

implications for the real-world use of the proposed methods.
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1.6 Thesis Outline

The chapters in this thesis are organised as follows.

Chapter 2 provides an overview of the background, a comprehensive summary

of the related work, and a critical analysis of the state-of-the-art in computer aided

diagnosis of knee OA. The first part of the chapter reviews the existing manual and

automatic methods for detecting the knee joints in radiographs, and emphasises the

limitations of these methods. The next part discusses the various methods used

for assessing knee OA severity, and describes in more detail WNDCHARM, the

multi purpose medical image classifier. The chapter concludes with a comprehensive

review of machine learning algorithms and deep learning architectures, in particular

convolutional neural networks that are useful for quantifying knee OA severity.

Chapter 3 presents the preliminary work and the baseline methods used for

automatic detection of knee joints in the radiographs and the classification of the

localised knee joints. The first part reports on two methods: template matching

and a SVM-based method to automatically detect and extract the knee joints. The

next part presents the WNDCHARM implementation, and the proposed methods

to classify knee OA images using hand-crafted features and CNN features.

Chapter 4 sets forth the proposed approaches for automatic detection of knee

joints using deep learning. The first part presents an approach for automatically

detecting the centre of knee joints using a fully convolutional network (FCN) and

extracting the knee joint regions with reference to the detected centres. The next

part describes a method to automatically detect the region of interest (ROI): knee

joint regions directly, and also discusses the advantage of this method over the

previous method.

Chapter 5 details the deep learning approaches for automatically quantifying

knee OA severity. Three approaches are presented for this 1) fine tuning off-the-

shelf pre-trained CNNs through transfer learning, 2) training a CNN from scratch

for classifying knee OA images, 3) jointly training a CNN for classification and
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regression, and 4) training a CNN for ordinal regression. This chapter is concluded

with a comparative analysis of all the results and a discussion.

Chapter 6 presents the automatic quantification of knee OA diagnostic features:

joint space narrowing (JSN) and osteophytes. Following this, the joint training of

a CNN for quantifying knee OA severity and the clinical features are discussed.

This chapter concludes with the proposal to develop a practical knee OA diagnostic

system and the practical implications to build this system.

Chapter 7 concludes this thesis by analysing the current work and

summarising the research methodology, discussing the solutions to the research

questions, highlighting the contributions, and providing future directions of

research based on the proposed methods.
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Chapter 2

Related Work and Background

2.1 Introduction

This chapter presents a comprehensive review of the literature and the

state-of-the-art in assessing knee OA severity. It introduces the necessary

background; i.e. learning feature representations, and quantifying knee OA

severity using deep convolutional neural networks (CNN).

The automatic assessment of knee OA severity from radiographs has been

approached as an image classification problem [2, 7, 9]. According to the literature,

in the general approach to automatically assess knee OA severity, the first step is

to localise the region of interest (ROI) that is to detect and extract the knee joint

regions from the radiographs, and the next step is to classify the localised knee

joints. First, the different approaches for detecting (or localising) the knee joint

regions in the radiographs are outlined. Next, the approaches in the literature to

assess knee OA severity are investigated and the focus is on the automated

methods. Following this, the key pathological features of knee OA are introduced

and the state-of-the-art methods for quantifying radiographic knee OA clinical

features are reviewed. Also, the background and the state-of-the-art deep learning

methods and architectures used in this thesis are outlined. This chapter concludes

with a discussion outlining the limitations in the state-of-the-art methods on

automatic detection of knee joints and automatic assessment of knee OA severity,

and how these limitations can be addressed.
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2.2 Detecting Knee Joints in Radiographs

Despite the introduction of several imaging modalities such as MRI, CT, and

ultrasound for augmented OA diagnosis, radiography (X-ray) has been

traditionally preferred, and remains the main accessible tool and “gold standard”

for preliminary knee OA diagnosis [1, 7, 9]. The main pathological features of knee

OA such as loss of joint cartilage, reduction in joint space width, and osteophytes

(bone spurs), can be easily visualised and examined in plain radiographs [5, 6].

Advanced imaging modalities such as MRI and CT may be required when the

clinical investigations from radiographs are inconclusive and do not give clear

reasons for joint pain [6]. Expert radiologists specifically examine the knee joint

regions in radiographs for joint space narrowing and osteophytes, for knee OA

diagnosis [2].

There are several approaches in the literature for detecting and segmenting knee

joints and specific parts of knee such as cartilage, menisci, and bones structures

from 3D MRI and CT scan images [43, 44]. Nevertheless, the existing approaches

are less accurate for automatically detecting the knee joints in radiographs [43,45].

According to the literature, detecting knee joints remains a challenging task [43,46].

Before the review of specific methods for knee joint segmentation, an overview of

the segmentation approaches used in the medical field is presented.

In general, the medical image segmentation approaches are categorised into two

basic groups: pixel-based and geometry-based [43,45]. The pixel-based segmentation

methods include thresholding, region-growing, and region-merging. The geometry-

based segmentations include active shape models, active appearance models, and

deformable models such as snakes and active contours [43, 45]. There are other

segmentation approaches that are classified as hybrid methods like atlas-guided

approaches, clustering approaches, Markov random field models, and artificial neural

networks (ANN) based approaches [43]. These hybrid methods need to be integrated

with other segmentations to build a complete segmentation framework [43]. Some
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of these methods are used for detecting knee joints in radiographs.

In this thesis, automated methods for detecting knee joints in radiographs are

investigated. For this reason, the author limits the scope of review to the approaches

based on radiographs. The advantages of automatic methods are discussed and the

need to investigate such methods are emphasised.

Previous approaches in the literature that investigate the knee joints in

radiographs can be categorised into manual, semi-automatic, and fully automatic,

based on the level of manual intervention required [43, 44]. The following sections

review each of these approaches in detail.

2.2.1 Manual Methods

Expert radiologists or trained physicians visually examine the knee joint regions

and trace the structures using simple image processing and computer vision-based

tools in radiographs, and may even use CAD-based measurements for assessing knee

OA severity [43]. The expert knowledge-based manual segmentations are useful

to build an atlas or template of anatomical structures, which are used to develop

advanced interactive and automatic segmentation methods [43]. The knee joints

labelled manually are reliable and are often used as ground truth for evaluating

automatic methods [47, 48]. Nevertheless, such manual methods are subjective,

highly experience-based, and they are laborious and time-consuming when a large

number of subjects are to be examined.

There are previous studies in the literature that use manually-defined ROIs (knee

joints) in radiographs for assessing knee OA severity. Hirvasniemi et al. quantified

the differences in bone density using texture analysis and local binary patterns

(LBP) in plain radiographs to assess knee osteoarthritis [49]. Woloszynski et al.

developed a signature dissimilarity measure for the classification of trabecular bone

texture in knee radiographs [50]. In both these methods, the ROIs are manually

marked and ROIs are extracted for texture analysis.
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2.2.2 Semi-automatic Methods

Semi-automatic or interactive methods are developed to minimise manual

interventions by automating essential steps in the detection and segmentation

process [44, 51]. These methods often include manual initialisations with low-level

image processing, followed by manual evaluations and corrections of the

results [52]. The main advantage of the semi-automatic methods are flexibility in

manual intervention that allow incorporating expert knowledge plus the use of

advanced computer vision-based tools to automate the essential steps. An expert

may improve the detection and segmentation performance through tuning the

essential parameters for instance seed region and threshold values in region

growing, initial shape of active models, delineating the required contour [43] to

define the region of interest. However, these methods may not be reproducible due

to inter-observer or inter-user variations and there is a possibility of oversight or

human error in the manual evaluations.

There are some knee OA studies in the literature which use semi-automatic

methods to detect the knee joints in radiographs. Knee OA computer aided diagnosis

(KOACAD) proposed by Oka et al. [1] is an interactive method to measure the joint

space narrowing, osteophytes formation and joint angulation in radiographs. In

KOACAD, a Roberts filter is used to obtain the rough contour of tibia and femur

bone structures and a vertical neighbourhood difference filter is used to identify

points with high absolute values of difference of scales. The centre of all the points

is calculated and a rectangular region around the centre, of size 480 × 200 pixels,

is selected as the knee joint region. This system has provided accurate assessment

of structural severity of knee OA after detecting the knee joint regions. However,

human intervention is required for plotting various lines for the measurement and

automatic detection is not feasible with this system.

Knee images digital analysis (KIDA) is a tool to analyse knee radiographs

interactively, proposed by Marijnissen et al. [3]. KIDA quantifies the individual
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radiographic features of knee OA like medial and lateral joint space width (JSW)

measurements, subchondral bone densities and osteophytes. This interactive tool

can only be used by experts for quantitative measurements and requires expert

intervention for objective quantitative evaluation.

Duryea et al. [53] proposed a trainable-rule based algorithm (software) to

measure the joint space width between the edges of femoral condyle and the tibial

plateau on knee radiographs. Contours marking the edges of femur and tibia are

automatically generated. This interactive method can be used to monitor joint

space narrowing and the progression of knee osteoarthritis.

2.2.3 Automatic Methods

Automatic segmentation methods have become an essential part of computer aided

diagnosis and clinical decision support systems [46]. These methods are fast and

accurate, and they are highly beneficial in clinical trials and pathology [43].

According to the literature, there have been multiple attempts to automatically

localise knee joints in radiographs. Nevertheless, this task still remains a challenge.

Podsiadlo et al. [54] proposed an automated system for the prediction and early

diagnosis of knee OA. In this approach, active shape models and morphological

operations are used to delineate the cortical bone plates and locate the ROIs in

radiographs. This approach is developed for selection of tibial trabecular bone

regions in the knee joints as ROIs. Nevertheless, this approach can be extended to

localise the entire knee joint. A set of 40 X-ray images are used for training and

132 X-ray images are used for testing in this method. The automatic detections in

this method are compared to the gold standard, which contains manually annotated

ROIs from the expert radiologists and the similarity indices (SI) are calculated. This

method achieves SI of 0.83 for the medial and 0.81 for the lateral regions of the knee

joints.

Shamir et al. [7] proposed template matching for automatic knee joint detection

in radiographs. Template matching uses predefined joint centre images as templates
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and calculates Euclidean distances over every patch in an X-ray image using a sliding

window. The image patch with the shortest distance is recorded as the detected knee

joint centre. After detecting the centre, an image segment of 700×500 pixels around

the centre is extracted as the knee joint region. The X-ray images from BLSA

dataset are used in this method. In total 55 X-ray images from each grade are used

for the experiments, such that 20 images from each grade for training and 35 images

from each grade for testing. Shamir et al. reported that template matching was

successful in finding the knee joint centres in all the X-ray images in their dataset.

Anifah et al. [55] investigated template matching and contrast-limited adaptive

histogram equalisation for detecting knee joints and quantifying joint space area. In

total 98 X-ray images are used in this method. The detection accuracy achieved by

this method varies from 83.3% to 100% for the left knees and 60.4% to 100% for the

right knees. Template matching is a simple and relatively fast method. However,

this method is ad hoc, entirely based on the set of templates used and is unlikely to

generalise well for larger datasets.

Recently, Tuilpin et al. [46] investigated a SVM-based method to automatically

localise knee joints in plain radiographs. This method uses knee anatomy-based

region proposals, and the best candidate region from the proposals are selected

using histogram of oriented Gradients (HOG) as feature descriptors and a SVM.

This method generalises well in comparison to the previous methods and shows

reasonable improvement in automatic detections with mean intersection over union

(IOU) 0.84, 0.79 and 0.78 on the public datasets MOST, Jyvaskyla, and OKOA.

2.3 Assessing Radiographic Knee OA Severity

The key pathological features of knee OA include joint space narrowing (JSN),

osteophytes (bone spurs) formation, and sclerosis (bone hardening) [1, 3]. All these

features are implicitly integrated in composite scoring systems like Kellgren &

Lawrence (KL) grading system to quantify knee OA severity [1, 3] and the OARSI
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readings provide the gradings of distinct knee OA features. There are two common

approaches in the literature for assessing knee OA severity in plain radiographs: 1)

quantifying the distinct pathological features of knee OA and 2) automatic

classification based on composite scoring systems such KL grades.

2.3.1 Quantitative Analysis

The most conventional system to assess radiographic knee OA severity has been

KL gradings [1, 2, 14]. Nevertheless, some researchers [1, 3] argue that categorical

systems like KL gradings are limited by incorrect assumptions that the progression of

distinct OA features like JSN and osteophytes formation is linear and constant, and

their relationships are proportional, and such grading systems are less sensitive to

small changes in distinct features. Therefore, quantification of individual features of

knee OA is required to overcome the problems with KL gradings and to improve the

overall radiographic assessment of knee OA [1,3]. The osteoarthritis research society

international (OARSI) has published a radiographic atlas of individual features to

assess and to quantitatively evaluate the knee OA features [1].

Interactive methods like KOACAD [1] and KIDA [3] measure individual knee

OA radiographic features such as joint space width (JSW), osteophyte area,

sub-chondral bone density, joint angle, and tibial eminence height as continuous

variables. These measurements were compared to KL gradings and significant

differences were found between healthy knees and knees with OA. In this context,

a trainable rule-based algorithm has also been proposed [53] to measure the

minimum joint space width (mJSW) between the edges of the femoral condyle and

the tibial plateau, and thus to monitor the progression of knee OA. Podsiadlo et

al. [54] have used a slightly different approach for quantitative knee OA analysis.

In this method, the trabecular bone regions of the tibia are automatically located

as the ROI after delineating the cortical bone plates using active shape models,

followed by fractal analysis of bone textures for the diagnosis of knee OA. In a

similar approach, Lee et al. [56] use active shape models to detect the tibia and
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femur joint boundaries, and calculate anatomical geometric parameters to diagnose

knee OA.

Even though these methods are simple to implement, objective, and accurate

in evaluating radiographic knee OA, a great deal of manual intervention is

required. Hence, these methods become very time-consuming and laborious when

large numbers of subjects are to be investigated. Furthermore, the measurements

from these methods are prone to inter- and intra-observer variability and in some

cases they are subjective and not reproducible.

2.3.2 Automatic Classification

After the introduction of radiography-based semi quantitative scoring systems like

KL gradings, the assessment of radiographic knee OA severity has been approached

as an image classification problem [2, 15, 29–31]. According to the literature, the

most common approach to classify knee OA images includes two steps: 1) extracting

image features from the knee joints, 2) applying a classification algorithm on the

extracted features. A brief review of such approaches is aras follows.

Subramoniam et al. [29,30] investigated two methods using: 1) the histograms of

local binary pattern extracted from knee images and a k-Nearest neighbour classifier

[29] and 2) Haralick features extracted from the ROI of knee images and a SVM [30].

Thomson et al. [15] proposed an automated method that uses features derived from

tibia and femur bone shapes, and image textures extracted from the tibia with a

simple weighted sum of the outputs of two random forest classifiers. Deokar et

al. [31] investigated an artificial neural network based approach for knee OA images

classification using grey level co-occurrence matrix (GLCM) textures, shape, and

statistical features. Even though these methods claim high accuracy, the datasets

are not publicly available and these datasets contain only a few hundred radiographs.

The classification accuracies of all these methods for public datasets like the OAI

and the MOST need to be studied to derive conclusive results.

In this context, there are two approaches in the literature that use large public
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datasets like OAI: 1) WNDCHRM1, 2) an artificial neural network-based scoring

system. Shamir et al. proposed WNDCHRM, a multi purpose medical image

classifier to automatically assess knee OA severity in radiographs [2, 7]. A set of

features based on polynomial decompositions, high contrast, pixel statistics, and

textures are used in WNDCHRM. Besides extracting features from raw image

pixels, features extracted from image transforms like Chebyshev,

Chevbyshev-Fourier, Radon, and Gabor wavelets are included to expand the

feature space [7, 9, 14]. From the entire feature space, highly informative features

are selected by assigning feature weights based on a Fisher discriminant score for

all the extracted features [2, 7, 14]. WNDCHRM uses a variant of the k-Nearest

Neighbour classifier.

In a recent approach, Yoo et al. [32] have built a self-assessment scoring system

and an artificial neural network (ANN) model for radiographic and symptomatic

knee OA risk prediction. First, for developing a risk prediction model the association

between risk factors and radiographic knee OA are investigated by multi variable

logistic regression in this study. Next, ANNs are used to improve the performance of

the scoring system. The prediction models are validated using two datasets: OAI2

and KNHANES V-13. The authors themselves have pointed out some limitations in

this study. First, the study was based on a cross-sectional survey which had several

defects due to medical views. For instance, the prevalence of disease was based on

a health interview survey taken on one occasion. BMI, physical activity status, as

well as knee pain could differ according to the time of measurement [32]. Second,

the prediction models include knee pain as an important diagnostic criterion for

symptomatic knee OA, which is subjective.

1Weighted Neighbour Distance using Compound Hierarchy of Algorithms Representing
Morphology

2The osteoarthritis initiative
3Fifth Korean National Health and Nutrition Examination Survey
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2.4 Discussion

According to the literature, the automatic quantification of knee OA severity

involves two steps: 1) automatically detecting the ROI, 2) classifying the detected

knee joints. Many previous studies investigated automatic methods for both

localisation and classification of knee joint images, but still these tasks remain a

challenge.

The common approaches in the literature for automatic detection of knee joints

in radiographs include template matching [7, 55], active shape models and

morphological operations [54], and a classifier-based sliding window method [46].

Template matching and active shape models based approaches do not generalise

well and are slow for large datasets. Classifier-based methods that use

hand-crafted features are subjective and the classification accuracy is influenced by

the choice of extracted features. Therefore, there is still a need for an automated

method for detecting knee joints in radiographs which gives high accuracy and

precision. A deep learning based method for this is investigated in this thesis.

There are several approaches in the literature for knee OA image classification

that have extracted and tested many image features such as Haralick textures [30],

Gabor textures [15], GLCM textures [31], local binary patterns [29], shape, and

statistical features of knee joints [31]. There is even an approach that uses a large

set of features based on pixel statistics, object and edge statistics, texture,

histograms, and transforms [4, 9, 14]. Different classifiers have been tested for knee

OA images classification such as k-Nearest Neighbour [7, 29], SVM [30], and

random forest classifiers [15]. However, all these approaches have achieved low

multi-class classification accuracy and in particular classifying successive grade

knee OA images still remains a challenging task. There is a need for a highly

accurate real world automated system that can be used as a support system by

clinicians and medical practitioners for knee OA diagnosis.

In recent years, many methods using manually designed or hand-crafted
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features have been outperformed by approaches that learn feature representations

using deep neural networks. In particular, convolutional neural networks (CNN)

have become highly successful in many computer vision tasks like object detection,

face recognition, content based image retrieval, pose estimation, and shape

recognition, and even in medical applications such as knee cartilage segmentation

in MRI scans [24], brain tumour segmentation in magnetic resonance imaging

(MRI) scans [25], multi-modality iso-intense infant brain image segmentation [26],

pancreas segmentation in CT images [27], and neuronal membrane segmentation in

electron microscopy images [28].

CNNs for automatically quantifying knee OA severity is investigated in this

thesis. The next section introduces the necessary technical background and discusses

the deep learning concepts and algorithms related to this thesis.

2.5 Public Knee OA Datasets

The data used for the experiments and analysis in this thesis are bilateral PA fixed

flexion knee X-ray images. Figure 2.1 shows some samples of knee X-ray images

from the dataset. Due to variations in X-ray imaging protocols, there are some

visible artefacts in the X-ray images (Figure 2.1).

The datasets are from the Osteoarthritis Initiative (OAI) and Multicenter

Osteoarthritis Study (MOST) in the University of California, San Francisco. These

are standard public datasets used in knee osteoarthritis studies.

OAI Dataset

The baseline cohort of the OAI dataset contains MRI and X-ray images of 4,746

participants. In total 4,446 X-ray images are selected from the entire cohort based

on the availability of KL grades for both knees as per the assessments by Boston

University X-ray reading centre (BU). In total there are 8,892 knee images. Figure

2.2 shows the distribution as per the KL grades.
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Figure 2.1: Samples of bilateral PA fixed flexion knee OA radiographs.

MOST Dataset

The MOST dataset includes lateral knee radiograph assessments of 3,026

participants. In total 2,920 radiographs are selected in this thesis based on the

availability of KL grades for both knees as per baseline to 84-month longitudinal

knee radiograph assessments. There are 5,840 knee images in this dataset. Figure

2.3 shows the distribution as per KL grades.
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Figure 2.2: The OAI baseline data set distribution based on KL grades.

2.6 Deep Learning

There are many machine learning and signal processing techniques in the literature

that use shallow architectures with one or two layers of non linear feature

transformations [57]. Examples of shallow architectures include SVM, logistic

regression, kernel regression, Gaussian mixture models (GMM), conditional

random fields (CRF), multi-layer perceptron (MLP) with a single hidden layer,

and maximum entropy models [57]. These architectures have been highly effective

and have yielded promising results in several simple or well-constrained problems.

However, their limited modelling and representational power may not be sufficient

to deal with more complicated real-world applications. Deep learning algorithms

and architectures can be effective and efficient for these applications.

Deep learning is composed of machine learning training algorithms to learn

features using multi-layer networks with non linear processing units in each

layer [57]. There are multiple levels of learned representations in deep learning,

which attribute to various levels of abstraction; the levels correspond to

hierarchical latent features and higher-level features are obtained from lower-level

features [57]. Deep learning methods encompass deep neural networks, hierarchical
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Figure 2.3: The MOST data set distribution based on KL grades.

probabilistic models, and various unsupervised and supervised feature learning

algorithms.

Deep learning architectures are broadly classified into three classes: deep

networks for unsupervised or generative learning, deep networks for supervised or

discriminative learning, and hybrid deep architectures [57, 58]. Generative deep

architectures characterise the high-order correlation properties of the observed or

visible data for pattern analysis purposes and/or characterise the joint statistical

distributions of the visible data and their associated classes. Discriminative deep

architectures provide discriminative power for pattern classification, often by

characterising the posterior distributions of classes conditioned on the visible data.

The goal of hybrid architectures is discrimination but they benefit from the

outcomes of generative architectures through better optimisation and/or

regularisation [57, 58]. State-of-the-art deep learning architectures include

multilayer deep neural networks, recurrent neural networks, convolutional neural

networks (CNN), deep belief networks, deep boltzmann machines, stacked sparse

auto encoders, and deep stacking networks. CNNs in particular have been

tremendously successful in many real-world applications. In this thesis, the focus
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is on CNNs for automated knee OA assessment.

2.6.1 Convolutional Neural Networks

The visual cortex is responsible for processing visual information in the brain. The

information is processed in a sequence of areas of brain in a low to high abstraction

level [24]. The study of visual cortex shows that the neurons present get activated by

stimuli generated by localised fields. Linear filtering in image processing is performed

through convolution in the spatial domain (or element-wise multiplication in the

frequency domain). However, the idea behind the CNN is to learn these filters in

a data-driven manner. In machine learning, deep learning networks have multiple

non-linear hidden layers and can represent the data in a hierarchical way with lower

to higher abstraction. CNNs are a variant of the multilayer perceptron, which are

inspired by the visual cortex and have deep architectures [24,59].

Feed forward neural networks are briefly discussed before getting into the details

of a CNN. A feed forward network in general has multiple layers. The first layer is

the input and the last layer is the output. There can be one or more hidden layers in

between the input and the output layers. Each layer is made up of neurons that have

learnable weights and biases. The output of the hidden layer neurons is calculated as

the weighted sum of all the input neurons, which is then passed through an activation

function, which is often a non-linear activation function such as sigmoid or ReLU

(rectified linear unit) [24]. There is a unique weight for each pair of neurons in the

input layer and hidden layer, and they are connected to each other pairwise, and

hence these layers are called as fully-connected layers. In multi layer perceptrons

all the layers are fully connected, thus, the number of free parameters eventually

becomes too large to handle and a large number of parameters can quickly lead to

overfitting [59]. This is a problem for image data, where the number of inputs is

large.

CNNs constitute a class of feed forward networks and they have a very similar

architecture. CNNs are so-named due to the convolutional layers in their
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architectures. There are three main differences between a CNN and an ordinary

feed forward network: local receptive fields, weight sharing, and spatial pooling or

sub-sampling layers [59,60].

Local Connectivity. The set of neurons in the preceding layer that affects

the activation of a neuron is referred to as the neuron’s local receptive field. This

feature makes the CNNs well suited for learning effective representations from

images, capturing the local substructure within the images [59]. The pixels that

are close together in a image often tend to be strongly correlated while pixels that

are far apart tend to be weakly correlated or uncorrelated. The CNN architecture

captures this local structure within the image by constraining each neuron to

depend only on a spatially local subset of the neurons in the preceding layer [60].

Shared weights. The other feature that distinguishes the CNN from the

ordinary feed forward network is the fact that the weights in the network are

shared across different neurons in the hidden layers. Sharing the weights across

multiple neurons in a hidden layer translates to evaluating the same filter over

multiple sub-windows of the input image. Each set of shared weights is called a

kernel or a convolutional kernel. In this regard, the CNN can be viewed as

effectively learning a set of filters, each of which is applied to all of the

sub-windows within the input image. Using the same set of filters over the entire

image forces the network to learn a general encoding or representation of the

underlying data. Constraining the weights to be equal across different neurons also

has a regularising effect on the CNN; in turn, this allows the network to generalise

better in many visual recognition settings. The other advantage of weight sharing

is that it substantially reduces the number of free parameters in the CNN, making

it easier and more efficient to train [60].

Spatial pooling. Sub-sampling or spatial pooling is a form of non-linear down

sampling. Spatial pooling serves two purposes: it reduces the dimensionality of the

convolutional output and it provides a degree of translational invariance [24]. There

are several non-linear functions to implement pooling and there are many pooling
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methods like sum, average, and max pooling, among which max pooling is most

commonly used.

CNN Architectures

A CNN is comprised of more than one convolutional and sub-sampling layer(s),

optionally followed by the fully connected layers like a standard multilayer neural

network, and finally a softmax layer or regression layer to generate the desired

outputs. CNNs exploit the 2-Dimensional structure of an input image to learn

translation invariant features. This is achieved with local connections with shared

weights followed by some form of pooling [57,59]. The main advantage of CNN over

fully connected networks is that they are easier to train, they have fewer parameters

with the same number of hidden units and they learn spatially invariant features [24].

Some examples of CNN architectures are LeNet [61], AlexNet [22], GoogleNet [62],

VGG net [63], and ResNet [64].

2.6.2 Feature Learning

Feature learning refers to techniques that learn to transform raw data input to an

effective representation for further higher-level processing such as classification,

automatic detection, and segmentation. Feature learning approaches provide a

natural way to capture cues by using a large number of code words (sparse coding)

or neurons (deep networks), while traditional computer vision features, designed

for basic-level category recognition, may eliminate many useful cues during feature

extraction [65]. Deep neural networks are multi-layered and they are used to learn

feature representations in the hidden layer(s). These representations are

subsequently used for classification or regression at the output layer, and feature

learning is an integral part of deep learning [16].

Manually designed or hand-engineered features often simplify machine learning

tasks. Nevertheless, they have a few disadvantages. These features are often

low-level as prior knowledge is hand-encoded and features in one domain do not
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always generalise to other domains [17]. In recent years, learning feature

representations is preferred to hand-crafted features, particularly for fine-grained

classification, because rich appearance and shape features are essential for

describing subtle differences between categories [18].

The broad categories of feature learning are as follows.

(a) Supervised feature learning is attributed to learning features from data

assigned with labels. Some of the state-of-the-art techniques that adopt supervised

feature learning are deep neural networks (CNN, DBN), learning kernels (multiple

kernel learning) [66], and multi-task learning [16].

(b) Semi-supervised feature learning uses unlabelled data to aid supervised

learning. Some examples of semi-supervised learning: 1) label propagation [67], 2)

DBNs with unsupervised pre-training and supervised fine-tuning [68, 69], 3) ladder

networks [70], 4) student-teacher models [71], 5) learning features from videos or

ego motion followed by supervised fine-tuning [72].

(c) Unsupervised feature learning is learning feature representations from

data even without pre-assigned labels. The main purpose of unsupervised feature

learning is to discover and capture the underlying structures from unlabelled input

data, to detect and remove input redundancies and to preserve the essential aspects

as useful features for classification [73]. The machine learning algorithms that use

unsupervised feature learning include K-means clustering, Gaussian mixture model

(GMM), principal component analysis (PCA), sparse coding, and auto-encoders

[16]. Latent dirichlet allocation (LDA), a popular text processing algorithm [74]

and co-occurrence statistics, a heuristic algorithm widely used in natural language

processing [75], and the widely used visual bag of words based models are examples

of unsupervised feature learning.

2.6.3 Transfer Learning and Fine Tuning

Training a CNN from scratch or full training is computationally expensive and

requires a large amount of labelled training data. Creating a large annotated
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dataset in the medical domain is difficult where expert annotations are expensive

and sometimes the diseases or lesions are scarce in the datasets [23]. Therefore,

training deep neural networks from scratch particularly for medical applications

can be challenging due to limited labelled medical data, and it demands a great

deal of expertise for labelling the medical data. A promising alternative for

training a CNN from scratch is fine-tuning a CNN pre-trained on a large labelled

dataset (for instance ImageNet, which contains 1.2 million images with 1000

categories [22, 33]) from a different application domain using transfer

learning [23,76].

Training a CNN from a set of weights from a pre-trained CNN is referred to

as fine-tuning. A common practice is to replace the last fully connected layer of

the pre-trained CNN with a new fully connected layer whose number of nodes is

equal to the number of classes in the desired application [76]. After initialising the

weights of the last fully connected layer, either all layers or only a subset of layers

at the top of the network are fine-tuned [23, 76]. The initial layers of a CNN in

general learn generic features like edge detectors or colour blob detectors, which are

applicable to many vision tasks, but the later layers learn progressively high-level

features more specific to the classes of the targeted application. Figure 2.4 shows

a CNN architecture: AlexNet [22] trained with the ImageNet dataset and some

examples of the learned features. Thus, fine-tuning the last few layers of a CNN is

sufficient for transfer learning. [23,76].

2.7 Chapter Summary

In this chapter, the main concepts in the literature, the state-of-the-art and

previous work related to assessing knee OA severity are reviewed. Also, the

technical background: deep learning concepts and architectures related to this

thesis are introduced.

According to the literature, the diagnostic pipeline in a computer aided
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Figure 2.4: Some examples of the learned features from a CNN.

Source: http://vision03.csail.mit.edu/cnn_art/

assessment of knee OA consists of two steps: localising the knee joints and

quantifying OA severity in the localised knee joints. First, the previous approaches

in the literature for detecting the knee joints in radiographs are classified into

manual, semi-automatic or interactive, and automatic methods. Manual methods

are subjective, highly reliant on experience and time-consuming when large

number of subjects are to be examined. Interactive methods sometimes lack

reproducibility and they are prone to inter- and intra-observer variations. These

drawbacks are overcome in automatic methods. There have been several attempts

in the literature to automatically detect knee joints in radiographs. However, this

task still remains a challenge. There is a need for a highly accurate automated

method for this task.

There are two common approaches in the literature for assessing radiographic

knee OA severity: 1) automatic classification of knee joint images based on KL

grades 2) interactive methods that quantify the distinct pathological features of

knee OA such as joint space narrowing (JSN), osteophytes area and sclerosis. Even
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though the interactive methods are objective and accurate, a great deal of manual

intervention is required and these methods may become laborious and

time-consuming for a large number of investigations. Some of these drawbacks are

overcome in automatic methods, however, these approaches achieve low multi-class

classification accuracy and classifying successive grade knee OA images still

remains a challenge.

The next chapter presents the baseline approaches for automatically localising

the knee joints and automatically quantifying OA severity on the localised knee

joints.
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Baseline Methods

3.1 Introduction

This chapter presents the baseline approaches and experiments for automatically

quantifying the knee OA severity from the X-ray images that will be used as the

basis for comparison in this thesis. The automatic assessment of knee OA mainly

involves two steps: 1) automatically detecting and extracting the region of interest

(ROI) for localising the knee joints in the X-ray images, 2) classifying the localised

knee joints based on the Kellgren & Lawrence (KL) grades. The objective of this

chapter is to create strong baseline methods based on the existing state-of-the-art

so that later more complex approaches can be compared with these methods.

The assessment of knee osteoarthritis (OA) severity has traditionally been

approached as an image classification problem [2, 9, 32]. Shamir et al. [9, 34]

proposed WNDCHRM, a multi purpose medical image classifier for classifying

knee OA images using radiographs based on the KL grades and reported promising

results for detecting knee OA in the minimal, moderate, and severe stages.

WNDCHRM uses several hand-crafted features and a weighted nearest neighbour

classifier to classify the knee OA images. In this chapter, the state-of-the-art

hand-crafted features and classification methods to automatically assess knee OA

severity are investigated, and the objective is to improve the overall classification

accuracy.

First, the hand-crafted features that are successful in other computer vision

tasks such as histogram of oriented gradients, [77], local binary patterns [78], and
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sobel gradients [79] are tested for knee OA images classification. Also,

conventional classifiers such as k-nearest neighbour (kNN) classifier, support vector

machine (SVM), and support vector regression (SVR) are tested for classifying the

knee OA images. The feature space is expanded by selecting highly influential

features in WNDCHRM based on feature ranking, such as tamura and haralick

texture features, gabor textures, and zernike features.

Next, automatic feature learning is investigated in an attempt to improve the

classification of the knee OA images. Inspired by the success of convolutional

neural networks (CNN) in many computer vision tasks, the use of CNN features

for the classification of the knee OA images is proposed in this thesis. Initially, the

well-known and widely-used VGG ILSVRC 16 layer network is selected to extract

features. The features are extracted from two different layers: the final pooling and

the final fully-connected layer of this network and a SVM for classification is used.

Shamir et al. [2] proposed template matching for automatically detecting and

extracting the knee joints from the radiographs. In this approach, the centre of

the knee joints are detected and used as a reference to extract a fixed size region

from the radiographs around the centre. This method is implemented as a baseline.

Next, to improve the localisation of the knee joints, a SVM-based method using

Sobel horizontal image gradients as features is proposed to detect the centre of the

knee joints.

The remainder of this chapter is organised as follows: Section 3.2 introduces

the dataset used for the experiments. Section 3.3 presents two methods for the

automatic detection and localisation of the knee joints: 1) template matching and

2) SVM classification with Sobel horizontal gradients. Section 3.4 presents two

approaches for classification of the knee joints using: 1) hand-crafted features, 2)

CNN features. The outcome of these methods is compared to WNDCHRM

classification. Section 3.5 summarises the baseline methods for localisation and

classification of knee OA images, and presents the conclusions.
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Figure 3.1: The OAI baseline data (200 X-ray images) distribution as per KL grades.

3.2 Dataset

The dataset used for the initial experiments is the knee X-ray images from the

baseline data sample of 200 progression and incidence cohort subjects under the

knee OA study. In total, 191 radiographs (382 knee joint images) have the assigned

Kellgren & Lawrence (KL) grades. Figure 3.1 shows the distribution of the images

as per KL grades (grade 0 to 4). This is a relatively small data set containing only

X-ray images and MRI of 200 subjects. After the initial experiments, the entire

dataset with 4,796 subjects from the Osteoarthritis Initiative (OAI) was acquired.

As a preprocessing step, histogram equalisation is performed on all the X-ray images

for intensity level normalisation. Figure 3.2 shows a few samples of X-ray images

before and after histogram equalisation.

To investigate the classification of the knee OA images independent from the

localisation of the ROI; the knee joint regions are manually cropped from the

radiographs and resized to 200×300 pixels. The knee joint images are flipped

left–right to generate more training data.
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Figure 3.2: Samples of X-ray images before (left) and after (right) histogram
equalisation.

3.3 Automatic Detection of Knee Joints

Classification of knee OA images and the assessment of severity conditions can be

achieved by examining the characteristic features of knee OA: variations in the joint

space width and the osteophytes (bone spurs) formations in the knee joints [1].

Radiologists and medical practitioners examine only the knee joint regions in the

X-ray images to assess knee OA. Hence, the region of interest (ROI) for classifying

knee OA images is only the knee joint regions (left and right knees). Figure 3.3

shows the ROI in a X-ray image. The author believes that it is better to focus
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Figure 3.3: A knee OA X-ray image with the region of interest: the knee joints.

on the ROI instead of the entire X-ray image for accurate classification and this

is also computationally economical. For these reasons, automatically detecting and

extracting the knee joint regions from the X-ray images becomes an essential pre-

processing step, before classification.

As a baseline, template matching for the automatic detection of the knee joints

is implemented. In the following section, the implementation details and outcomes

of this method are discussed.

3.3.1 Template Matching

In digital image processing, template matching is a technique for finding portions of

an image that are similar to a standard template image. Shamir et al. [2] proposed

this approach for automatically detecting the centre of the knee joints. As a baseline,

the template matching approach is adapted. The steps involved in this method are

as follows:

• First, the radiographs are downscaled to 10% of the original size and subjected

to histogram equalisation for intensity normalisation. This step is followed as

proposed by Shamir et al. [2].
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Figure 3.4: Pre-selected knee joint centres (20×20 pixels) extracted from knee joint
images for template matching.

• An image patch (20×20 pixels) containing the centre of the knee joint is taken

as a template. 5 image patches are taken from each grade, so that in total

25 patches are pre-selected as templates. Figure 3.4 shows the pre-selected

knee joint centres of size 20×20 pixels extracted from the knee joint images as

templates.

• Each image is scanned by an overlapping (20×20) sliding window. For each

location at an interval of 10 pixels, distances (Euclidean) between an image

patch (20×20 pixels) and 25 pre-selected templates (patches with knee joint

centre) are computed using;

disti,w =

√√√√ 20∑
y=1

20∑
x=1

(Ix,y −Wx,y)2
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, where Ix,y is the intensity of pixel (x, y) in the knee joint image I, Wx,y is

the intensity of pixel (x, y) in the sliding window, and disti,w is the Euclidean

distance between the knee joint image (I) and the sliding window W .

• In total, 25 different distances are calculated at each location of the sliding

window for the 25 templates, and the shortest among the 25 distances is

recorded.

• The window with the smallest Euclidean distance is selected as the centre of

the knee joint after scanning the image with a sliding window and a fixed size

region (700×500 pixels) around this centre is extracted as the knee joint region

from the X-ray image.

• The input X-ray images are horizontally split in half to isolate left and right

knees separately and the sliding window is run on both halves.

Experiments and Results

For the experiments on template matching, the baseline data sample of 200

progression and incidence cohort subjects under the knee OA study is used. This

dataset contains in total 191 X-ray images (382 knee joints) and it is a subset of

the large OAI dataset.

In this implementation, five different sets of templates (each set with 25

templates) are used to show the influence of templates on knee joint detections.

The templates are selected from a separate training set. visual inspection is used

to evaluate the results of template matching by plotting a bounding box (20×20

pixels) on the image patch that recorded the shortest Euclidean distance after

template matching. Table 3.1 shows the total number of true positives: the

detected knee joint centres, the total number of false positives and the precision.

It is clearly evident from the results (Table 3.1) that template matching is not

precise in detecting the knee joints and that the detections are heavily dependent on

the choice of templates. The number of templates is increased to 50, but there is no
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Table 3.1: Detection of knee joint centres using template matching method.

Templates True Positives False Positives Precision

Set 1 87 295 22.8 %
Set 2 78 304 20.4 %
Set 3 99 283 25.9 %
Set 4 116 266 30.3 %
Set 5 55 327 14.4 %

further improvement in the results. The reason for low-performance of the template

matching is that the computations are mainly based on the intensity level difference

of an image patch and a template, and there are possibilities for image patches not

around the knee joint, having the shortest Euclidean distance to a template in the

set and thus, being detected as matches. In the next section, a new SVM-based

method is investigated to improve the detection of the knee joints.

3.3.2 SVM-based Detection

Standard template matching is not scalable and produces poor detection accuracy

on large datasets like the OAI. A classifier-based model to automatically detect

the knee joints in the X-ray images is proposed in this thesis. The idea is to use

well-known Sobel edge detection [79] for detecting the knee joints. The two major

steps involved in this method are 1) training a classifier and 2) developing a sliding

window detector.

Training a Classifier

First, image patches (20×20 pixels) are generated from the input X-ray images. The

image patches containing the knee joint centre (20×20 pixels) are used as positive

samples and randomly sampled patches excluding the knee joint centre are used

as negative samples. In total, 200 positive and 600 negative samples are used.

The image patches (samples) are split into training (70%) and test (30%) sets.

Sobel horizontal image gradients are extracted as features from all these samples to

train a classifier. The powerful and well-known SVM is used for classification. A
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linear SVM is fitted with default parameters: C=1, and linear kernel, using Sobel

horizontal image gradients as the features.

Before settling on Sobel horizontal image gradients as features, the

state-of-the-art features such as histogram of oriented gradients, Tamura and

Haralick textures, and the Gabor features were tested. The HOG features are

highly accurate and efficient in object detection and human detection [77]. The

Tamura and Haralick textures, and Gabor features are highly influential and

top-ranked among the features used in WNDCHRM for knee OA image

classification [1, 2, 7, 14]. The Sobel operator or Sobel filter uses vertical and

horizontal image gradients to emphasise the edges in images [79]. From these, the

horizontal image gradients are used as the features for detecting the knee joints

centres. Intuitively, the knee joint images primarily contain horizontal edges that

are easy to detect.

Sliding Window Detector

To detect the knee joint centre from both left and right knees, input images are split

in half to isolate left and right knees separately. A sliding window (20×20 pixels)

is used on either half of the image, and the Sobel horizontal gradient features are

extracted for every image patch. The image patch with the maximum score based

on the SVM decision function is recorded as the detected knee joint centre, and

the area (200×300 pixels) around the knee joint centre is extracted from the input

images using the corresponding recorded coordinates. Figure 3.5 shows an instance

of a detected knee joint and the extracted ROI in a X-ray image.

Results and Discussion

In total, 200 image patches with the knee joint centres as positive samples and 600

image patches that exclude the centre of knee joint as negative samples are used.

These images are split into training (70%) and test (30%) sets. Fitting a linear

SVM with the training data produced a 5-fold cross validation accuracy of 95.2%
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Figure 3.5: Detecting the knee joint centres and extracting the knee joints.

and an accuracy of 94.2% for the test data. Table 3.2 shows the precision, recall,

and F1 scores of this classification. To evaluate the automatic detection, the ground

truth is generated by manually annotating the knee joint centres (20×20 pixels) in

4,446 radiographs using an annotation tool that we developed, which recorded the

bounding box (20×20 pixels) coordinates of each annotation.

Table 3.2: Classification metrics of the SVM for detection.

Class Precision Recall F1score

Positive 0.93 0.84 0.88
Negative 0.95 0.98 0.96

Mean 0.94 0.94 0.94

The well-known Jaccard index (JI) is used to give a matching score for each

detected instance. The Jaccard index JI(A,D) is given by,

JI(A,D) =
A ∩D
A ∪D

(3.1)

where A, is the manually annotated and D is the automatically detected knee joint

centre using the proposed method.
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Table 3.3: Comparison of template matching and the proposed SVM-based method.

Method JI = 1 JI ≥ 0.5 JI > 0

Template Matching 0.3 % 8.3 % 54.4 %
Proposed Method 1.1 % 38.6 % 81.8 %

Table 3.3 shows the resulting average detection accuracies based on thresholding

of Jaccard indices. The mean JI for the template matching and the classifier methods

are 0.1 and 0.36. From Table 3.3, it is evident that the proposed method is more

accurate than template matching. This is due to the fact that template matching

relies upon the intensity level difference across an input image. Thus, it is prone to

matching a patch with small Euclidean distance that does not actually correspond to

the knee joint centre. Also, the templates are varied in a set, and it is observed that

the detection is highly dependent on the choice of templates. Template matching is

similar to a k-nearest neighbour classifier with k = 1.

The reason for higher accuracy in the proposed method is the use of horizontal

edge detection instead of intensity level differences. The knee joints primarily

contain horizontal edges and thus are easily detected by the classifier using

horizontal image gradients as features. The proposed method is approximately

80× faster than template matching; for detecting all the knee joints in the dataset

comprising 4, 446 radiographs, the proposed method took ∼9 minutes and the

template matching method took ∼798 minutes.

Despite sizeable improvements in accuracy and speed using the proposed

approach, detection accuracy still falls short. Therefore the manual annotations

are used to investigate KL grade classification performance independently of knee

joint detection.

3.4 Classifying Knee OA Images

Previous work on automatic assessment of radiographic knee OA has used

WNDCHRM, the multi purpose medical image classifier [2, 9, 14]. High
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classification accuracies (80% to 91%) have been reported using WNDCHARM for

classifying the extreme stages of knee OA: grade 0 (normal) vs grade 4 (severe),

grade 0 vs grade 3 (moderate). However, the classification accuracies of images

belonging to successive grades are low (55% to 65%). The overall classification

accuracy of knee OA needs improvement for real-world computer aided

diagnosis [1, 2, 7].

As a baseline, the hand-crafted features that have been successful in other

computer vision tasks such as histogram of oriented gradients [77], local binary

patterns [78], and Sobel gradients [79] are investigated and that are not included

in the previous studies to assess knee OA severity. Conventional classifiers such as

k-nearest neighbour classifier, SVM, and support vector regression (SVR) are used

for classification. Next, in an attempt to improve the classification accuracy, the

CNN features extracted from the pre-trained VGG-16 layer network are used. To

benchmark the results from these approaches, the WNDCHRM classification

results are used.

3.4.1 WNDCHRM Classification

WNDCHRM is an open source utility for biological image analysis and medical

image classification [2,9,34]. In WNDCHRM, a generic set of image features based

on pixel statistics (multi–scale histograms, first four moments), textures (Haralick

and Tamura features), factors from polynomial decomposition (Zernike

polynomials), and transforms (Radon, Chebyshev statistics, Chebyshev-Fourier

statistics) are extracted. For feature selection, every feature is assigned a Fisher

score1 and 85% of the features with lowest Fisher scores are rejected and the

remaining 15% of the features are used for classification [2].

1Fisher score is one of the widely used method for determining the most relevant features for
classification
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Table 3.4: Results of WNDCHRM Classification.

Classification Grades Accuracy

Binary

G0 vs G1 66.7 %
G1 vs G2 48.3 %
G2 vs G3 60 %
G3 vs G4 55 %

G0 vs G2 48.3 %
G0 vs G3 70 %

Multi-class
G0 to G4 28.3 %
G0 to G3 35.8 %

Experiments

The dataset used for the initial experiments to classify knee OA images using

WNDCHRM are taken from the baseline data sample of 200 progression and

incidence cohort. After histogram equalisation and mean normalisation of the

X-ray images, the knee joints are extracted manually from the radiographs. The

extracted knee joints are split into training (70%) and test (30%) sets. The

WNDCHRM command line program is used to classify the extracted knee joint

images. WNDCHRM uses a variant of k-nearest neighbour classifier.

Results and Discussion

The baseline dataset is not balanced and there are only 44 samples available in KL

grade 4. Figure 3.1 in Section 3.2 (Page 41) shows the distribution of the entire

data set. Given the limited number of images in this class, only a small number of

images are used for training and testing (35 images for training and 9 images for

testing) for multi-class classification. For other classifications 100 images are used

for training and 30 images for testing.

It is evident from the results (Table 3.4) that the multi-class classification

accuracy and successive grades classification accuracies are very low. The reason

for low classification accuracy is that the features used for classification are not

capable of capturing the minute structural and morphological variations in the
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Table 3.5: Classification results of the proposed methods using hand-crafted
features.

Grades WNDCHRM
SVM classification with hand-crafted features

HOG LBP Sobel Combining all

G0 vs G1 66.7 % 53.3 % 58.3 % 58.3 % 55 %
G1 vs G2 48.3 % 48.3 % 53.3 % 58.3 % 51.6 %
G2 vs G3 60 % 60 % 60 % 56.7 % 63.3 %
G3 vs G4 55 % 65 % 65 % 50 % 65 %

knee joints between the successive grades. Next, the state-of-the-art hand-crafted

features are investigated in an attempt to improve the classification accuracy.

3.4.2 Classification using Hand-crafted Features

Histogram of oriented gradients, local binary patterns, and Sobel Gradients are

tested for classifying knee OA images [2, 7, 14]. These features are not used in the

previous studies. HOG describes the local object shape and appearance within

an image by the distribution of intensity gradients or edge directions and the HOG

descriptor was successful in human detection [77]. LBP is powerful for image texture

classification. LBP uses local spatial patterns and grey scale contrast as measures

for texture classification [78].

Experiments with HOG, LBP and Sobel descriptors

Once again the images from the baseline data sample of 200 progression and

incidence cohort is used. The HOG, LBP and Sobel descriptors are extracted from

the knee joint images and a SVM is used for classification. Table 3.5 shows the

classification results of successive grades of knee OA images using a SVM and the

feature space included the HOG, LBP and Sobel gradients.

There is no large improvement in the classification accuracies using HOG, LBP

and Sobel gradients features with SVM classification from the previous results with

the WNDCHRM classification. To improve the classification, thus the features

space is expanded by including highly effective and top-ranked features from the
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Table 3.6: Classification results of WNDCHRM and the proposed methods using
hand-crafted features.

Grades WNDCHRM
Proposed Methods

kNN SVM SVR

G0 vs G1 66.7% 55% 60% 60%
G1 vs G2 48.3% 61.7 % 46.7% 48.3%
G2 vs G3 60% 51.7% 55% 60%
G3 vs G4 55% 35% 50% 45%

G0 vs G2 48.3% 46.7% 55% 56.7%
G0 vs G3 70% 48.3% 58.3% 60%

WNDCHRM classification.

Expanding the feature space

The features based on pixel statistics and textures such as Tamura, Haralick,

Gabor and Zernike are used for classification. These features are used in the

WNDCHRM classification. Tamura texture features represent contrast, coarseness

and directionality of an image [80]. Haralick features are the statistics computed

on the co-occurrence matrix of an image [81]. Gabor textures are based on Gabor

wavelets and the image descriptors are computed using Gabor transform of an

image [82]. Zernike features are obtained by the Zernike polynomial approximation

of an image [83]. The feature space for classification is formed by simple

concatenation of all the extracted features into a super vector following the early

fusion approach.

Classification Results and Discussion

First, a SVM is used with the extracted features for classifying knee OA images.

Next, a k-nearest neighbour classifier and support vector regression (SVR) are tested

for classification. In total, 100 knee joint images are taken for training and 30 for test

set in each grade. Table 3.6 shows the classification accuracy of the WNDCHRM

classifier and the classification using kNN, SVM, and SVR.
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When comparing the classification results of the proposed methods (SVM,

kNN, and SVR) to the WNDCHRM classification, for some cases the results are

slightly better and promising. Nevertheless, there is a need for a more significant

improvement in the classification results. In these experiments, a subset of features

from WNDCHRM such as Tamura & Haralick texture features, Gabor wavelet

features, and Zernike features were extracted and used for classification. In

addition to these features HOG, LBP, and Sobel Gradients were tested. It was

found that by further expanding the feature space by including features from

WNDCHRM based on transforms such as Radon, Chebyshev, FFT, and Wavelet,

and compound image transforms such as Chebyshev-FFT, Chebyshev-Wavelet,

and Wavelet-FFT classification can be improved. However, the author believes

that learning feature representations can be more effective for fine-grained knee

OA classification. In the following section, the state-of-the-art CNN features are

investigated for classifying knee OA images.

3.4.3 Classification using CNN Features

In many recent computer vision tasks and medical applications, CNNs have been

shown to outperform existing approaches that use hand-crafted features [20, 21].

Prasoon et al. have successfully developed and trained a triplanar CNN from scratch

for segmenting the articular cartilage in knee MRIs [24]. There are previous works

in the literature wherein a pre-trained CNN has been successfully adapted to the

target application. For instance, Chen et al. [84] proposed the use of a pre-trained

CNN for localising standard planes in ultrasound images. Carneiro et al. [85] have

shown promising results for classification of unregistered multi view mammograms

using a pre-trained CNN. Shin et al. [86] used pre-trained CNNs after fine-tuning

to automatically map medical images to document-level topics and sub-topics. Gao

et al. [87] fine-tuned all layers of a pre-trained CNN for automatic classification of

interstitial lung diseases. Motivated by these approaches, the use of CNN features

for classifying knee OA images is investigated.
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As a baseline, the VGG-16 layers network [63] is investigated. Figure 3.6 shows

the architecture of the VGG-16 layers network. This network was developed and

trained by the visual geometry group (VGG) from the University of Oxford. This

network achieved outstanding performance on the classification and localisation

tasks in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014.

The VGG-16 network is pre-trained on the ImageNet dataset [63]. The ImageNet

dataset contains more than 1 million annotated images for 1000 classes [33].

Figure 3.6: The VGG-16 layers network architecture.

Source: https://www.cs.toronto.edu/{\sim}frossard/post/vgg16/

Dataset

The same dataset used in the previous experiments i.e. the OAI baseline dataset,

is used to train and test the CNN. The same training (70%) and test (30%) split is

used. The preprocessing steps include manually segmenting the knee joint regions

and resizing to 224×224 pixels, as per the input requirement of the VGG-16 network.

CNN Features

Features are extracted from the different pooling and fully-connected layers of the

VGG-16 network. The results for the pooling layer (pool5) and the last fully
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Table 3.7: Classification results of WNDCHRM and the proposed methods.

Grades WNDCHRM
Hand-Crafted Features CNN Features

kNN SVM SVR Pool5 FC7

G0 vs G1 66.7 % 55 % 60 % 60 % 65 % 65 %
G1 vs G2 48.3 % 61.7 % 46.7 % 48.3 % 40 % 35 %
G2 vs G3 60 % 51.7 % 55 % 60 % 63.3 % 58.3 %
G3 vs G4 50 % 35 % 50 % 45 % 85 % 90 %

G0 vs G2 48.3 % 46.7 % 48.3 % 56.7 % 51.6 % 48.3 %
G0 vs G3 70 % 48.3 % 58.3 % 60 % 76.6 % 73.3 %

connected layer (fc7) are shown. The dimension of the features from the pool5

layer are 7×7×512 for each image. The pool5 features are flattened into a row

vector for each image to form the feature space for classification. The dimension of

the fc7 features are 4,096. A Liblinear SVM with the CNN features is used to

classify the knee OA images. These results are compared to the classification

results obtained from WNDCHRM, and the proposed methods using hand-crafted

features with kNN classifier, SVM, and Support Vector Regression.

Classification Results

Table 3.7 shows the binary classification accuracies of knee OA images using

WNDCHRM and the proposed methods using the hand-crafted features and the

CNN features. These results show slight improvements in the successive grades

classification using CNN features in comparison to the WNDCHRM and the

proposed methods.

Table 3.8 shows the multi-class classification of knee OA images using

WNDCHRM and the proposed method using the CNN features and a SVM. The

classification accuracies obtained using pool5 features of VGG-16 network shows

improvement over the WNDCHRM.

The VGG-16 layer CNN has been pre-trained and hyper parameters are tuned for

general images in ImageNet dataset. Though this network is not trained for medical

images, using the same network for knee OA image classification has yielded better
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Table 3.8: Multi-class classification using WNDCHRM and CNN features.

Grades WNDCHRM
CNN Features

Pool5 FC7

G0 to G3 35.8 % 36.6 % 33.3 %
G0 to G4 28.3 % 33.8 % 30.7 %

results than expected, despite using such a small dataset (100 images from each

grade) for training. Clearly, the use of CNN for knee OA images classification is

promising avenue to explore. The classification results can be further improved by

tuning the hyper parameters and training the CNN with more image samples. These

results are shown in Section 5.2.

3.5 Chapter Summary

As a baseline for the automatic detection of the knee joints, template matching

was implemented. For this method, the precision of detection is low (∼30%), as

the computations are mainly based on intensity-level differences. Therefore, a SVM

based method is proposed in this thesis to improve the automatic detection of knee

joints. This method gives better results with a precision of detection above 80%. The

rationale behind better results in the proposed method is the use of Sobel horizontal

image gradients and performing horizontal edge based discrimination compared to

simple intensity-level discrimination in the template matching method.

Two approaches were investigated for classifying knee OA images using hand-

crafted features and the learned features in a supervised manner using a CNN.

The first approach used hand-crafted features with conventional classifiers such as

SVM, kNN classifier, and SVR. The results obtained with SVM, kNN, and SVR

are promising and can be further improved by including more features based on

transforms and compound image transforms. However, the author believes that

learning feature representations can be more effective than testing more hand-crafted

features. The second approach is based on supervised feature learning using the
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VGG-16 network. The classification of knee OA images using a pre-trained CNN

gives promising results.

In this chapter, the baseline approaches and the initial experiments to

automatically detect knee joints and to classify knee joints are reported. The

outcomes of the proposed methods are promising and motivates the use of deep

learning for automatic localisation of knee joints and classification of the localised

knee joints to automatically quantify knee OA severity. As a result, these are the

main focus and subject of the forthcoming chapters. The next chapter describes

the proposed methods for automatically localising the knee joint region using fully

convolutional neural networks.
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Automatic Localisation of Knee

Joints

4.1 Introduction

Detecting and extracting the knee joints from X-ray images is an essential step

before classifying the knee OA images and for large datasets automatic methods are

preferable. Shamir et al. proposed template matching for the automatic detection

of the centre of knee joints [2, 7] and then a fixed size region with reference to

the detected centre is extracted as the region of interest (ROI). Standard template

matching produces poor detection accuracy on large datasets like OAI dataset. To

improve this, a linear SVM is fitted with the Sobel horizontal image gradients as

features to detect the knee joints. Though this method gives a sizeable improvement

in the detection accuracy it still falls short of perfect detections. These methods are

presented in the previous chapter. In this chapter, the focus is on fully convolutional

networks (FCN) to automatically localise the knee joints in X-ray images.

A typical CNN architecture consists of three main types of layers: convolutional,

pooling and fully-connected or dense layers. A FCN is similar to a CNN, but the

fully-connected layers are replaced by convolutional layers [88]. A FCN consists of

mostly convolutional layers and if pooling layers are used, then suitable up-sampling

layers are added before the last convolutional layer. The two major differences of

FCNs over CNNs can be summarised as:
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• FCNs are trained end-to-end to make pixel-wise predictions [88]. Even the

decision-making layers at the last stage of the network use learned

convolutional filters.

• The input image size need not be fixed as there are no fully-connected layers

in the FCN. CNNs with fully connected layers can operate only on a fixed size

input.

FCNs have achieved great success in semantic segmentations of general images

[88]. Recent approaches using FCNs for medical image segmentation show promising

results [89–91]. Motivated by this, the use of FCN is investigated in this chapter for

automatically detecting the knee joints. Two approaches are developed for localising

the knee joints: 1) training a FCN to detect the centre of knee joints and extract a

fixed-size region around the detected centre, 2) training a FCN to detect the ROI

and thus extract the knee joints directly.

The remainder of this chapter is structured as follows: Section 4.2 introduces the

localisation of the knee joints with reference to the centre of knee joints, evaluates

and analyses the results obtained, and points out the drawbacks in this approach.

Section 4.3 describes the approach for localising the ROI directly, and shows the

results obtained. Section 4.4 presents a comparison against the baseline approaches

discussed in Chapter 3 and the proposed methods in this chapter for automatically

localising the knee joints in the X-ray images. Section 4.5 summarises the work in

this chapter.

4.2 Localisation with Reference to Knee Joint Centre

In the initial approach to localise the knee joints in X-ray images using a FCN, a

similar strategy to template matching and the SVM based methods is followed; that

is to detect the centre of knee joints and to extract the ROI with reference to the

detected centres. Figure 4.1 shows the steps involved in this method: training a

FCN to detect the knee joint centres (20×20 pixels), computing the coordinates of
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Figure 4.1: Automatic localisation of knee joints with reference to the centre of the
knee joints.

the centres from the FCN output, and extracting a fixed size region as knee joints.

In the next section, the experimental data and the ground truth used to train the

FCNs are introduced.

4.2.1 Dataset and Ground Truth Generation

The data used for the experiments are taken from the baseline cohort of the OAI

dataset. In total 4,446 X-ray images are selected from the entire dataset based on

the availability of KL grades for both knee joints. The knee joint centres in all

these X-ray images are manually annotated, after downscaling to 10% of the actual

size. Binary masks of size 20×20 pixels are marked around the knee joint centres

using the annotations. Figure 4.2 shows an instance of an input X-ray image and

the binary mask annotations corresponding to the knee joint centres. The image

patches from the masked region i.e. the knee joint centres, are taken as positive

training samples and the patches from rest of the image are taken as the negative

training samples to train an FCN. The dataset is split into training (3,333 images)

and test (1,113 images) sets.

4.2.2 Training Fully Convolutional Neural Networks

Initial Configuration and Training

To start, a FCN is configured with a lightweight architecture containing 4

convolutional layers followed by a fully convolutional layer, which is a

convolutional layer with a kernel size [1×1] and that uses a sigmoid activation.
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(a) (b)

Figure 4.2: (a) An input X-ray image and (b) The binary mask annotations for knee
joint centres.

Table 4.1: Initial FCN Configuration for detecting the knee joint centres.

Layer Kernel Kernel Size

Conv1 32 3×3
Conv2 32 3×3
Conv3 64 3×3
Conv4 64 3×3
Conv5 1 1×1

FCNs use fully convolutional layers at the last stage to make pixel-wise

predictions [88]. Table 4.1 shows the network configuration in detail. Each

convolution layer is followed by a ReLU layer.

The network parameters are trained from scratch with training samples of knee

OA radiographs from the OAI dataset. The dataset is split into training (3,333

images) and test (1,113 images) sets. The ground truth for training the network

are binary images with masks specifying the ROI: the knee joints. The network

is trained to minimise the total binary cross entropy between the predicted pixels

and the ground truth. Stochastic gradient descent (SGD) with default parameters:

learning rate = 0.01, decay = 1e−6, momentum = 0.9, and nesterov = True, is used.

The network is trained for 40 epochs and the batch size is 10. Figure 4.3 shows an

instance of the test input, the ground truth and the output (pixel-wise predictions)

of the FCN. From the predictions of this FCN, it is observed that the network is able
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Figure 4.3: An instance of input, ground truth and output (predictions) of FCN.

to slightly detect the edges of the knee joints and these are promising initial results.

In an attempt to improve the detections, the FCN configurations are experimented

and for this the hyper-parameters of the network are tuned.

Receptive Field

When dealing with high-dimensional inputs such as images, it is impractical to

connect neurons in the current level to all the neurons in the previous volume.

Instead, each neuron is only connected to a local region of the input volume. The

spatial extent of this connectivity is a hyper-parameter called the receptive field of

the neuron [59]. The receptive field size, otherwise termed the effective aperture size

of a CNN, shows how much a convolutional node sees of the input pixels (patch)

that affects a node’s output. The effective aperture size depends on kernel size and

strides of the previous layers. For instance, a 3×3 kernel can see a 3×3 patch of the

previous layer and a stride of 2 doubles what all succeeding layers can see.

The receptive field size of neurons in the final layer of the FCNs is calculated and

used to analyse the output of FCNs and the overall detection results. The receptive

field size of a neuron in the final layer (Conv5) of the initial FCN configuration

(Table 4.1) is 9, which is low and may be a reason for poor performance of this

network. Larger convolutional kernel sizes to increase the receptive field of the

network is investigated. Section 4.2.5 shows that a network (Table 4.6) with larger

receptive field gives the best results for detecting the knee joint centres.
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Table 4.2: FCN for detecting the knee joint centres.

Layer Kernel Kernel Size

Conv1 32 7×7
Conv2 64 3×3
Conv3 96 3×3
Conv4 (fullyConv) 1 1×1

Tuning the FCN Hyper-parameters

VGG-M-128 [63], the deep convolutional neural network developed by the Oxford

visual geometry group (VGG) uses kernel size 7×7 in the first convolutional layer

and 5×5 in the following convolutional layer. Inspired by this, kernel sizes of 5×5,

and 7×7 for the first convolutional layer are tested retaining the other settings. The

kernel size 7×7 gives better results in this configuration. This is because of the

larger receptive field size of the 7×7 kernel in comparison to the 3×3 kernel.

Next, the experiments are conducted by varying the number of convolutional

layers and also the number of filters (kernel) in a convolutional layer, before

obtaining the configuration that gave the best results based on visual observations.

Table 4.2 shows the configuration of the network derived from the initial

configuration and the receptive field size of a neuron in the final layer (Conv4) is

11. The networks are trained with 3,333 images and tested on 1,113 images from

the OAI dataset.

There is an improvement in the detections using this network in comparison to

the previously tested configurations. Figure 4.4 shows an instance of the output

predictions of this network. To quantitatively evaluate the automatic detections,

the well-known Jaccard Index is used.

4.2.3 Quantitative Evaluation

A simple contour detection is used and the Jaccard index i.e. the overlap statistics

calculated by the Intersection over Union (IoU) to evaluate the automatic detections

of the FCN. The steps involved are as follows:
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Figure 4.4: An input image, ground truth, and outcome of the final FCN.

• First, the objects are detected i.e. the knee joint regions from the output

image of the FCN using simple contour detection [92]. Contours can be

explained simply as a curve joining all the continuous points (along the

boundary), having the same colour or intensity. The contours are a useful

tool for shape analysis and simple object detection and recognition. In this

method, first the images are converted to binary by applying Otsu’s

threshold. Next, the contours of the objects or shapes in the binary image

are automatically detected and recorded [92].

• Next, the detected objects in the image are sorted based on the area and from

these the top two are selected. This is to eliminate noise or other faint edges

picked up by the FCN.

• The centroids of the largest two detected regions are recorded as the knee joint

centres.

• A binary mask of 20×20 pixels size is marked around each detected knee joint

centre.

• The Jaccard index is computed for each image with the masks of predicted

centres and the masks predefined using manual annotation i.e. the labels used

for training FCN.

In total 1,113 X-ray images that is 2,226 knee joints are included in the test

set. The FCN with the final configuration detects 1,851 knee joints in the test set
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Table 4.3: FCN with pooling and up-sampling layers.

Layer Kernel Kernel Size Strides

Conv1 32 7 ×7 1
MaxPool2 – 2×2 2
Conv3 64 3×3 1
MaxPool4 – 2×2 2
Conv5 96 3×3 1
UpSamp6 – 4×4 1
Conv7 (fullyConv) 1 1×1 1

Figure 4.5: Prediction of the FCN with max pooling and up-sampling layers.

with Jaccard index ≥ 0.5, the accuracy of detection is 83.2% with a mean 0.66

and standard deviation 0.18. This is an improvement in comparison to previous

approaches but still falls short of perfect detections. The pooling and up-sampling

layers in the FCN are varied and experimented in an attempt to improve the

detection accuracy. This will help to increase the receptive field size and in turn

improve the overall detections.

4.2.4 FCN with Pooling and Up-sampling Layers

Two max pooling layers with stride 2 and up-sampling by a factor of 4 are included

to the previous configuration (Table 4.2). Table 4.3 shows the FCN architecture in

detail. Each convolutional layer is followed by a ReLU activation.

Figure 4.5 shows the output of this network for a test image. On visual

observation, the output image contains less noise and the detections are improving

compared to the previous approaches, even though the output image resolution is
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Table 4.4: FCN with 3 Convolution-Pooling stages for detecting the knee joint
centres.

Layer Kernel Kernel Size Strides

Conv1 32 7×7 1
MaxPool2 – 2×2 2
Conv3 32 3×3 1
MaxPool4 – 2×2 2
Conv5 64 3×3 1
MaxPool6 – 2×2 2
Conv7 96 3×3 1
UpSamp8 – 8×8 1
Conv9 (fullyConv) – 1×1 1

Figure 4.6: Predictions of the FCN with 3 Convolution-Pooling stages.

low. This is due to the inclusion of pooling and up-sampling stages to the network

and this has increased the receptive field size of the final layer (Conv7) to 34. The

number of convolutional-pooling stages is increased, to see if there is improvement

in the detections. Table 4.4 shows the architecture of this network in detail.

From the output of this FCN, it can be observed that the detections become

more precise in comparison to the previous networks even though the resolution is

low in comparison to the previous networks. Figure 4.6 shows an instance of the

input test image, ground truth and the FCN output.

The outcomes of this FCN are evaluated using Jaccard index and the detection

accuracy is 96.7%, that is in total 2,152 out of 2,226 knee joints are detected with

a Jaccard index ≥ 0.5. The Jaccard index mean is 0.74 and standard deviation is

0.13. The detection accuracy is high in comparison to the previous networks. Table

4.5 shows the detection accuracy of the FCN for the Jaccard index values at 0.25,
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0.5 and 0.75.

Table 4.5: Detection accuracy of FCN based on Jaccard Index.

Jaccard Index JI ≥ 0.25 JI ≥ 0.5 JI ≥ 0.75

Detection Accuracy 98.5 % 96.7 % 39.6 %

This FCN (Table 4.4) has three convolutional-pooling stages. A configuration

with 4 convolutional-pooling stages followed was tested by adding an up-sampling

layer with kernel size (16×16). There was no improvement in the detection accuracy

for this configuration.

4.2.5 Best Performing FCN for Detecting the Knee Joint Centres

Before settling on the final architecture, experiments were done by varying the

number of convolution stages, the number of filters and kernel sizes in each

convolution layer. The best performing FCN (Table 4.6) was selected based on a

high detection accuracy on the test data. This network was trained with the OAI

dataset containing 4,444 knee radiographs. The dataset was split into a training

set containing 3,333 knee images and test set containing 1,113 knee images. The

validation set (10%) was taken from the training set. The effective aperture size of

this FCN (Table 4.6) for a node in the last convolutional layer (before

up-sampling) is 66. The aperture size for the previous networks shown in Table 4.4

is 42 and Table 4.3 is 34. For the other tested configurations the effective aperture

size is even lower (less than 30).

Table 4.6 shows the configuration of the best performing FCN for detecting the

knee joint centres. This FCN is based on a lightweight architecture and the

network parameters (in total 214,177) are trained from scratch. The network

consists of 4 stages of convolutions with a max-pooling layer after each

convolutional stage, and the final stage of convolutions is followed by an

up-sampling and a fully-convolutional layer. The network uses a uniform [3×3]

convolution and [2×2] max pooling. Each convolution layer is followed by a ReLU
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Table 4.6: Best performing FCN for detecting the knee joint centres.

Layer Kernel Kernel Size Strides

Conv1 32 3×3 1
MaxPool1 – 2×2 2
Conv2 1 32 3×3 1
Conv2 2 32 3×3 1
MaxPool2 – 2×2 2
Conv3 1 64 3×3 1
Conv3 2 64 3×3 1
MaxPool3 – 2×2 2
Conv4 1 96 3×3 1
Conv4 1 96 3×3 1
UpSamp5 – 8×8 1
Conv5 (fullyConv) – 1×1 1

activation layer. After the final convolution layer, an [8×8] up-sampling is

performed as the network uses 3 stages of [2×2] max pooling. The up-sampling is

essential for an end-to-end learning by back propagation from the pixel-wise loss

and to obtain pixel-dense outputs [88], when pooling layer(s) and strides more

than one are used in the network. The final layer is a fully convolutional layer with

a kernel size of [1×1] and uses a sigmoid activation for pixel-based classification.

The input to the network is of size [256×256].

This network was trained to minimise the total binary cross entropy between

the predicted pixels and the ground truth using stochastic gradient descent (SGD)

with default parameters: learning rate = 0.01, decay = 1e−6, momentum = 0.9,

and nesterov = True. This network was trained for 40 epochs with a batch size

32. The validation (10%) data was taken from the training set. Figure 4.7 shows

the learning curves when training this network and decrease in the validation and

training losses.

Table 4.7 shows the results of the best performing FCN. This network achieved a

detection accuracy of 97.1%, in total 2,162 knee joints out of the 2,226 test samples

detected with a Jaccard index 0.5. The Jaccard index mean is 0.76 and standard

deviation is 0.12.
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Figure 4.7: Training and validation losses of the FCN.

Table 4.7: Detection accuracy of the best performing FCN.

Jaccard Index JI ≥ 0.25 JI ≥ 0.5 JI ≥ 0.75

Detection Accuracy 98.9 % 97.1 % 43.3 %

4.2.6 Error Analysis

The results of the best performing FCN (Table 4.7) show 99% detection accuracy

for a Jaccard index ≥ 0.1, in total 2,205 out of 2,226 knee joints are successfully

detected. On observing the failed detections: 1% (in total 21 knee joints), there are

two patterns.

1. The output of the FCN is very faint or no detections at all. Figure 4.8 shows

two instances of input X-ray images, masks defining the knee joint centres as

ground truth, and output of the best performing FCN with faint detections.

The input images with variations in the local contrast and local luminance due

to the imaging protocol variations are the main cause for this error. Histogram

equalisation is used as a pre-processing step to adjust the contrast of the

input images. Even though this adjusts the contrast globally in an image,

there are still contrast variations in portions of the image. Local contrast
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Figure 4.8: Error analysis: X-ray images, ground truth, FCN output - weak
detections

enhancement algorithms [93] or adaptive histogram equalisation [94] can be

used to normalise the images for variations in the local contrast and local

luminance.

2. The FCN output picks up noise along with the knee joints. Figure 4.9 shows

two instances of input X-ray images, masks defining the knee joint centres as

ground truth, and output of the best performing FCN with noise. The reason

for this error is due to the variations in the imaging protocol and resolution

of the X-ray images, and presence of artefacts in the input X-ray images.

Intuitively, the FCN uses horizontal edge detection along with other features

to detect the knee joints. The artefacts with predominant horizontal edges

are picked up by the FCN along with the centre of knee joints. When simple

contour detection is applied on the FCN output, instead of the knee joints the

artefacts are also detected.
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Figure 4.9: Error analysis: X-ray images, ground truth, FCN output - detections
with noise.

4.2.7 Automatically Extracting the Knee Joints

After training FCNs to automatically detect the centre of the knee joints, the next

step is to extract the ROI i.e. the knee joints with reference to the detected centres.

The initial goal is to train an end-to-end network for localising the knee joints i.e. to

directly predict the bounding box co-ordinates of the knee joints from the input X-

ray images. A bounding box regression is investigated [95] that is a network trained

on top of the FCN (Table 4.6) output, to achieve this. First, CNNs are trained with

the masks (20×20) of knee joint centres as the input (256×256) and the bounding

box coordinates of the left knee joint (x1, y1) and right knee joint (x2, y2) as the

ground truth (labels). Next, CNNs are trained with the X-ray images as input and

the targets (labels) are the bounding box coordinates instead of the binary masks.

However in both the experiments, the networks trained to predict the bounding

boxes give low accuracy. On considering the overall knee joint centres, there is

no large variations in the centre coordinates. The reason for the low accuracy is
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that the networks are not learning discernible features to predict the bounding box

coordinates. This affects the overall performance of the localisation. Therefore, a

simple approach based on contour detection is used to calculate the centres and

extract the knee joints. Figure 4.10 shows an X-ray image with the centres, the left

and the right knee joints extracted from the X-ray image using the centroids. The

steps involved in this method are as follows.

• First, the contour detection [92] is used on the FCN output to calculate the

spatial coordinates of the knee joint centres. In the contour detection

method, first the input images (FCN output) are converted to binary by

applying Otsu’s threshold. Next, the contours from the binary image are

automatically detected and recorded. Finally, the centroids are calculated

from the detected knee joint regions.

• The knee OA radiographs are resized to 2560×2560, that is 10 times the size

of the FCN output 256×256.

• The detected knee joint centres are up-scaled to a factor of 10.

• Fixed size regions (640×560) are extracted around the up-scaled centres as

the knee joint regions. After testing and visualising different sizes for the knee

joint crop, image patch with the size (640×560) is found to be mostly suitable

and containing the required ROI for further quantification. Figure 4.10 shows

an instance of the extracted left and right knee joints.

4.2.8 Localisation Results

The results of the FCN are compared to the previous methods: template matching

and SVM-based method to automatically detect the centre of the knee joints. All

these methods are evaluated based on the Jaccard index (JI). Table 4.8 shows the

detection accuracy of the knee joint centres using FCN, SVM-based method, and

template matching. The results show that the proposed method using FCN clearly
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Figure 4.10: A knee X-ray image with the detected centres and the extracted left
and right knees.

Table 4.8: Comparison of methods used for localising the centre of the knee joints

Method JI > 0 JI ≥ 0.5 JI ≥ 0.75 Mean Std. Dev.

Template Matching 54.4% 8.3% 3.1% 0.1 0.2
SVM-based Method 81.8% 38.6% 10.2% 0.36 0.31
Fully ConvNet 98.9% 97.1% 43.3% 0.76 0.12

outperforms the previous methods. This also demonstrates that feature learning

using an FCN is a better approach for detecting the knee joints than using hand-

crafted features such as Sobel gradients and the template matching method that is

sensitive to intensity level variations. However, the extracted knee joints from this

method have some limitations.

4.2.9 Limitations of this Method

In all three approaches; FCN-based, SVM-based and template matching, the centre

of the knee joints are detected and these are used as reference for automatically

localising the knee joints. There are some limitations in extracting a fixed size

region as the ROI with reference to the detected centres due to the variations in the

resolution of the X-ray images and the variations in the size of the knee joints.

All the images are resized to a fixed size 2,560×2,560 and extract a fixed size

region 640×560 around the detected centres as the ROI. Due to this scaling issue,
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Figure 4.11: Anomalies in the automatic extraction of the ROI.

Figure 4.12: The actual ROI for the knee joints in Figure 4.11.

portions of the knee joints are omitted in the automatic extraction of the ROI. Figure

4.11 shows such instances. Figure 4.12 shows the corresponding actual ROIs.

Due to the varying sizes of the knee joints and a fixed size region being extracted

as the ROI, there are differences in the aspect ratio of the extracted and the actual

ROI. Figure 4.13 shows instances where the knee joints are small in comparison to

the fixed size region extracted as the ROI. Figure 4.14 shows the actual ROIs.

The classification of the automatically extracted knee joints is compared to the

manually extracted knee joints. There is a decrease in the accuracy by a margin

of 3–4% when using the automatically extracted knee joints with reference to the

detected centres. The discrepancies in the localisation of knee joints affects the

overall classification of the knee OA images. To overcome these limitations, as the

next approach FCNs are trained to detect the ROI itself, instead of detecting the

knee joint centres.
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Figure 4.13: Variations in the aspect ratio of the extracted knee joints.

Figure 4.14: The actual ROI for the extracted knee joints in Figure 4.13.

4.3 Localising the Region of Interest

The previous methods to localise the knee joints in the X-ray images with reference

to the automatically detected centres have certain limitations. To overcome these

limitations and to improve the localisation, FCNs are trained to detect the ROI

directly. Figure 4.15 shows the steps involved in this method.

4.3.1 Dataset and Ground Truth

For the experiments in this approach, a new dataset from the MOST is used along

with the data from the previous experiments, the baseline cohort of the OAI dataset.

In total 4,446 X-ray images are selected from the OAI dataset and 2,920 X-ray

images from the MOST dataset based on the availability of KL grades for both
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Figure 4.15: Automatic localisation of the Region of Interest.

knee joints. The full ROI is manually annotated in all these X-ray images, after

downscaling to 10 % of the actual size. The down-sampling of the images is necessary

to reduce the computational costs. Binary masks are generated based on the manual

annotations. Figure 4.16 shows an instance of an input X-ray image and the binary

mask annotations corresponding to the ROI. The image patches from the masked

region i.e. the knee joints are taken as positive training samples and the patches

from rest of the image are taken as the negative training samples to train a FCN.

The datasets are split into a training/validation set (70%) and test set (30%). The

training and test samples from the OAI dataset are 3,146 images and 1,300 images,

and from the MOST dataset are 2,020 images and 900 images.
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(a) (b)

Figure 4.16: (a) An input X-ray image and (b) The binary mask annotations for
the region of interest.

4.3.2 Training the FCN

First, a FCN is trained using the same architecture (Table 4.6) from the previous

approach to detect the ROI. Initially, the network is trained with training samples

from OAI dataset and test it with OAI and MOST datasets separately. Next, the

training samples are increased by including the MOST training set where the test

set is a combination of both OAI and MOST test sets. This network is trained to

minimise the total binary cross entropy between the predicted pixels and the ground

truth using the adaptive moment estimation (Adam) optimiser [96] with default

parameters: initial learning rate (α) = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e−8.

Adam optimiser gives faster convergence than standard SGD. Figure 4.17 shows the

learning curves converging to small loss when training this network. Figure 4.18

shows the output of this network for a test image.

A few other network configurations are tested by varying the number of

convolutional-pooling stages, convolutional layers in each stage and the number of

convolutional kernels in a convolutional layer. There was no further improvement

in the detection accuracy on the validation set. Therefore, this configuration was

settled as the final network for localising the knee joints.
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Figure 4.17: Training and validation losses of the FCN.

Figure 4.18: An input X-ray image, ground truth and output prediction of the FCN.

4.3.3 Quantitative Evaluation

The Jaccard index, i.e. the intersection over Union (IoU) of the automatically

detected and the annotated knee joint is used to quantitatively evaluate the

automatic detections. For this evaluation, all the knee joints in both the OAI and

MOST datasets are manually annotated using a fast annotation tool. Table 4.9

shows the number (percentage) of knee joint correctly detected based on the

Jaccard index (JI) values greater than 0.25, 0.5 and 0.75 along with the mean and

the standard deviation of JI. Table 4.9 also shows detection rates on the OAI and

MOST test sets separately.

Considering the anatomical variations of the knee joints and the imaging
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Table 4.9: Comparison of automatic detection based on the Jaccard Index (JI).

Test Data JI > 0 JI ≥ 0.5 JI ≥ 0.75 Mean Std. Dev.

OAI 100% 100% 88% 0.82 0.06
MOST 99.7% 98.8% 80.6% 0.80 0.09
Combined OAI-MOST 100% 100% 92.2% 0.83 0.06

protocol variations, the automatic detection with a FCN is highly accurate with

100% detection accuracy for JI≥0.5 and 92.2% (4,056 out of 4,400) of the knee

joints for J≥0.75 being correctly detected. Further evidence is provided to show

that the FCN based detection is highly accurate by showing that the quantification

results obtained with the automatically extracted knee joints giving results on par

with manually segmented knee joints in the next chapter, Section 5.3.8.

4.3.4 Qualitative Evaluation

Figures 4.19, 4.20, and 4.21 show a few instances of successful knee joint detections

with the JI values for the left and right knee detections. Detecting the ROI directly

gives high accuracy (100%) in comparison to the previous method (Section 4.2) to

detect the knee joint centres and extracting a fixed size region as the ROI. The FCN

in this method learns features from a relatively larger region (the actual ROI) in

comparison to the previous method where the FCN is confined to learn features from

a small region (20×20), the centre of the knee joints, and therefore, the detections

are more accurate.

Figure 4.19: Qualitative Evaluation: An input X-ray image, ground truth, and FCN
detections: left knee with JI=0.98, right knee with JI=0.888.
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Figure 4.20: Qualitative Evaluation: An input X-ray image, ground truth, and FCN
detections: left knee with JI=0.879, right knee with JI=0.969.

Figure 4.21: Qualitative Evaluation: An input X-ray image, ground truth, and FCN
detections: left knee with JI=0.768, right knee with JI=0.984.

4.3.5 Error Analysis

This method is highly accurate with 100% detection accuracy for a JI ≥ 0.5.

Nevertheless, there are a few anomalies in the FCN detections due to variations in

the imaging protocols, presence of artefacts and noise in the input images. Figures

4.22 and 4.23 show two instances where one knee has undergone joint-arthoplasty

and the knee implants are visible in the X-ray images, and due to this the FCN

detections are distorted. Figures 4.24, 4.25 and 4.26 show a few instances of X-ray

images with noise and presence of artefacts due to imaging protocols. This

adversely affects the FCN detections.

4.3.6 Extracting the Knee Joints

The bounding boxes of the knee joints are calculated using simple contour detection

from the output predictions of the FCN. After converting the FCN output to binary
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Figure 4.22: Error Analysis: An input X-ray image, ground truth, and FCN
detections: left knee with JI=0.83, right knee with JI=0.398. The implants in
the right knee is the reason for this localisation error.

Figure 4.23: Error Analysis: An input X-ray image, ground truth, and FCN
detections: left knee with JI=0.473, right knee with JI=0.837. The implants in
the left knee is the reason for this localisation error.

Figure 4.24: Error Analysis: An input X-ray image, ground truth, and FCN
detections: left knee with JI=0.887, right knee with JI=0.356. The noise in the
right knee causes this localisation error.
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Figure 4.25: Error Analysis: An input X-ray image, ground truth, and FCN
detections: left knee with JI=0.681, right knee with JI=0.488. The localisation
error in this image is due to the variation in the imaging protocol.

Figure 4.26: Error Analysis: An input X-ray image, ground truth, and FCN
detections: left knee with JI=0.768, right knee with JI=0.507. The variations in the
local contrast and luminance affects the localisations.

image using Otsu’s threshold, the contours are detected using simple image analysis

by calculating the zero order moments [92], which gives the perimeter of the detected

object. The contours are recorded as bounding boxes. The knee joints are extracted

from knee OA radiographs using the bounding boxes. The bounding boxes are up-

scaled from the output of the FCN that is of size [256× 256] to the original size of

each knee OA radiograph, before extracting the knee joints so that the aspect ratio

of the knee joints is preserved.

4.4 Conclusion

Automatically localising the knee joints in X-ray images is an important and an

essential step before quantifying knee OA severity. Previously, template matching
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was implemented as a baseline method to localise the knee joints, proposed by

Shamir et al. [2,7], and it was shown that the detection accuracy is low (∼ 30%) in

this method for large datasets like OAI. To improve the localisation, a SVM-based

method with Sobel horizontal image gradients as features is proposed in this thesis.

This method showed a large improvement in detection accuracy (82%) but still falls

short of perfect localisation. The anomalies in localised knee joints can affect the

following step: classifying the localised knee joints to quantify knee OA severity.

Instead of using hand-crafted features, a deep learning-based solution is

proposed in this chapter to further improve localisation. FCNs were trained to

automatically detect and extract the knee joints. All three methods: template

matching, SVM-based and FCN-based are evaluated using a common metric: the

Jaccard Index. This method achieves almost perfect detection with 100% accuracy

for a Jaccard Index 0.5 and an accuracy of 92% for a Jaccard index greater than

equal to 0.75. The author believes this performance is sufficient to localise and

extract the knee images for classification. As such the further improvements are

left as future work. The localisation performance may be improved by including

additional pre-processing steps to remove the artefacts and noise in the images,

and to normalise the local contrast variations in the images. Using additional data

for learning and data augmentation may improve the localisation performance.

4.5 Chapter Summary

In this chapter, two approaches for automatically detecting and localising the knee

joints in X-ray images using FCNs are introduced. As a first approach, FCNs are

trained to automatically detect the knee joint centres and a fixed size region is

cropped as the ROI with reference to the detected centres. Though this approach

achieved high detection accuracy, the extracted knee joints had certain limitations

due to the variations in the resolution of the knee radiographs and the anatomical

variations of the knees. To overcome these drawbacks and to further improve the
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localisation, as the second approach FCNs are trained to directly localise the ROI

instead of knee joint centres. The results from this method are near perfect and

outperform the previous methods to localise the knee joints. The next chapter

introduces the proposed methods for quantifying knee OA severity through

classification and regression on the localised knee joints.
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Automatic Quantification of

Knee OA Severity

5.1 Introduction

The previous chapter focused on developing and evaluating a deep learning based

framework to automatically localise the knee joints from the X-ray images. This

chapter proposes deep learning based solutions to automatically quantify knee OA

severity from the localised and extracted knee joint images. The objective is to

develop and train CNNs to quantify knee OA severity based on the KL grades (0–

4). Classification and regression are used to predict the KL grades on an ordinal

scale and on a continuous scale. Also, ordinal regression is investigated in an attempt

to improve the quantification of knee OA severity.

Previous work on automated assessment of knee OA severity approached it as

an image classification problem [2, 15, 29–31]. Previous methods have tested many

hand-crafted features based on pixel statistics, textures, edge and object statistics,

and transforms [1, 2, 4, 9, 29, 30]. Many classifiers such as the SVM [30], the

k-nearest neighbour classifier [29], the weighted neighbour nearest classifier [2, 9],

the random forest classifiers [15], and even artificial neural networks (ANN) [31,32]

have been tested for knee image classification. As a baseline (in Section 3.4.2), the

state-of-the-art features successful in computer vision tasks such as histogram of

oriented gradients [77], local binary patterns [78], and Sobel Gradients [79] are

tested. These features are not included in the previous studies to assess knee OA
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severity. All the previous approaches based on hand-crafted features give low

multi-class classification accuracy when classifying knee images and in particular

classifying fine-grained successive knee OA grades remains a challenge. As a

baseline, the state-of-the-art CNNs features (in Section 3.4.3) are also tested for

knee images classification on a small baseline data set from OAI and this approach

gave promising results. Motivated by this, the use of CNNs are investigated for

quantifying knee OA severity in this chapter.

First, the use of off-the-shelf CNNs are investigated for quantifying knee OA

severity through classification and regression. Two approaches are followed for this:

1) using a pre-trained CNN for fixed feature extraction, 2) fine-tuning pre-trained

CNN following a transfer learning approach. WNDCHRM, an open source utility

for medical image classification [2, 9, 34] is used for benchmarking the classification

results obtained from the proposed methods,

Next, three new methods are investigated to automatically quantify knee OA:

1) training a CNN from scratch for multi-class classification of knee OA images;

2) training a CNN to optimise a weighted ratio of two loss functions categorical

cross-entropy for multi-class classification and mean-squared error for regression; 3)

training a CNN for ordinal regression of knee OA images. The results from these

methods are compared to the previous methods. The classification results using

both manual and automatic localisation of knee joints are also compared.

The remainder of this chapter is structured as follows: Section 5.2 presents the

classification and regression of knee OA images using CNNs that are fine-tuned

through transfer learning. Section 5.3 introduces the training of CNNs from

scratch for classifying knee OA images and analyses the classification results.

Section 5.4 elaborates on the joint training of CNNs for simultaneous classification

and regression of knee OA images, and shows the results of joint training. Section

5.5 describes the development and training of a CNN for ordinal regression using a

custom loss function. Section 5.6 compares and analyses the results from the four

approaches to quantify knee OA severity. Section 5.7 summarises this chapter and
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presents the conclusions.

5.2 Off-the-shelf CNNs

The use of well-known off-the-shelf CNNs such as the VGG-16 network [63], and

comparatively simpler networks like VGG-M-128 network [97], and BVLC reference

CaffeNet [98, 99] (which is very similar to the widely-used AlexNet model [22]) are

investigated to classify knee OA images. These networks are pre-trained for general

image classification using a very large dataset: the ImageNet LSVRC dataset [100]

which contains more than 1.2 million images in 1000 classes. Initially, features

are extracted from the convolutional, pooling, and fully-connected layers of VGG-

16, VGG-M-128, and BVLC CaffeNet, and train linear SVMs to classify knee OA

images.

The pre-trained networks are fine-tuned for knee OA images classification

motivated by the transfer learning approach [76]. Transfer learning is adopted as

the OAI dataset is small, containing only a few thousand images. In transfer

learning, a base network is first trained on external data, and then the weights of

the initial n layers are transferred to a target network [76]. The new layers of the

target network are randomly initialised following the Xavier weight initialisation

procedure [101]. The random weights initialisations increase the likelihood of the

training algorithms during the backpropagation to obtain a global solution

through the gradient descent instead of settling to a nearest local solution.

Intuitively, the lower layers of the networks contain more generic features such

as edge or texture detectors useful for multiple tasks, whilst the upper layers

progressively focus on more task specific cues [76, 99]. This approach is used for

both classification and regression, adding new fully-connected layers and

backpropagation is used to fine-tune the weights for the complete network on the

target loss.
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5.2.1 Dataset

The data used for the experiments are knee radiographs taken from the baseline

cohort of OAI dataset containing 4, 476 participants. In the entire cohort, Kellgren

& Lawrence (KL) grades are available for both knee joints in 4, 446 radiographs and

these images are used for this study. The distribution of the knee joint images (in

total 8, 892) conditioned on the KL grading scale are: grade 0 - 3433, grade 1 - 1589,

grade 2 - 2353, grade 3 - 1222, and grade 4 - 295.

5.2.2 Classification using Pre-trained CNN Features

The VGG-16 network [63] is trained with the OAI dataset. Features are extracted

from different layers of the VGG net such as fully-connected (fc7), pooling (pool5),

and convolutional (conv5 2) layers to identify the most discriminating set of features.

Linear SVMs (LIBLINEAR [102]) are trained with the extracted CNN features

for classifying knee OA images, where the ground truth are images labelled with

KL grades. Next, the use of simple pre-trained CNNs such as VGG-M-128 [97]

and the BVLC CaffeNet model [98] are investigated for classifying the knee OA

images. These networks have fewer layers and parameters in comparison to the

VGG-16 network. The features are extracted from the fully-connected, pooling, and

convolutional layers, using the VGG-M-128 net and the BVLC reference CaffeNet.

Experiments and Results

The knee joint images are split into training (∼70%) and test (∼30%) set based on

the distribution of each KL grade. Features are extracted from fully-connected,

pooling, and convolution layers of VGG-16, VGG-M-128, and BVLC CaffeNet.

Linear SVMs are trained individually for binary and multi-class classifications on

the extracted features. WNDCHRM, an open source utility for biological image

analysis and medical image classification is used for benchmarking the

classification results from the proposed methods in this chapter [2, 9, 34].
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WNDCHRM is trained with the same training data so that the classification

results from WNDCHRM and CNN features can be compared. The knee OA

images are classified in three ways as follows. Classifying healthy knee images

(grade 0) with the progressive stages (grade 1, 2, 3, and 4), classifying the images

belonging to the successive stages (grade 0 vs 1, grade 1 vs 2, ...) and multi-class

classification to classify all the stages of knee OA images.

Table 5.1 shows the test set classification accuracies achieved by WNDCHRM

and the CNN features. The CNN features consistently outperform WNDCHRM

for classifying healthy knee samples against the progressive stages of knee OA. The

features from conv4 layer with dimension 512×13×13 and pool5 layer 256×13×13

of VGG-M-128 net, and conv5 layer with dimension 512×6×6 and pool5 layer with

dimension 256×6×6 of BVLC reference CaffeNet give higher classification accuracy

in comparison to the fully-connected fc6 and fc7 layers of VGG nets and CaffeNet.

Intuitively, the lower layers capture more discriminative low-level features such as

edge or shape detectors, and the higher layers tend to contain high-level features

specific to object classes as per the training data. Features are also extracted from

lower layers such as pool4, conv4 2, pool3, pool2 and train classifiers on top of

these features. As the dimension of the bottom layers are high, the training time is

increased, however, no improvement in classification accuracy is observed.

In a fine-grained classification task such as knee OA image classification, the

accuracy of classifying successive classes tends to be low, as the variations in the

progressive stages of the disease are minimal, and only highly discriminant features

can capture these variations. From the experimental results, as shown in Table 5.1,

the features extracted from CNNs provide significantly higher classification accuracy

in comparison to the WNDCHRM, and these features are effective and promising

for classifying the consecutive stages of knee OA.

Multi-class classifications are performed using linear SVMs with the CNN

features (Table 5.1, multi-class). Again, the CNN features outperform

WNDCHRM. The classification accuracies obtained using convolutional (conv4,

90



Chapter 5. Automatic Quantification of Knee OA Severity

T
ab

le
5
.1

:
C

la
ss

ifi
ca

ti
on

ac
cu

ra
cy

(%
)

ac
h

ie
ve

d
b
y

th
e

W
N

D
C

H
R

M
an

d
p

re
-t

ra
in

ed
C

N
N

fe
a
tu

re
s.

C
at

eg
o
ry

C
la

ss
ifi

ca
ti

on
W

N
D

C
H

R
M

V
G

G
-1

6
N

et
V

G
G

-M
-1

28
N

et
B

V
L

C
re

f
C

a
ff

eN
et

fc
7

p
o
ol

5
co

n
v
5

2
fc

6
p

o
o
l5

co
n
v
4

fc
7

p
o
o
l5

co
n
v
5

P
ro

g
re

ss
iv

e

G
ra

d
e

0
v
s

G
ra

d
e

1
51

.5
56

.3
61

.3
63

.5
56

.5
63

.2
6
4
.7

6
2.

0
6
4.

3
6
3.

3
G

ra
d

e
0

v
s

G
ra

d
e

2
62

.6
68

.6
74

.3
76

.7
67

.8
75

.5
7
7
.6

6
9.

6
7
3.

6
7
3.

9
G

ra
d

e
0

v
s

G
ra

d
e

3
70

.6
86

.4
91

.4
92

.4
88

.5
90

.2
9
2
.9

8
7.

9
9
2.

5
9
1.

5
G

ra
d

e
0

v
s

G
ra

d
e

4
82

.8
98

.1
98

.6
99

.3
98

.8
99

.3
99

.2
9
8.

5
9
9
.4

99
.1

S
u

cc
es

si
ve

G
ra

d
e

1
v
s

G
ra

d
e

2
48

.8
60

.0
64

.7
67

.3
57

.9
63

.5
65

.3
6
1.

2
6
5
.8

6
2.

8
G

ra
d

e
2

v
s

G
ra

d
e

3
54

.5
69

.8
76

.4
77

.0
73

.0
7
7.

3
7
9
.0

70
.3

78
.1

77
.1

G
ra

d
e

3
v
s

G
ra

d
e

4
58

.6
85

.2
88

.8
90

.0
85

.0
9
0.

4
9
1.

2
87

.4
9
1
.6

9
1.

4

M
u

lt
i-

cl
as

s
G

ra
d

e
0

to
G

ra
d

e
2

39
.9

51
.1

53
.4

56
.9

51
.1

5
5.

0
5
7
.4

5
1.

1
5
4.

8
5
4.

4
G

ra
d

e
0

to
G

ra
d

e
3

32
.0

44
.6

48
.7

53
.9

45
.4

50
.2

5
3
.3

4
6.

9
5
1.

6
5
0.

2
G

ra
d

e
0

to
G

ra
d

e
4

28
.9

42
.6

47
.6

53
.1

43
.8

49
.5

5
3
.4

4
4.

1
5
0.

8
5
0.

0

91



Chapter 5. Automatic Quantification of Knee OA Severity

Figure 5.1: Learning curves:training and validation losses (left), and validation
accuracy (right) during fine-tuning.

conv5) and pooling (pool5) layers are slightly higher in comparison to

fully-connected layer features. There are minimal variations in classification

accuracy obtained with the features extracted from VGG-M-128 net and BVLC

reference CaffeNet in comparison to VGG-16.

5.2.3 Classification using Fine-tuned CNNs

As a next approach, the BVLC CaffeNet [98] and VGG-M-128 [97] networks are

fine-tuned to classify knee images. These two smaller networks are chosen because

they contain fewer layers and parameters (∼62M), over the much deeper VGG-16,

which has ∼138M parameters. The top fully-connected layer of both networks is

replaced and the model is retrained on the OAI dataset using backpropagation.

The lower-level features in the bottom layers are also updated during fine-tuning.

Standard softmax loss is used as the objective for classification, and accuracy layers

are added to monitor the training progress. A Euclidean loss layer (mean squared

error) is used for the regression experiments.
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Table 5.2: Classification accuracy (%) achieved with the features extracted from
fine-tuned BVLC Net.

Classification
Before Fine-Tuning After Fine-Tuning
fc7 pool5 conv5 fc7 pool5 conv5

grade 0 vs grade 1 62.0 64.3 63.3 63.3 64.3 61.9
grade 0 vs grade 2 69.6 73.6 73.9 76.3 77.2 74.1
grade 0 vs grade 3 87.9 92.5 91.5 96.7 96.0 96.3
grade 0 vs grade 4 98.5 99.4 99.1 99.8 99.7 99.7

grade 1 vs grade 2 61.2 65.8 62.8 63.3 66.7 62.7
grade 2 vs grade 3 70.3 78.1 77.1 85.8 83.9 83.3
grade 3 vs grade 4 87.4 91.6 91.4 94.4 93.6 92.6

grade 0 to grade 2 51.1 54.8 54.4 57.4 57.0 52.0
grade 0 to grade 3 46.9 51.6 50.2 57.2 56.5 51.8
grade 0 to grade 4 44.1 50.8 50.0 57.6 56.2 51.8

Experiments and Results

Table 5.2 shows the multi-class classification results for the fine-tuned BVLC

CaffeNet. The VGG-16 network is omitted in these experiment since the variation

in accuracy among the pre-trained CNNs is small, and fine-tuning VGG-16 is more

computationally expensive.

The dataset is split into training (60%), validation (10%) and test (30%) sets

for fine-tuning. The right-left flipped knee joint images are included in the training

set to increase the number of training samples. The networks are fine-tuned for

20 epochs using a learning rate of 0.001 for the transferred layers, and 0.01 for the

newly introduced layers. The performance of fine-tuned BVLC CaffeNet is slightly

better than VGG-M-128. Hence, the results of fine-tuning BVLC CaffeNet is only

shown here. Figure 5.1 shows the learning curves for training and validation loss,

and validation accuracy. The decrease in loss and increase in accuracy shows that

the fine-tuning is effective and makes the CNN features more discriminative, which

improves classification accuracy (Table 5.1). The features extracted from the fully

connected (fc7) layer provide slightly better classification in comparison to pooling

(pool5) and convolution (conv5) layers.
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5.2.4 Regression using Fine-tuned CNNs

Existing work on automatic assessment of knee OA severity treats it as an image

classification problem, assigning each KL grade to a distinct category [2,7,14,15]. To

date, evaluation of automatic KL grading algorithms has been based on binary and

multi-class classification accuracy with respect to these discrete KL grades [1,2,14].

Nevertheless, KL grades are not categorical, but rather represent an ordinal scale of

increasing severity. Treating them as categorical during evaluation means that the

penalty for incorrectly predicting that a subject with grade 0 OA has grade 4 is the

same as the penalty for predicting that the same subject has grade 1 OA. Clearly

the former represents a more serious error, yet this is not captured by evaluation

measures that treat grades as categorical variables. In this set up, permuting the

ordering of the grades has no effect on classification performance. Moreover, the

quantisation of the KL grades to discrete integer levels is essentially an artefact of

convenience; the true progression of the disease in nature is continuous, not discrete.

The author proposes that it is more appropriate to measure the performance of

an automatic knee OA severity assessment system using a continuous evaluation

metric like mean squared error. Such a metric appropriately penalises errors in

proportion to their distance from the ground truth, rather than treating all errors

equally. Directly optimising mean squared error on a training set also naturally

leads to the formulation of knee OA assessment as a standard regression problem.

Treating it as such provides the model with more information on the structure and

relationship between training examples with successive KL grades. It is

demonstrated that the use of regression reduces both the mean squared error and

improves the multi-class classification accuracy of the model.

The pre-trained BVLC CaffeNet model is fine-tuned using both classification

loss (cross entropy on softmax outputs) and regression loss (mean squared error)

to compare their performance in assessing knee OA severity. In both cases, the

fully connected layer fc7 is replaced with a randomly initialised layer and fine-tuned
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Table 5.3: MSE for classification and regression.

Classes WNDCHRM CNN-Clsf CNN-Reg CNN-Reg*

grade 0 to 4 2.459 0.836 0.504 0.576

for 20 epochs, selecting the model with the highest validation performance. The

classification network uses a 5D fully connected layer and softmax following the

fc7 layer, and the regression network uses a 1D fully connected node with a linear

activation.

The models are compared using both mean squared error (MSE) and standard

multi-class classification metrics. The mean squared error is calculated using the

standard formula:

MSE =
1

n

n∑
i=1

(yi − ŷi)2,

where n is the number of test samples, yi is the true (integer) label and ŷi is the

predicted label. For the classification network the predicted labels yi are integers

and for the regression network they are real numbers. A configuration is tested,

where the real outputs are rounded from the regression network to produce integer

labels. Table 5.3 shows the MSE for classification using the WNDCHRM and the

CNN trained with classification loss (CNN-Clsf), regression loss (CNN-Reg), and

regression loss with rounding (CNN-Reg*). Regression loss clearly achieves

significantly lower mean squared error than both the CNN classification network

and the WNDCHRM features.

To demonstrate that the regression loss also produces better classification

accuracy, the classification accuracy from the network trained with classification

loss and the network trained with regression loss and rounded labels are compared.

Rounding, in this case is necessary to allow the use of standard classification

metrics. Table 5.4 compares the resulting precision, recall, and F1 scores. The

multi-class (grade 0–4) classification accuracy of the network fine-tuned with
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Table 5.4: Comparison of classification performance using classification (left) and
regression (right) losses.

Classification
Classification Loss Regression Loss

Precision Recall F1 Precision Recall F1

0 0.53 0.64 0.58 0.57 0.92 0.71
1 0.25 0.19 0.22 0.32 0.14 0.20
2 0.44 0.32 0.37 0.71 0.46 0.56
3 0.37 0.47 0.41 0.78 0.73 0.76
4 0.56 0.54 0.55 0.89 0.73 0.80

Mean 0.43 0.44 0.43 0.61 0.62 0.59

regression loss is 59.6%. The network trained using regression loss clearly gives

superior classification performance. The author suspects this is due to the fact

that using regression loss gives the network more information about the ordinal

relationship between the KL grades, allowing it to converge on parameters that

better generalise to unseen data.

5.2.5 Discussion

The initial approach to quantify knee OA severity used features extracted from

pre-trained CNNs. Three pre-trained networks are investigated and it is found

that the BVLC reference CaffeNet and VGG-M-128 networks perform best. A

linear SVM trained on features from these networks achieved significantly higher

classification accuracy (53.4%) in comparison to the previous state-of-the-art

(28.9%). The features from pooling and convolutional layers were found to be

more accurate than the fully connected layers. Fine-tuning the networks by

replacing the top fully connected layer gave further improvements in multi-class

classification accuracy.

Previous studies have assessed their algorithms using binary and multi-class

classification metrics. The author proposes that it is more suitable to treat KL

grades as a continuous variable and assess accuracy using mean squared error. This

approach allows the model to be trained using regression loss so that errors are
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penalised in proportion to their severity, producing more accurate predictions. This

approach also has the nice property that the predictions can fall between grades,

which aligns with continuous disease progression.

In summary, this section presented two approaches based on the existing

pre-trained CNNs for quantifying knee OA severity: first, the CNNs are used for

fixed feature extraction and next, the CNNs are fine-tuned using transfer learning.

Both the approaches outperformed the previous state-of-the-art, the WNDCHRM

classifier giving promising results. As a next logical step, CNNs are trained from

scratch to investigate if this leads to further improvement in quantifying knee OA

severity.

5.3 Training CNNs from scratch

Training a CNN from scratch (or full training) is challenging and complicated,

because it requires a large amount of annotated training data. The learning curves

during training should ensure proper convergence to generalise well avoiding

overfitting [23]. An alternative to full training is transfer learning, fine-tuning

CNNs pre-trained in other domain (for instance ImageNet dataset with natural

images) to a target domain for instance medical domain. However, the knowledge

transfer may be limited by the substantial differences between the source and the

target domains, which may mitigate the performance of the fine tuned CNNs.

Nevertheless, with sufficient labelled training data and carefully selected

hyper-parameters, fully trained CNNs can outperform fine-tuned CNNs and

hand-crafted alternatives [20,23].

Fully trained CNNs have been found to be highly successful in many medical

applications [20, 23]. Some of the applications that use fully trained CNNs for

musculo-skeletal (including knee) image analysis are knee cartilage segmentation

using multi-stream CNNs [24], total knee arthoplasty kinematics by real-time

2D/3D registration using CNN regressors [103], automated skeletal bone age
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assessment in X-ray images using deep learning [104], posterior-element fractures

detection on spine CT using deep convolutional networks [105], and automated

anatomical landmarks detection on distal femur bone on 3D image analysis using

CNNs. Motivated by these approaches, CNNs are trained from scratch to quantify

knee OA severity using both classification and regression.

5.3.1 Dataset and Preprocessing

The data used for the initial experiments are taken from the baseline OAI dataset.

There are 4,446 X-ray images with the KL grade annotations in this dataset. The

MOST dataset is included for later experiments and this dataset consists of 2,920

X-ray images with KL grade annotations. Two set of knee joint images are used

separately for the experiments: 1) extracted after automatic localisation and 2)

extracted after manual annotation of the ROI. This is to compare the quantification

performance of the CNNs trained with knee joints from automatic localisation and

manual annotation. As a preprocessing step, all the knee joint images are subjected

to histogram equalisation for intensity level normalisation. The images were resized

to 256×256 pixels for the initial experiments. Later, the input image size is changed

to 200×300. This size is chosen to approximately preserve the aspect ratio based

on the mean aspect ratio (1.6) of all the extracted knee joints. Right-left flip of the

knee joint images are used to generate more training data.

5.3.2 Initial Configuration

A CNN is configured with a lightweight architecture with 4 layers of learned

weights: 3 convolutional layers and 1 fully connected layer. As the training data

set is relatively small, a lightweight architecture is considered with minimal (4.5

million) parameters in comparison to the existing CNNs. Table 5.5 shows the CNN

configuration in detail. Each convolutional layer is followed by batch normalisation

and a ReLU activation layer. A max pooling layer is included after each

convolution stage. The final pooling layer is followed by a fully connected layer
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Table 5.5: Initial CNN configuration.

Layer Kernels Kernel Size Strides Output shape

conv1 32 11 ×11 2 32×128×128
maxPool1 – 3×3 3 32×42×42
conv2 96 7×7 1 96×42×42
maxPool2 – 3×3 3 96×14×14
conv3 128 3×3 1 128×14×14
maxPool3 – 3×3 2 128×4×4
fc4 – – – 2048
fc5 – – – 5

(fc4), and a softmax dense layer (fc5) with an output shape 5 for the multi-class

classification of (0–4) ordinal KL grades. A drop out layer with a drop out ratio of

0.5 is included after the fully connected layer (fc5) to avoid overfitting. The input

images are of size 256×256 pixels and fed to the network after sub-sampling by a

factor of 2. So, the input size is 128×128 pixels.

5.3.3 Training Process and Initial Results

The network parameters are trained from scratch with the knee joint images as

training samples and the KL grades (0, 1, 2, 3 or 4) as labels. To start, the knee

joint images extracted manually from the radiographs of the OAI dataset are used.

The dataset is split into training (70%) and test (30%) sets. The validation (10%)

data is taken from the training set. The network is trained to minimise categorical

cross entropy for multi-class classification. Stochastic gradient descent (SGD) is used

with default parameters: decay = 1e−6, momentum = 0.9, and nesterov = True and

the initial learning rate is set to 0.0001. The networks are trained with fixed learning

rate in the initial experiments. The Adam optimiser with default parameters: initial

learning rate (α) = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e−8 is tested, instead of SGD

for the later experiments. The benefits of the Adam optimiser are that it uses

adaptive learning rates and provides faster convergence.

This network achieves a multi-class classification accuracy of 44.7% on the test

data. The mean-squared error is 1.75. Table 5.6 shows the classification results:
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Table 5.6: Classification results of the initial CNN configuration.

grade Precision Recall F1 Score

0 0.45 0.92 0.60
1 0.24 0.07 0.11
2 0.49 0.18 0.26
3 0.50 0.39 0.44
4 1.00 0.01 0.02

Mean 0.45 0.45 0.37

precision, recall, and F1 score of the initial configuration. The results show that

the classification performance is low and the mean-squared error is high. These are

initial results and the hyper-parameters of this network are tuned to improve the

classification performance. Further, the number of convolutional layers,

convolutional-pooling stages, the number of convolutional kernels, kernel sizes and

other parameters are experimented.

The terms ‘parameters’ and ‘hyper-parameters’ in machine learning are often

used interchangeably, but there is a difference between them. Parameters are

learned by a classifier or a machine learning model from the training data, for

instance weights or coefficients of the independent variables. Hyper-parameters are

the settings used to optimise the performance of a classifier or a model and they

are not fit based on the training data. The hyper-parameters for a CNN include

the number and size of the hidden layers, learning rate and its decay, drop out

regularisation, gradient clipping threshold and other settings.

5.3.4 Tuning Hyper-parameters

After the initial CNN configuration giving low classification accuracy (44.7%), as a

first step the depth of the network is increased. A convolutional layer and a

pooling layer are included. This increases the number of layers with learned

weights to 5 layers: 4 convolutional layers and 1 fully connected layer. SGD with

default parameters: decay = 1e−6, momentum = 0.9, and nesterov = True, is used

for training this network. Learning rates from 0.0001 to 0.01 with an incremental
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Table 5.7: CNN architecture (CNN-1) after tuning hyper-parameters.

Layer Kernels Kernel Size Strides Output shape

conv1 32 11×11 2 32×128×128
maxPool1 – 3×3 2 32×63×63
conv2 96 5×5 1 64×63×63
maxPool2 – 3×3 2 64×31×31
conv3 128 3×3 1 128×31×31
maxPool3 – 3×3 2 128×15×15
conv4 256 3×3 1 256×15×15
maxPool4 – 3×3 2 256×7×7
fc5 – – – 1024
fc6 – – – 5

increase by a factor 10 are tested, and the learning rate 0.001 is found to be the

best. After experimenting with the convolutional kernel size, the number of kernels

in the convolutional layer, the number of outputs of the fully connected layer and

other parameters, the final architecture in this configuration is obtained. Table 5.7

shows the CNN architecture in detail.

After 20 epochs of training, this network gave a multi-class classification accuracy

of 55.2% with a mean-squared error 0.803 on the validation data. After 35 epochs

the network achieves the best results for this configuration with a classification

accuracy of 60.4% and mean-squared error 0.838. Table 5.8 shows the classification

results: precision, recall, and F1 score of this network. There is an improvement in

the overall classification results in comparison to the previous results (Table 5.6).

Figure 5.2 shows the learning curves with increase in the training and validation

accuracies, and decrease in the training and validation losses whilst training this

network. It can be observed from the learning curves (Figure 5.2), after 32 epochs

there is an increase in validation loss with decrease in training loss and also there

is no further increase in validation accuracy whilst training accuracy increases: the

network is starting to overfit. A drop out regularisation by a ratio of 0.5 is included

after the fully connected layer (fc5) to mitigate overfitting. Also, data augmentation

is used to increase the training samples by including the right-left flip of the knee
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Table 5.8: Classification results after tuning hyper-parameters.

grade Precision Recall F1 Score

0 0.57 0.90 0.70
1 0.31 0.11 0.16
2 0.64 0.45 0.53
3 0.74 0.77 0.76
4 0.86 0.72 0.78

Mean 0.58 0.60 0.57

Figure 5.2: Learning curves: training and validation losses, and accuracies of the
fully trained CNN

joints and this doubles the number of training samples. Drop out regularisation after

convolutional layers and fully connected layers, and l2-norm weight regularisations

are used to further mitigate overfitting in the next set of experiments.

Next, the depth of the network is further increased by increasing the number of

layers with learned weights, continuing the experimentation with the other

associated hyper-parameters. Up to 5 convolutional-pooling stages followed by two

fully connected layers are tested. The classification accuracy with 4

convolutional-pooling stages is 60.8% and with 5 convolutional-pooling stages is

61%.
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Table 5.9: CNN architecture (CNN-2) after tuning hyper-parameters.

Layer Kernels Kernel Size Strides Output shape

conv1 32 11×11 2 32×128×128
maxPool1 – 3×3 2 32×63×63
conv2 64 5×5 1 64×63×63
maxPool2 – 3×3 2 64×31×31
conv3-1 64 3×3 1 64×31×31
conv3-2 64 3×3 1 64×31×31
maxPool3 – 3×3 2 64×15×15
conv4-1 96 3×3 1 96×15×15
conv4-2 96 3×3 1 96×15×15
maxPool4 – 3×3 2 96×7×7
fc5 – – – 1024
fc6 – – – 5

Previous networks use a single convolutional layer followed by a pooling layer.

Next, cascaded convolutional layers are used in a convolution-pooling stage like

VGG-16 model. Each convolutional layer is followed by a ReLU activation. Figure

5.9 shows the CNN architecture that gives the best results in this approach. This

network gives a classification accuracy of 60.1% with a mean-squared error 0.838.

Inspired by the success of VGG networks [63], a network with cascaded

convolutional layers of uniform (3×3) kernel size and (2×2) max pooling with

stride 2 is trained, and the hyper-parameters are tuned. This network gives a

classification accuracy of 57.5% with a mean-squared error 0.961. There is no

further improvement in the classification results in comparison to the previous

results.

5.3.5 Training Off-the-shelf CNNs from Scratch

Earlier, the widely used off-the-shelf CNNs such as BVLC reference CaffeNet [98,

99] (which is very similar to the AlexNet model [22]), VGG-M-128 network [97],

and VGG-16 network [63] were fine-tuned for knee images classification. The pre-

trained VGG-16 network has ∼138 million free parameters, and the other networks,

Alexnet with ∼62 million and the VGG-M-128 with ∼26 million parameters, are
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Table 5.10: AlexNet architecture.

Layer Kernels Kernel Size Strides Output shape

conv1 96 11×11 4 96×64×64
maxPool1 – 3×3 2 96×31×31
conv2 256 5×5 1 256×31×31
maxPool2 – 3×3 2 256×15×15
conv3 384 3×3 1 384×15×15
conv4 384 3×3 1 384×15×15
conv5 256 3×3 1 256×15×15
maxPool5 – 3×3 2 256×7×7
fc6 – – – 4096
fc7 – – – 4096
fc8 – – – 5

relatively simple. Training these networks, in particular VGG-16, from scratch is

computationally very expensive due to the depth and the number of free parameters.

Previously trained CNNS have relatively fewer parameters (∼4 to 6 million) to suit

the relatively small dataset with a few thousand of training examples.

Next, CNNs are fully trained using the AlexNet and the VGG-M-128

architectures. This is to compare the classification performance of these networks

to the previously trained networks from scratch. Table 5.10 shows the AlexNet

architecture in detail. The convolutional layers conv1 and conv2 in this network

are followed by Relu and batch normalisation layers. The two fully connected

layers (fc6) and (fc7) are followed by a drop out regularisation by a ratio 0.5. This

network was pre-trained for 1,000 classes in the ImageNet [33] dataset. The output

of the last fully connected layer (fc8) is replaced with a 5 output dense layer for

multi-class knee OA image classification. This network is trained using SGD with

default parameters. Learning rates from 0.00001 to 0.01 with an incremental

increase by a factor 10 are tested. The learning rate set at 0.001 gives the best

results.

The fully trained AlexNet gives a classification accuracy of 57.2% with a

mean-squared error 0.741. Table 5.11 shows the classification results; precision,

recall, and F1 score of the fully trained AlexNet model. These results show that
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Table 5.11: Classification results of the fully trained AlexNet.

grade Precision Recall F1 Score

0 0.65 0.61 0.63
1 0.29 0.36 0.32
2 0.59 0.55 0.57
3 0.75 0.73 0.74
4 0.77 0.79 0.78

Mean 0.59 0.57 0.58

the classification accuracy achieved by the fully trained AlexNet is low (57.2%) in

comparison to the accuracy (60.8%) achieved by previous networks. Moreover, this

network is overfitting. This is evident from the learning curves (Figure 5.3)

obtained whilst training this network. After 30 epochs, the learning curves show

an increase in validation loss whilst the training loss is decreasing and there is no

improvement in the validation accuracy whilst the training accuracy keeps

increasing. The reason for overfitting is the number of training samples in the

dataset (∼10,000) is very low in comparison to the number of free parameters

(∼62 million) in AlexNet. This model was originally developed and trained on

datasets like ImageNet [33] that consists of more than ∼1.2 million images. There

are two fully connected layers with 4,096 outputs in the AlexNet and these layers

contribute to more than 95% of the total free parameters in this network. Next, a

relatively simple architecture (VGG-M-128) is investigated for the knee OA images

classification.

The VGG-M-128 network is a simplified model of the AlexNet [63]. The last fully

connected layer (fc7) of AlexNet has 4,096 outputs. The number of fc7 outputs is

reduced to 128 in VGG-M-128. This reduces the number of free parameters and

this network contains (∼26 million) parameters in total. The AlexNet configuration

is retained in the VGG-M-128 network with a few changes in the architecture. The

kernel size of the first convolutional layer is reduced to (7×7) and the stride is

reduced to 2. The number of filters is fixed to 512 in the conv3, conv4, and conv5

layers. Table 5.12 shows the architecture details. This network parameters are
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Figure 5.3: Learning curves: training and validation losses, and accuracies of the
fully trained AlexNet.

trained from scratch using SGD with default parameters: decay = 1e−6, momentum

= 0.9, and nesterov = True. The learning rate is fixed to 0.001 after testing different

rates like before.

This network gives a classification accuracy of 56.3% and the mean-squared error

is 0.685. Table 5.13 shows the classification results of this network. The results show

a slightly lower classification accuracy (56.3%) in comparison to the previous results.

There is no significant difference in the precision, recall, and F1 score of this network

in comparison to the AlexNet classification results (Table 5.11). This network is also

overfitting like the AlexNet. This is evident from the learning curves (Figure 5.4) of

this network. The learning curves show increase in the validation loss after 30 epochs

and the validation accuracy remains almost the same. The drop out regularisations

after the fully connected layers fc6 and fc7 are not able to fully mitigate overfitting.

The reason for overfitting remains the same as for AlexNet. The number of training

samples is very low even for the number of free parameters in this network (∼26

million).
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Table 5.12: VGG-M-128 architecture.

Layer Kernels Kernel Size Strides Output shape

conv1 96 7×7 2 96×128×128
maxPool1 – 3×3 2 96×63×63
conv2 256 5×5 1 256×32×32
maxPool2 – 3×3 2 256×15×15
conv3 512 3×3 1 512×15×15
conv4 512 3×3 1 512×15×15
conv5 512 3×3 2 512×8×8
maxPool5 – 3×3 2 512×3×3
fc6 – – – 4096
fc7 – – – 128
fc8 – – – 5

Table 5.13: Classification results of the fully trained VGG-M-128.

grade Precision Recall F1 Score

0 0.66 0.65 0.66
1 0.27 0.42 0.33
2 0.62 0.46 0.53
3 0.77 0.69 0.72
4 0.87 0.73 0.79

Mean 0.60 0.56 0.58

5.3.6 Best Performing CNN for Classification

After experimenting with different configurations, the network in Table 5.14 is found

to be the best for classifying knee images. This network is similar to the previous

configuration (Table 5.9), but with slight variations. The network contains five

layers of learned weights: four convolutional layers and a fully connected layer. The

total number of free parameters in the network is ∼5.4 million. Each convolutional

layer in the network is followed by batch normalisation and a ReLU activation layer.

After each convolutional stage there is a max pooling layer. The final pooling layer

(maxPool4) is followed by a fully connected layer (fc5) and a softmax dense (fc6)

layer. To avoid overfitting, a drop out layer with a drop out ratio of 0.25 is included

after the last convolutional (conv4) layer and a drop out layer with a drop out ratio
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Figure 5.4: Learning curves: training and validation losses, and accuracies of the
fully trained VGG-M-128 network.

of 0.5 after the fully connected layer (fc5). Also, a L2-norm weight regularisation

penalty of 0.01 is applied in the last two convolutional layers (conv3 and conv4)

and the fully connected layer (fc5). Applying a regularisation penalty to other

layers increases the training time whilst not introducing significant variation in the

learning curves. The network is trained to minimise categorical cross-entropy loss

using the Adam optimiser with default parameters: initial learning rate (α) = 0.001,

β1 = 0.9, β2 = 0.999, ε = 1e−8. The inputs to the network are knee images of size

200×300. This size is selected to approximately preserve the aspect ratio based on

the mean aspect ratio (1.6) of all the extracted knee joints.

First, this network is trained using the OAI dataset like the previous network

trainings. This network achieves a classification accuracy of 61% with a

mean-squared error 0.861. Next, training samples are included from the MOST

dataset. This network achieves a classification accuracy of 61.8% with a

mean-squared error 0.735 for the combined OAI-MOST dataset. There is a slight

increase in the classification accuracy (0.8%) and decrease in the mean-squared

error (0.126). Table 5.15 shows the classification results: precision, recall, and F1
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Table 5.14: Best performing CNN for classifying the knee images.

Layer Kernels Kernel Size Strides Output shape

conv1 32 11×11 2 32×100×150
maxPool1 – 3×3 2 32×49×74
conv2 64 5×5 1 64×49×74
maxPool2 – 3×3 2 64×24×36
conv3 96 3×3 1 96×24×36
maxPool3 – 3×3 2 96×11×17
conv4 128 3×3 1 128×11×17
maxPool4 – 3×3 2 128×5×8
fc5 – – – 1024
fc6 – – – 5

Table 5.15: Classification results of the best performing fully trained CNN.

grade Precision Recall F1 Score

0 0.65 0.83 0.73
1 0.30 0.10 0.14
2 0.51 0.60 0.55
3 0.77 0.69 0.73
4 0.87 0.70 0.78

Mean 0.59 0.62 0.59

score of this network for the combined OAI-MOST dataset. Figure 5.5 shows the

learning curves whilst training this network. The learning curves show proper

convergence of the training and validation losses with consistent increase in the

training and validation accuracies till they reach constant values.

To sum up, a high classification accuracy (61%) is achieved with the CNN (Table

5.14) trained from scratch and outperform the VGG-M-128 and the AlexNet trained

from scratch. The fully trained AlexNet gives a classification accuracy of 57.2% and

VGG-M-128 gives an accuracy of 56.3%. The classification results of the methods

proposed in this section and the previous state-of-the-art are compared in the next

section.
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Figure 5.5: Learning curves: training and validation losses, and accuracies of the
best performing fully trained CNN.

Table 5.16: Classification results of the proposed methods and the existing methods.

Method Test Data Accuracy Mean-Squared Error

Wndchrm OAI & MOST 34.8% 2.112
Fine-Tuned BVLC CaffeNet OAI 57.6% 0.836
Fully trained CNN OAI 61% 0.861
Fully trained CNN OAI & MOST 61.8% 0.735

5.3.7 Classification Results

The classification results of the fully trained network is compared to

WNDCHARM, the multi purpose medical image classifier [9, 14, 34] that gave the

previous best results for automatically classifying knee OA X-ray images, and to

previous results (Table 5.2) on fine-tuning BVLC reference caffenet for this task

(Section 5.2). WNDCHARM is trained with the data taken from the OAI and

MOST datasets.

Table 5.16 shows the multi-class classification accuracy and mean-squared error

of the fine-tuned BVLC CaffeNet, the network trained from scratch and

WND-CHARM for the OAI and MOST datasets. The results show that the

network trained from scratch for classifying knee OA images clearly outperforms
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WNDCHARM. This shows learning feature representations using CNNs for

fine-grained knee OA images classification is highly effective and a better approach

in comparison to using a combination of hand-crafted features in WNDCHARM.

The other reason for low classification accuracy of WNDCHARM is that it uses

only a balanced dataset for training. Both the OAI and MOST datasets are very

unbalanced and in particular the number of knee images available in KL grade 4 is

very small, ∼5% in total.

Moreover, these results show an improvement over previous methods that used

fine-tuned off-the-shelf networks such as VGG-M-128 and the BVLC Reference

CaffeNet for classifying knee OA X-ray images through transfer learning. These

improvements are due to the lightweight architecture of the network trained from

scratch with less (∼5.4 million) free parameters in comparison to 62 million free

parameters of BVLC CaffeNet for the small amount of training data available.

The off-the-shelf networks are trained using a large dataset like ImageNet

containing millions of images, whereas the dataset used in this experiment contains

much fewer (∼10,000) training samples. Furthermore, the results show an increase

in classification accuracy from 61% to 61.8% when the MOST dataset is included

in the training set. This result is promising and it shows that with more training

data the CNN performance can further improve. Next, the use of regression by

fully trained CNNs is investigated to improve the quantification performance.

5.3.8 Comparison of Manual and Automatic Localisations

The classification results obtained with manually extracted and automatically

localised knee joints are compared. The same configuration 5.14 is used to train a

CNN with automatically localised knee joints. The previous training-test data

split is retained to make valid comparisons. Table 5.17 shows the multi-class

classification accuracy and the mean-squared error for the classification using

manually extracted and automatically localised knee joints. Table 5.18 shows the

classification results: precision, recall, and F1 score for both the classifications.
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Table 5.17: Comparison of classification results obtained using manually annotated
knee joints to automatically localised knee joints.

Method Classification Accuracy Mean-Squared Error

Manual localisation 61.8% 0.735
Automatic localisation 61.2% 0.741

Table 5.18: Comparison of manual and automatic localisation performance.

Grade
Manual Localisation Automatic Localisation

Precision Recall F1 Precision Recall F1

0 0.65 0.83 0.73 0.66 0.78 0.71
1 0.30 0.10 0.14 0.30 0.21 0.25
2 0.51 0.60 0.55 0.52 0.44 0.48
3 0.77 0.69 0.73 0.71 0.77 0.74
4 0.87 0.70 0.78 0.76 0.86 0.81

Mean 0.59 0.62 0.59 0.58 0.60 0.59

From the results (Table 5.17 and Table 5.18), it is evident that classification of

automatically localised knee joint images is on par with the classification of manually

extracted knee joints.

5.3.9 Training CNNs for Regression

CNNs are trained from scratch to classify knee images in the previous approach.

The outcomes are ordinal KL grades (0, 1, 2, 3 or 4) that quantify knee OA severity.

CNNs are trained for regression in the next approach. This is to assess knee OA

severity in a continuous scale (0–4). The author has argued earlier (Section 5.2.4)

that it is more appropriate to assess knee OA in a continuous scale as knee OA is

progressive in nature, not discrete. The existing CNNs are fine-tuned to quantify

knee OA severity using regression.

Initial Configuration

A CNN is trained for regression using almost the same architecture (Table 5.14)

that gave the highest multi-class classification accuracy previously. The last fully
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connected layer (fc6) with softmax activation and an output shape 5 for multi-

class classification is replaced with a linear activation with an output shape of 1 for

regression. The CNN is trained to minimise mean-squared error using the Adam

optimiser with default parameters: initial learning rate (α) = 0.001, β1 = 0.9,

β2 = 0.999, ε = 1e−8. Like before, the inputs to the network are images of size

200×300. The data for training is taken from both the OAI and the MOST datasets.

Both these datasets contain discrete KL grade (0, 1, 2, 3 or 4) annotations for the

knee joints. These labels are used in the previous approach to train classifiers.

However, there is no ground truth of KL grades on a continuous scale available for

either of these datasets to train a network directly for regression output. Hence, the

discrete KL grades are used as labels to train CNNs for regression.

Initial Results

This CNN gives a mean-squared error of 0.654 on the test data after training. In

comparison to the mean-squared error achieved by the classifier (0.898) with almost

the same architecture, there is definitely an improvement in the quantification using

regression. The performance metrics; accuracy, precision, recall, and F1 score are

computed for the regression results by rounding the predicted continuous grade

to the next integer value. Rounding, in this case, is necessary to allow the use

of standard classification metrics and compare the performances of classification

and regression. Table 5.19 shows the precision, recall, and F1 score for regression

after rounding the continuous grades. In comparing these results to the previous

classification results (Table 5.15), there is a decrease in precision, recall, and F1

score. The classification accuracy achieved by regression is 36.9% with a mean-

squared error 0.75. From these results it is evident that the regression performance

is low in this initial configuration. Next, the hyper parameters of this network are

tuned to improve the regression performance.
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Table 5.19: Results of the initial network trained for regression after rounding the
predicted continuous grades.

Grade Precision Recall F1 Score

0 0.78 0.18 0.29
1 0.24 0.83 0.37
2 0.49 0.32 0.39
3 0.63 0.42 0.50
4 0.57 0.20 0.30

Mean 0.57 0.37 0.36

Tuning the Hyper-parameters

The experiment is continued by varying the number of layers with learned weights

in the architecture, number of convolutional-pooling stages, number of kernels and

kernel sizes in the convolutional layers and regularisations to avoid overfitting. The

architecture in Table 5.20 is found to be the best for quantifying knee OA severity

using regression. This network contains seven layers of learned weights: six

convolutional layers and a fully connected layer. This network has ∼5.6 million

free parameters in total. Each convolutional layer is followed by batch

normalisation and a ReLU layer. The last pooling layer (maxPool4) is followed by

two dense layers: fc5 with ReLU and fc6 with linear activations. A drop out layer

with a drop out ratio 0.5 is added after fc6. The network is trained to minimise

the mean-squared error using the Adam optimiser with default parameters: initial

learning rate (α) = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e−8. The network is trained

with knee images taken from the OAI and the MOST datasets. Figure 5.6 shows

the learning curves: training and validation losses whilst training this network.

The learning curves show convergence in the losses.

5.3.10 Comparison of Classification and Regression Results

The best performing CNN for regression gives a mean-squared error of 0.574.

After rounding the continuous grade predictions, this network achieves a

multi-class classification accuracy of 54.7% and the mean-squared error is 0.661.
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Table 5.20: Best performing CNN for regression of the knee images.

Layer Kernels Kernel Size Strides Output shape

conv1 32 11×11 2 32×100×158
maxPool1 – 3×3 2 32×49×74
conv2 64 5×5 1 64×49×74
maxPool2 – 3×3 2 64×24×36
conv3-1 64 3×3 1 64×24×36
conv3-2 64 3×3 1 64×24×36
maxPool3 – 3×3 2 64×11×17
conv4-1 128 3×3 1 96×11×17
conv4-2 128 3×3 1 96×11×17
maxPool4 – 3×3 2 96×5×8
fc5 – – – 1024
fc6 – – – 1

Table 5.21: Comparison of classification and regression results.

Method Accuracy MSE (before rounding) MSE (after rounding)

CNN-Classification 61.8% 0.735 –
CNN-Regression 54.7% 0.574 0.661

Table 5.21 shows the accuracy and mean-squared error for the fully trained CNN

for classification and regression. The results show that the multi-class classification

accuracy calculated after rounding the output is low for CNN-regression. The

main reason for this likely is training the regression network with ordinal labels

instead of continuous labels. There is also a decrease in accuracy due to the

rounding of regression output and the rounding is necessary to compute standard

classification metrics. On the other hand, the mean-squared error of the fully

trained CNN for regression is low in both the cases before rounding (0.574) and

after rounding (0.661) in comparison to the fully trained CNN for regression.

Table 5.22 shows the precision, recall, and F1 score of the rounded regression

output and the classification output. These results show that the network trained

with classification loss outperforms the regression loss. The reason for this is again

likely the lack of continuous KL grade ground truth to train a CNN directly for

regression output.
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Figure 5.6: Learning curves: training and validation losses for the best performing
CNN for regression.

To sum up, training a CNN from scratch for regression output gives low mean-

squared error. The lack of ground truth affects the performance of the regression. To

overcome this drawback, in the next approach multi-objective convolutional learning

is investigated to quantify knee OA severity.

5.4 Multi-objective Convolutional Learning

In general, assessing knee OA severity is based on the multi-class classification of

knee images and assigning KL grade to each distinct category [1, 2, 9, 14]. The

author argued previously that assigning a continuous grade (0–4) to knee images

through regression is a better approach for quantifying knee OA severity as the

disease is progressive in nature. However, there is no ground truth i.e. KL grades

on a continuous scale to train a network directly for regression output. Therefore,

the networks are trained using multi-objective convolutional learning [106–110] to

optimise a weighted-ratio of two loss functions: categorical cross-entropy and

mean-squared error. Mean squared error gives the network information about
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Table 5.22: Comparison of the regression and classification performances.

Grade
Regression Classification

Precision Recall F1 Precision Recall F1

0 0.70 0.71 0.70 0.65 0.83 0.73
1 0.29 0.42 0.34 0.30 0.10 0.14
2 0.52 0.39 0.45 0.51 0.60 0.55
3 0.67 0.51 0.58 0.77 0.69 0.73
4 0.58 0.55 0.57 0.87 0.70 0.78

Mean 0.57 0.55 0.55 0.59 0.62 0.59

ordering of grades, and cross entropy gives information about the quantisation of

grades. Intuitively, optimising a network with two loss functions provides a

stronger error signal and it is a step to improve the overall quantification,

considering both classification and regression results.

5.4.1 Initial Configuration

The same architecture of the best performing CNN is used for classification (Table

5.14) as an initial configuration to jointly train a CNN for classification and

regression outputs. Table 5.23 and Figure 5.7 shows the configuration details of

the initial configuration. The network has five layers with learned weights: four

convolutional layers and a fully connected layer. The total free parameters in the

network are ∼5.4 million. The last fully connected layer (fc5) is followed by two

dense layers with softmax and linear activations for simultaneous multi-class

classification and regression outputs. Drop out layers with a drop out ratio 0.25

are included after the conv4 layer and a drop out ratio 0.5 after the fc6 layer to

avoid overfitting. In addition to this, a L2-norm weight regularisation penalty of

0.01 is applied in conv3, conv4 and fc6 layers to avoid overfitting. Applying a

regularisation penalty to other layers did not introduce significant variations in the

learning curves. Unlike the previous approaches, this network is trained to

minimise a weighted ratio of two loss functions: categorical cross-entropy and

mean-squared error. After testing different values from 0.2 to 0.6 for the weight of
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Table 5.23: Initial configuration to jointly train a CNN for classification and
regression outputs.

Layer Kernels Kernel Size Strides Output shape

conv1 32 11×11 2 32×100×150
maxPool1 – 3×3 2 32×49×74
conv2 64 5×5 1 64×49×74
maxPool2 – 3×3 2 64×24×36
conv3 96 3×3 1 128×24×36
maxPool3 – 3×3 2 128×11×17
conv4 128 3×3 1 256×11×17
maxPool4 – 3×3 2 256×5×8
fc5 – – – 1024
fc6-Clsf – – – 5
fc6-Reg – – – 1

regression loss, a ratio of 0.5 is fixed, as this ratio gives optimal results.

Figure 5.7: Initial configuration to jointly train a CNN for classification and
regression outputs.

The input to the network are knee images of size 200×300. The knee images

taken from the combined OAI-MOST dataset is used for training this network. The

same train (70%) and test (30%) split are maintained from the previous experiments

to make valid comparisons of the quantification results from the different methods.

The right-left flip of the knee images is included to increase the training data and
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this doubles the training data. A validation split of 20% from the training data is

used. This network is trained using the Adam optimise with default parameters:

initial learning rate (α) = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e−8, as it gives faster

convergence in comparison to the standard SGD.

Initial Results

Figure 5.8 shows the learning curves obtained whilst jointly training the CNN for

classification and regression outputs. The learning curves show convergence in the

validation and training losses with improvement in validation and classification

accuracies. The jointly trained CNN with the initial configuration gives a

classification accuracy of 60.8% with mean-squared error 0.795 for the

classification outputs and 0.652 for the regression outputs. These results do not

show improvement from the previous results. Previously, the network with the

same configuration gave a classification accuracy of 61.8% and a mean-squared

error 0.735 (Table 5.15) when trained to minimise only the classification loss. The

same configuration after training to minimise only with the regression loss gave a

mean squared error of 0.654 (Table 5.19). This configuration is optimal to

minimise classification loss as it gave the highest classification accuracy (61.8%).

However, this configuration is not optimal for regression as it gives a high

mean-squared error (0.654). Next, the number of layers with learned weights and

other hyper-parameters in this configuration are varied, to find a good architecture

that will give improved results for both classification and regression outputs.

5.4.2 Tuning Hyper-parameters

The previous configuration does not improve the quantification performance and

in particular the mean-squared error for regression output is high. Cascaded

convolutional stages are included in the next configuration in an attempt to

improve the regression outputs. The CNNs with cascaded convolutional stages

gave best results for regression (Table 5.20) in the previous approach. Table 5.24
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(a) Classification

(b) Regression

Figure 5.8: Learning curves for (a) classification and (b) regression in jointly trained
CNN.

shows the network details. This network contains six layers of learned weights: five

convolutional layers and a fully connected layer. The total free parameters in this

network are ∼7.8 million. The other settings remain the same from the previous

network and the same training procedure is followed.

This network gives a multi-class classification accuracy of 62.9% and the

mean-squared error is 0.754 for the classification output and 0.583 for the
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Table 5.24: Jointly trained network for classification and regression outputs.

Layer Kernels Kernel Size Strides Output shape

conv1 32 11×11 2 32×100×150
maxPool1 – 3×3 3 32×33×50
conv2-1 64 3×3 1 64×33×50
conv2-2 64 3×3 1 64×33×50
maxPool2 – 3×3 2 64×16×24
conv3-1 96 3×3 1 96×16×24
conv3-2 96 3×3 1 96×16×24
maxPool3 – 3×3 2 96×7×11
fc4 – – – 1024
fc5-Clsf – – – 5
fc5-Reg – – – 1

regression output. These results show improvement in the quantification

performance in comparison to the previous results. Tuning the hyper parameters

improves both the classification and the regression outcomes. Next, the depth of

the architecture is increased and other related hyper parameters are tuned to

investigate further improvement in the classification and regression outputs.

5.4.3 Best Performing Jointly Trained CNN

The best configuration (Table 5.25) is obtained after experimenting with different

settings for jointly training a CNN for classification and regression outputs. This

network has eight layers with learned weights: seven convolutional layers and a fully

connected layer. This network has ∼2.9 million free parameters in total. This is

a lightweight architecture with minimal parameters in comparison to the previous

networks and the existing off-the-shelf CNNs. Each convolutional layer is followed

by batch normalisation and a ReLU activation layer. The fc5 layer is followed by

two dense layers with softmax and linear activations for multi-class classification

and regression outputs. To avoid overfitting, drop out with ratio 0.3 is included

after the last fully connected (fc5) layer. Also, a L2 weight regularisation penalty

of 0.01 is applied to all the convolutional and fully connected layers except the first

two convolutional layers. This network is trained to minimise a weighted ratio of
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Table 5.25: Jointly trained network for classification and regression outputs.

Layer Kernels Kernel Size Strides Output shape

conv1 32 11×11 2 32×100×150
maxPool1 – 3×3 2 32×49×74
conv2-1 64 3×3 1 64×49×74
conv2-2 64 3×3 1 64×49×74
maxPool2 – 3×3 2 64×24×36
conv3-1 96 3×3 1 96×24×36
conv3-2 96 3×3 1 96×24×36
maxPool3 – 3×3 2 96×11×17
conv4-1 128 3×3 1 128×11×17
conv4-2 128 3×3 1 128×11×17
maxPool4 – 3×3 2 128×5×8
fc5 – – – 512
fc6-Clsf – – – 5
fc6-Reg – – – 1

two loss functions: categorical cross-entropy and mean-squared error. This network

is trained using the Adam optimiser with default parameters: initial learning rate

(α) = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e−8.

5.4.4 Jointly Trained CNN Results

Figure 5.9 shows the learning curves obtained whilst jointly training the CNN for

classification and regression outputs. The learning curves show convergence to the

minimum of the validation and training losses with improvement in validation and

classification accuracies. The combined OAI-MOST dataset is used to compute

these results. The same train-test split is maintained from the previous

experiments. This jointly trained network gives a multi-class classification

accuracy of 64.6% with a mean-squared error 0.685 for the classification outputs

and 0.507 for the regression outputs. Table 5.26 shows the precision, recall, and F1

score of this network. There is an improvement in the results: the classification

accuracy increases to 64.6% from the initial configuration (60.8%), the

mean-squared error for regression decreases to 0.507 from the initial configuration

(0.652). Increasing the depth of the architecture by including more layers with
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(a) Classification

(b) Regression

Figure 5.9: Learning curves for (a) classification and (b) regression in jointly trained
CNN.

learned weights to the initial configuration and tuning the other hyper-parameters

improves both the classification and regression results. Intuitively, providing a

stronger error signal using both the classification and regression loss to the

network allows to fit more parameters.
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Table 5.26: Results of the best performing jointly trained CNN for classification and
regression outputs.

Grade Precision Recall F1 Score

0 0.68 0.85 0.75
1 0.34 0.07 0.12
2 0.53 0.63 0.57
3 0.74 0.77 0.75
4 0.86 0.81 0.84

Mean 0.62 0.65 0.60

Table 5.27: Comparison of results from jointly trained CNN and individually trained
CNNs for classification and regression results.

Method Clsf-Accuracy Clsf-MSE Reg-MSE

CNN-Classification 61.8% 0.735 —
CNN-Regression 54.7% — 0.574

Jointly trained CNN 64.6% 0.685 0.507

5.4.5 Results Comparison

The results of the jointly trained CNN are compared to the previous CNNs trained

separately for classification and regression outputs. Table 5.27 shows the multi-

class classification accuracy and mean-squared error of the jointly trained CNN

and the separately trained CNNs for classification and regression outputs. There

is an improvement in the classification accuracy and also the mean-squared error

decreases for the joint training. These results show that the network jointly trained

for classification and regression learns a better representation in comparison to the

previous network trained separately for classification and regression outputs.

In summary, CNNs are trained from scratch to quantify knee OA severity using

three approaches: classification, regression and jointly training for simultaneous

classification and regression. From the results it is evident that the joint training

outperforms both the individual training for classification and regression outputs.

This supports the hypothesis that training a CNN for optimising a weighted ratio

of two loss functions can improve the overall quantification of knee OA severity.
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Figure 5.10: Confusion matrix for the multi-class classification using the jointly
trained CNN.

5.4.6 Error analysis

A confusion matrix and the area under curve (AUC) after plotting the receiver

operating characteristics are computed to perform an error analysis on the

classification of the knee images by the jointly trained CNN. From the

classification metrics (Table 5.26), the confusion matrix (Figure 5.10), and the

receiver operating characteristic (ROC) curves (Figure 5.11), it is evident that

classification of successive grades is challenging, and in particular classification

metrics for grade 1 have low values in comparison to the other grades.

Figure 5.12 shows some examples of misclassification: grade 1 knee joints

predicted as grade 0, 2, and 3. Figure 5.13 shows the misclassification of knee

joints categorised as grade 0, 2 and 3 predicted as grade 1. These images show

minimal variations in terms of joint space width and osteophytes formation,

making them challenging to distinguish. Even the more serious misclassification in

Figure 5.14, for instance grade 0 predicted as grade 3 and vice versa, do not show

very distinguishable variations. Furthermore, when the knee X-ray images

belonging to grade 0 and grade 1 severity are examined, it can be seen that there
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Figure 5.11: ROC for the multi-class classification using the jointly trained CNN.

are very subtle variations in terms of the joint space width and osteophytes

formation. Even better representations are needed to capture these fine-grained

variations and to distinguish coarse grades: grade 0 and grade 1 images.

Figure 5.12: Mis-classifications: grade 1 joints predicted as grade 0, 2, and 3.

Figure 5.13: Misclassification: other grade knee joints predicted as grade 1.
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Figure 5.14: An instance of more severe misclassification: grade 0 and grade 3.

5.4.7 Discussion

Jointly training a CNN from scratch using the multi-objective convolutional

approach improves the multi-class classification accuracy and minimises the

mean-squared error. However, successive grade classification still remains a

challenge. Even though the KL grades are widely used for assessing knee OA

severity in clinical settings, there has been continued investigation and criticism

over the use of KL grades as the individual categories are not equidistant from

each other [5, 12, 13, 37, 38, 42]. This could be a reason for the low multi-class

classification accuracy in the automatic quantification. Using OARSI readings

instead of KL grades could possibly provide better results for automatic

quantification as the knee OA features such as joint space narrowing, osteophytes

formation, and sclerosis are separately graded. Moreover, when the knee X-ray

images belonging to grade 0 and grade 1 severity are visually examined, it can be

seen that there are very subtle variations in terms of the joint space width and

osteophytes formation. To capture these variations and distinguish these coarse

grades, for instance grade 0 versus grade 1, even better representations are

required. Even medical experts do not always agree upon a particular KL grade

e.g. either 0 or 1 attributed to the initial stage of knee OA [5,13,37,38].
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5.5 Ordinal Regression

Ordinal regression1 is an intermediate task between multi-class classification and

regression, sharing the properties of both. The outcomes or predictions in multi-

class classification are discrete values and there is a meaningful order in the classes

in regression. Ordinal regression is useful to classify patterns using a categorical

scale which shows a natural order between the labels [35, 36]. The misclassification

from a normal classifier are treated the same, that is no misclassification are worse

than others [111]. Whereas, some misclassification in ordinal regression, for instance

the misclassification on the extreme grades: grade 0 to grade 4 is treated worse than

others. This implies that the distances between the classes need to be taken into

account when training a classifier. When quantifying the stages of a physical disease,

it is preferable to predict the stage as ‘mild’ or ‘doubtful’ than ‘absent’ when the true

label is ‘severe’. Ordinal regression models formalise this notion of order by ensuring

that predictions farther from the true label incur a greater penalty than those closer

to the true label [36]. The author believes that the KL grades prediction based on

ordinal regression can further improve classification performance by reducing the

margin of error (mean-squared error), considering the progressive nature of knee

OA and the ground truth or labels for training a CNN i.e. the KL grades in an

ordinal scale (0–4).

5.5.1 CNN Configuration for Ordinal Regression

For ordinal regression output, the last stage of the CNN (Table 5.25) that gave

best results on the joint training for multi-class classification and regression is

modified. The previous approach on the joint training used two dense layers with

softmax and linear activations in parallel (Figure 5.7) for simultaneous multi-class

classification and regression outputs. To train the CNN for ordinal regression,

fixed weights ([w0, w1, w2, w3, w4] = [0, 1, 2, 3, 4]) are applied to the outputs

1https://statistics.laerd.com/spss-tutorials/ordinal-regression-using\

-spss-statistics.php
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Figure 5.15: The CNN configuration for ordinal regression.

(probabilities) from the dense layer (Clsf) with softmax activations and

back-propagate through a dense layer (Reg) with linear activations, optimising the

mean-squared error loss function. The dense layer with softmax activations is

treated as a hidden layer in this configuration. This is similar to the approach

proposed by Beckham et al. [111] for ordinal classification. Figure 5.15 shows the

CNN configuration for ordinal regression.

5.5.2 CNN Training

The CNN for ordinal regression (Table 5.28) is based on a lightweight architecture

with ∼2.9 million free parameters in total and it contains eight layers with learned

weights: seven convolutional layers and a fully connected layer. Each convolutional

layer is followed by batch normalisation and a ReLU activation layer. To avoid

overfitting, drop out with ratio 0.3 is applied after the last fully connected (fc5)

layer. In addition to this, a L2 weight regularisation penalty of 0.01 is applied to

all the convolutional and fully connected layers except the first two convolutional

layers. The fc5 layer is followed by two dense layers with softmax (fc6-Clsf) and

linear activations (fc7-Reg). The output of the softmax (fc6-Clsf) layer is multiplied

(dot product) with fixed weights ([0,1,2,3,4]) and given as input to the last dense
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Table 5.28: CNN architecture for ordinal regression

Layer Kernels Kernel Size Strides Output shape

input – – – 1×200×300
conv1 32 11×11 2 32×100×150
maxPool1 – 3×3 2 32×49×74
conv2-1 64 3×3 1 64×49×74
conv2-2 64 3×3 1 64×49×74
maxPool2 – 3×3 2 64×24×36
conv3-1 96 3×3 1 96×24×36
conv3-2 96 3×3 1 96×24×36
maxPool3 – 3×3 2 96×11×17
conv4-1 128 3×3 1 128×11×17
conv4-2 128 3×3 1 128×11×17
maxPool4 – 3×3 2 128×5×8
fc5 – – – 512
fc6-Clsf – – – 5
input-weights – – – 5
merge-product – – – 1
fc7-Reg – – – 1

layer (fc7-Reg). This network is trained to minimise two loss functions: categorical

cross-entropy and mean-squared error with equal weights. The dense layers (fc7-

Reg) and (fc6-Clsf) provides the ordinal regression and multi-class classification

outputs. The network is trained for 80 epochs with a batch size 32, using the Adam

optimiser with default parameters: initial learning rate (α) = 0.001, β1 = 0.9,

β2 = 0.999, ε = 1e−8. The same training, validation, and test data are used from

the joint training to make valid comparison of the results.

The CNN configuration in Table 5.28 gives the best results for ordinal regression

and this configuration is similar to the network for joint training (Table 5.25 except

the arrangement of the last two dense layers. Tuning the hyper-parameters of this

CNN by increasing the number of layers with learned weights does not improve the

quantification performance. Therefore, this CNN configuration is selected as the

final network for ordinal regression.
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(a) Classification

(b) Ordinal regression

Figure 5.16: Learning curves for (a) classification and (b) ordinal regression .

5.5.3 Results

The learning curves (Figure 5.16) obtained whilst training the CNN for ordinal

regression shows convergence of the validation and training losses with
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Figure 5.17: The CNN configuration for ordinal regression.

improvement in validation and classification accuracies. Figure 5.17 shows the

classification accuracy of the trained CNN model after every epoch on the test

data for the ordinal regression and classification output. After 40 epochs of

training, there is no significant improvement in the classification accuracies. There

is a slight decrease in the accuracy of the ordinal regression in comparison to the

classification. This is likely due to the rounding of the output.

After training, the CNN gives a classification accuracy of 64.3% on the test data.

In the previous method on jointly training a CNN for classification and regression

(Section 5.4.4), a multi-class classification accuracy of 64.6% (Table 5.26) is achieved.

As the same CNN configuration is used except the last stage (Figure 5.15) and other

settings are retained, the classification performance remains almost the same for the

CNN trained for ordinal regression in comparison to the jointly trained CNN.

The classification metrics for the ordinal regression output are computed by

rounding the predictions to integer values (0, 1, 2, 3, or 4). After rounding, the

classification accuracy for the ordinal regression output is 61.8% with

mean-squared error 0.504 on the test data. The classification metrics for the
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Table 5.29: Comparison of classification metrics from regression and ordinal
regression.

Grades
Regression Ordinal Regression

Precision Recall F1 Precision Recall F1

0 0.78 0.58 0.66 0.71 0.79 0.75
1 0.29 0.55 0.38 0.31 0.33 0.32
2 0.51 0.50 0.50 0.59 0.44 0.50
3 0.65 0.53 0.58 0.74 0.73 0.73
4 0.63 0.33 0.43 0.81 0.76 0.78

Mean 0.60 0.53 0.55 0.62 0.62 0.61

regression output from the jointly trained CNN gives a classification accuracy

53.3% with mean squared error 0.595 on the test data. There is an improvement in

the classification accuracy and mean-squared error for ordinal regression in

comparison to the previous regression results. Table 5.29 shows the precision,

recall, and F1 score for regression and ordinal regression. From the results it is

evident that ordinal regression is out performing regression for quantifying knee

OA images in a continuous scale.

5.6 Results Comparison

Four approaches are investigated to automatically quantify knee OA severity.

Table 5.30 shows the multi-class classification accuracy and mean-squared error for

the four approaches: 1) fine-tuning off-the-shelf CNN (BVLC CaffeNet), 2)

training CNNs from scratch individually for classification and regression, 3) jointly

training a CNN based on multi-objective convolutional learning for classification

and regression, and 4) training a CNN for ordinal regression. These results are

compared to WNDCHRM, that gave the previous best results for automatically

classifying knee OA radiographs. The results show that jointly trained CNN gives

best results for multi-class classification. The ordinal regression outperforms all

the other methods for quantifying knee OA images in a continuous scale with low

mean-squared error.
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Table 5.30: Comparison of classification, regression and ordinal regression results.

Method Classification Accuracy Mean-Squared Error

WNDCHRM 34.8% 2.112
Fine-Tuned BVLC CaffeNet 57.6% 0.836
CNN-Classification 61.8% 0.735
CNN-Regression 54.7% 0.574
Jointly trained CNN 64.6% 0.507
Ordinal Regression 64.3% 0.480

5.7 Chapter Summary

Four approaches are presented in this chapter to automatically assess knee OA

severity using CNNs. First, the existing pre-trained CNNs are investigated for

classifying knee images based on KL grades. Two methods are used in this approach:

using the pre-trained CNNs for fixed feature extraction, and fine-tuning the pre-

trained CNNs using the transfer learning approach. The predictions or outputs from

these methods are ordinal KL grades (0,1,2,3 or 4). Furthermore, the author argued

that quantifying knee OA severity in a continuous scale (0–4) is more appropriate

as the OA degradation is progressive in nature, not discrete. Regression is used

to quantify the knee OA severity on a continuous scale. The classification and

regression results from the proposed methods in this chapter outperform the previous

best results achieved by WNDCHRM, which uses many hand-crafted features with

a variation of k-nearest neighbour classifier for classifying knee OA radiographs.

Second, CNNs are trained from scratch for classification and regression. The

objective was to further improve the quantification results. As the training data

is relatively scarce, a lightweight architectures with fewer (∼4 to ∼5 million) free

parameters are used in the CNNs. The fully trained CNN for classification achieved

high classification accuracy in comparison to the pre-trained CNNs. However, the

fully trained CNN for regression did not achieve high-performing results as no ground

truth of KL grades was available on a continuous scale. Therefore, the discrete KL

grades are used to train the CNNs for regression.
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Third, CNNs are fully trained using multi-objective learning for simultaneous

classification and regression. The intuition behind this is optimising a CNN with

two loss functions provide a stronger error signal and it is a step to improve the

overall quantification, considering both classification and regression results. The

jointly trained CNN achieved better quantification results with a high classification

accuracy in comparison to the previous methods.

As the last approach, CNNs are fully trained for ordinal regression using a

softmax dense layer as the hidden layer. This approach achieved low mean-squared

error and outperformed other methods to quantify knee OA severity in a

continuous scale. The added benefit of this method is to provide simultaneous

multi-class classification output.

In summary, a progressive improvement is achieved in the quantification

performance with an increase in classification accuracy and other performance

metrics in the four approaches to automatically quantify knee OA severity. To

conclude this chapter, an error analysis is presented that discusses the possible

reasons for the misclassification from the jointly trained CNN. The variations in

the X-ray imaging protocols and discrepancies in the KL grades scoring needs to

be taken into account when analysing the misclassification.

There are criticisms in the literature over the use of KL grades for knee OA

assessment [5, 12, 13, 37, 38] and also there are claims stating that OARSI readings

are more accurate than KL grades [39, 42]. Therefore, OARSI readings are

investigated to quantify the individual knee OA features such as joint space

narrowing and osteophytes formation for knee OA assessment. CNNs are trained

for this and the results are analysed in the next chapter.
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Automatic Quantification of

Knee OA Diagnostic Features

6.1 Introduction

The previous chapter focused on training CNNs to quantify knee OA severity on

an ordinal scale using classification and on a continuous scale using regression over

the discrete KL grades. In this chapter, the focus is on the approaches to quantify

distinct knee OA features such as joint space narrowing (JSN) and osteophytes based

on the OARSI readings in an attempt to improve the overall quantification. First,

CNNs are trained to quantify JSN and osteophytes individually. Next, CNNs are

trained using multi-objective convolutional learning to jointly quantify the distinct

knee OA features and KL grades. To conclude this chapter, an automatic knee OA

diagnostic system is proposed by combining the automatic localisation pipeline that

was developed in Chapter 4 and the quantification pipeline that is developed in this

chapter.

There are claims in the literature that KL grades are not sufficiently accurate

and reliable for radiographic classification of knee OA [5, 12, 13, 37, 38]. Moreover,

some studies in the literature claim that the OARSI readings that grade the distinct

knee OA radiographic features such as JSN, osteophytes, sclerosis, and attrition are

more accurate and reliable for assessing knee OA severity [39, 42]. Therefore, the

next approach investigates the assessment of distinct knee OA radiographic features

using OARSI readings as the ground truth.
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First, CNNs are trained from scratch to classify knee OA radiographs using

the OARSI gradings for JSN and osteophytes as ground truth. OARSI grades the

individual knee OA features: JSN and osteophytes in an ordinal scale (0 – 3), where

0-normal, 1-mild, 2-moderate, 3-severe. CNNs are also jointly trained to quantify

knee OA severity based on JSN, osteophytes and KL grades using multi-objective

convolutional learning in an attempt to further improve the overall quantification.

Next, a knee OA diagnostic system is developed combining the two pipelines: the

automatic localisation using the FCN to localise the knee joints from radiographs

and the quantification using the jointly trained CNN for simultaneous classification

and regression of the localised knee joints. The performance of the proposed system

is compared to the gold standard: the KL and OARSI readings of knee radiographs

from the OAI. To test the reliability of the KL and OARSI readings, the evaluators

in OARSI have used simple kappa1 and weighted kappa coefficients to evaluate the

agreement between the readings when the variables were assigned more than two

ordinal categories.

The remainder of this chapter is organised as follows: Section 6.2 introduces

the dataset and the ground truth used for the experiments in this chapter. Section

6.3 and Section 6.4 presents the deep learning approaches to quantify distinct knee

OA features: JSN and osteophytes. Section 6.5 presents the multi-objective

convolutional learning approach to simultaneously quantify the associated knee

OA features with KL grades. Section 6.6 compares and analyses the results of the

CNNs trained to quantify distinct knee OA features individually and jointly.

Section 6.7 compares the performance of the proposed system to the existing gold

standard for both multi-class and binary classifications. Section 6.8 proposes a

practical knee OA diagnostic system. Section 6.7 summarises this chapter and

presents the conclusions.

1Cohen’s kappa coefficient measures the inter-rater agreement for qualitative or categorical
classifications.
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6.2 Dataset and Ground Truth

The OAI and the MOST datasets are used for the experiments in this chapter.

These datasets contain the radiographic KL scores and the OARSI radiographic

assessment readings for the knee OA clinical features such as JSN, osteophytes

formation, subchondral sclerosis, chondrocalcinosis, cysts, and attrition. All these

features are integrated in composite scoring systems like Kellgren & Lawrence (KL)

grading system [1,3, 5, 112].

Figure 6.1 shows a knee radiograph with healthy cartilage, and JSN between

the femur and tibia bones due to cartilage loss. The knee radiographs are vertically

split into two halves to assess the distinct knee OA features separately in the lateral

and medial compartments. Figure 6.1 shows the lateral and medial compartments

in a knee radiograph. The knee OA features: osteophytes formation, subchondral

sclerosis, and cysts, are separately assessed for the femur and tibia bones on both

the lateral and the medial compartments. Cysts and chondrocalcinosis are scored

in a binary scale (0 & 1) and the rest of the features are graded in an ordinal scale

(0–3).

The OAI and the MOST datasets contain 4,746 and 3,026 participants in total.

The OARSI readings are not available for many participants. In total 10,861

(∼70%) knee joints are selected from the combined OAI-MOST dataset based on

the availability of the assessments for KL grades, JSN, and osteophytes. Table 6.1

shows the grade-wise distribution of the knee joints as per the KL grades and the

knee OA features: JSN and osteophytes for the radiographs in the combined

OAI-MOST dataset. The distribution shows that there is imbalance in the

datasets and the number of samples in the severe grades (≥ 2) are low. The

number of samples with OARSI assessment readings for sclerosis, cysts,

chondrocalcinosis and attrition is even lower (< 35%). Therefore, the experiments

are restricted to the knee OA clinical features: JSN and osteophytes.
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Figure 6.1: A knee radiograph showing healthy cartilage in the lateral compartment
and joint space narrowing (JSN) due to cartilage loss in the medial compartment.

Source: http://lermagazine.com/article/gait-retraining-improves-symptoms-of-knee-oa

Figure 6.2: A few instances of visible femoral and tibial osteophytes in the lateral
and medial regions.

Source: http://www.melbournekneeortho.com.au/case-studies/knee-arthritis
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Table 6.1: Grade-wise distribution of the knee joints as per KL grades, JSN, and
osteophytes for the radiographs in the combined OAI-MOST dataset.

Grades KL scores
JSN Osteophytes

Lat Med
Femur Tibia

Lat Med Lat Med

0 3,146 9,695 6,097 7,589 6,781 7,507 5,263
1 1,746 555 2,581 1,784 1,678 2,265 4,111
2 3,227 434 1,707 802 975 589 1,000
3 2,091 177 476 686 1,427 500 487
4 651 – – – – – –

6.3 Training CNNs to Quantify JSN

The previous approach (in Chapter 5) focused on training CNNs from scratch to

quantify knee OA severity based on KL grades. Some studies in the literature claim

that the measurement of the radiographic joint space width is the most accepted

and a suitable method for assessing the progression of knee OA [12,39,42]. As it has

been shown to be sensitive to small changes, joint space narrowing (JSN) remains

the primary outcome by which disease modifying OA drug trials test drug efficacy.

Therefore, this approach focuses on training CNNs from scratch to quantify JSN

from knee radiographs. JSN is scored separately for the medial and the lateral

compartments in a knee radiograph. Figure 6.1 shows the medial and the lateral

compartments of a knee joint in a radiograph. CNNs are trained individually to

quantify lateral JSN and medial JSN.

6.3.1 CNN Configuration and Training Process

A similar architecture is used from the previous approach (Section 5.3.6) to

quantify JSN in the lateral compartment of the knee joints. Table 6.2 shows the

CNN architecture in detail. This CNN gave the best results for classifying knee

images based on the KL grades. All the previous settings are retained except the

last fully connected layer (fc6) is replaced with a layer with 4 outputs as the

ground truth (JSN lateral) contains 4 categories. Drop out after conv4 and fc5
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Table 6.2: CNN for classifying knee images based on lateral JSN.

Layer Kernel Kernel Size Strides Output shape

conv1 32 11×11 2 32×100×150
maxPool1 – 3×3 2 32×49×74
conv2 96 5×5 1 64×49×74
maxPool2 – 3×3 2 64×24×36
conv3 128 3×3 1 128×24×36
maxPool3 – 3×3 2 128×11×17
conv4 256 3×3 1 256×11×17
maxPool4 – 3×3 2 256×5×8
fc5 – – – 1024
fc6 – – – 4

layers, and L2 weight regularisation in all convolutional and fully connected layers

are used. The network is trained to minimise categorical cross-entropy using the

Adam optimiser with default parameters: initial learning rate (α) = 0.001,

β1 = 0.9, β2 = 0.999, ε = 1e−8. The input to the network are localised knee images

of size 200×300. Table 6.1 shows the number of images available in the combined

OAI and MOST datasets. The dataset is split into training (70%) and test (30%)

sets. The validation (20%) set is taken from the training samples.

6.3.2 Classification Results for Lateral JSN

After training, this network gives a multi-class classification accuracy of 90.8% on

the test data and the mean-squared error is 0.154. Table 6.3 shows the precision,

recall, and F1 score of this network for classification based on lateral JSN. The results

show high multi-class classification accuracy (90.8%) and high mean F1 score (0.9).

The precision, recall and F1 score of lateral JSN belonging to grade 3 is 0. This

is due to scarce training samples in grade 3. Nevertheless, the mean F1 score and

classification accuracy are high due to the imbalance in the datasets. The grade wise

distribution of the images for lateral JSN is grade 0 - 9,695; grade 1 - 555; grade 2

- 434; and grade 3 - 177. The number of training samples in total are very high for

grade 0 and very low for grade 3.
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Table 6.3: Results for classifying knee images based on lateral JSN.

Grade Precision Recall F1 Score

0 0.96 0.98 0.97
1 0.53 0.22 0.31
2 0.38 0.74 0.50
3 0.0 0.0 0.0

Mean 0.90 0.91 0.90

The balanced accuracy is calculated to evaluate this classification given this

unbalanced dataset. The balanced accuracy is the average of per-class classification

accuracy. The balanced accuracy for the multi-class classification of this network is

48.6%. The low balanced accuracy again shows that this classification is biased due

to the imbalance in the datasets. To overcome this limitation and in an attempt

to improve the classification performance, multi-objective convolutional learning is

investigated in Section 6.5.

6.3.3 Classification Results for Medial JSN

Classifying knee images based on lateral JSN gives low balanced accuracy as there is

insufficient training samples belonging to high grades. A CNN is trained to classify

knee images based on medial JSN. The same network configuration (Table 6.2) is

used from the previous settings. The grade-wise distribution of the knee images

as per medial JSN in the combined OAI-MOST dataset is grade 0 - 6,097; grade

1 - 2,581; grade 2 - 1,707; and grade 3 - 476. This distribution shows that there

are relatively more training samples in higher grades in comparison to the previous

distribution of lateral JSN knee images. The dataset is split into training (70%) and

test (30%) sets. The validation (20%) set is taken from the training samples.

This network (Table 6.2) gives a multi-class classification accuracy of 76.5% on

the test data. The balanced accuracy is 72.3%. The classification results show high

multi-class classification accuracy and high balanced accuracy. Table 6.4 shows the

precision, recall, and F1 score for the classification based on medial JSN. There is
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Table 6.4: Results for classifying knee images based on medial JSN.

Grade Precision Recall F1 Score

0 0.82 0.91 0.86
1 0.62 0.37 0.46
2 0.72 0.81 0.76
3 0.63 0.89 0.74

Mean 0.75 0.77 0.75

improvement in the classification results of medial JSN (Table 6.4) in comparison

to the previous results (Table 6.3) for classification of lateral JSN knee joints with

the same network configuration. This is due to the availability of sufficient training

data.

In summary, CNNs are trained with the same configuration to classify knee

images based on JSN in lateral and medial compartments. As there is sufficient

training samples for high grades of medial JSN, the network gives high balanced

accuracy. On the other hand, the classification performance is low for lateral JSN

due to insufficient training data in high grades. Next, classification of knee images

is investigated to automatically quantify femoral and tibial osteophytes.

6.4 Training CNNs to Quantify Osteophytes

Osteophytes or bone spurs is a characteristic feature that defines the presence of

radiographic knee OA degradation and increases the risk of structural knee OA

progression [5,112]. The OARSI scoring system classifies the presence of osteophytes

according to the four regions of the knee joint as lateral femur, medial femur, lateral

tibia and medial tibia. Figure 6.2 shows a few instances of osteophytes presence in

these regions. The OARSI scores for the osteophytes is an ordinal scale (0–3) like

the JSN. CNNs are trained to quantify the four distinct osteophytes individually.
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Table 6.5: Results for classifying knee images based on lateral femoral osteophytes.

Grade Precision Recall F1 Score

0 0.82 0.90 0.86
1 0.31 0.20 0.24
2 0.25 0.07 0.11
3 0.37 0.66 0.48

Mean 0.66 0.70 0.67

6.4.1 Quantifying Femoral Osteophytes

CNNs are trained to classify knee images based on femoral osteophytes in lateral and

medial compartments. The same architecture (Table 6.2) is used from the previous

approach as this network gave the best results for classification of KL grades and

JSN medial. The grade-wise distribution of the knee images in the combined OAI-

MOST datasets according to lateral femoral osteophytes is grade 0 - 7,589; grade

1 - 1,784; grade 2 - 802; and grade 3 - 686. The grade-wise distribution for medial

femoral osteophytes is grade 0 - 6,781; grade 1 - 1,678; grade 2 - 975; and grade 3 -

1,427. The dataset is split into training (70%) and test (30%) sets. The validation

(20%) is taken from the training set.

6.4.2 Classification Results for Lateral Femoral Osteophytes

The multi-class classification accuracy of this network is 70.3% for classifying femoral

osteophytes in the lateral compartment of knee. The balanced classification accuracy

is 45.7%. The results show high multi-class classification accuracy and low balanced

accuracy. Table 6.5 shows the precision, recall, and F1 score of this network for

classification of femoral osteophytes in the lateral compartment. The precision,

recall, and F1 score are low for grade 1 and grade 2 classifications. The network is

not learning effective representations to pick up small variations in the presence of

femoral osteophytes in lateral compartments belonging to consecutive grades. Next,

the classification of knee images is investigated based on femoral osteophytes in the

medial compartment.
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Table 6.6: Results for classifying knee images based on medial femoral osteophytes.

Grade Precision Recall F1 Score

0 0.80 0.92 0.86
1 0.35 0.25 0.29
2 0.0 0.0 0.0
3 0.56 0.73 0.63

Mean 0.63 0.71 0.66

6.4.3 Classification Results for Medial Femoral Osteophytes

The same network (Table 6.2) trained for classifying femoral osteophytes in the

medial compartment gives a multi-class classification accuracy of 70.8%. The

balanced classification accuracy is 47.4%. Table 6.5 shows the precision, recall, and

F1 score of this network for classification of femoral osteophytes in the medial

compartment. These results are similar to the results for classification of femoral

osteophytes in the medial compartment (Table 6.5). These results again show that

the network is not learning effective representations to classify consecutive grades

of osteophytes severity.

6.4.4 Discussion

CNNs are trained with the same configuration (Table 6.3) keeping the previous

settings to classify tibial osteophytes in the lateral and the medial compartments of

the knees. The multi-class classification accuracy is 70.2% and the balanced accuracy

is 45.3% for the lateral tibial osteophytes. The network gives a classification accuracy

of 57.3% and a balanced accuracy of 46% for medial tibial osteophytes.

The overall results for classification of femoral and tibial osteophytes give low

balanced accuracy. This is due to the imbalance in the datasets and the fact that

there is insufficient training samples for high grade osteophytes. The joint

classification of JSN, osteophytes and KL grades is investigated using

multi-objective convolutional learning, on the assumption that multi-objective

optimisation will improve the overall quantification results.
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6.5 Jointly Training a CNN to quantify JSN,

Osteophytes and KL grades

In the previous chapter, CNNs were jointly trained to minimise a weighted ratio of

two loss functions for simultaneous classification and regression of KL grades

following the multi-objective convolutional approach. This joint training improved

both the classification and regression results. Motivated by this, CNNs are jointly

trained to classify knee images based on KL grades along with the distinct knee

OA features: JSN and osteophytes. In addition to this, the other reasons for

investigating multi-objective convolutional learning for this joint classification are

as follows.

• Multi-objective optimisation: As discussed earlier, the KL grades is a

composite scoring that takes into account the distinct knee OA features such

as JSN, osteophytes, sclerosis, cysts and attrition [1,3,5,112]. Training a CNN

with multiple ground truth annotations such as JSN and osteophytes, along

with KL grades belonging to the same domain can provide more information

to the CNN for optimising multiple closely related objectives. The author

believes that jointly training a CNN will improve the quantification of KL

grades as well as the JSN and osteophytes.

• Addressing the multi-label imbalance problem: The OARSI readings

for the knee OA features and KL grades are used as the ground truth to

jointly train the CNNs. The number of training samples in the severe grades

of the knee OA features such as sclerosis, cysts, chondrocalcinosis and

attrition are very low. For this reason the investigations are restricted to the

knee OA features: JSN and osteophytes. Still there is an imbalance in the

datasets for JSN and osteophytes. The author believes that the jointly

trained network with a loss function that mixes multiple objectives with

domain adaptive weighting of the propagated loss can address the multi-label
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imbalance problem to a certain extent. There are studies in the literature

that report jointly trained CNNs based on the multi-objective convolutional

learning as a solution for the multi-label data imbalance problem [106,110].

6.5.1 Initial Configuration

A similar architecture is used from the previous approach (Section 5.4.3) as an

initial configuration to jointly train a CNN for simultaneous quantification of JSN,

osteophytes and KL grades. The configuration in Table 6.7 gave the best results

for simultaneous classification and regression of KL grades on a validation set. The

fully connected layer (fc5) is followed by seven independent softmax layers to give

the multi-class classification outputs for KL grades (fc6-KL), lateral JSN

(fc6-LatJSN) and medial JSN (fc6-MedJSN), femoral osteophytes in lateral

(fc6-FemLatOst) and medial compartments (fc6-FemMedOst), and tibial

osteophytes in lateral (fc6-TibLatOst) and medial (fc6-TibMedOst) compartments.

Figure 6.3 shows the configuration details of this network. To avoid over-fitting, a

drop out layer with drop out ratio 0.3 is included after the last fully connected

(fc5), and a L2-norm weight regularisation penalty of 0.01 is applied to all the

convolutional and fully connected layers except the first two convolutional layers.

This network is trained to minimise the cumulative sum of categorical

cross-entropy for the seven multi-class classifications with equal weights. This

network is trained using the Adam optimiser with default parameters: initial

learning rate (α) = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e−8. The input to the

network are knee images of size 200×300 taken from the OAI and the MOST

datasets. Table 6.1 shows the grade-wise distribution of the knee images in the

combined OAI and MOST datasets. The dataset is split into training (70%) and

test (30%) sets. 20% of the training samples are used for validation whilst training

the network.
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Table 6.7: Initial configuration of the jointly trained network for classification of
knee images based on KL grades, JSN, and osteophytes.

Layer Kernel Kernel Size Strides Output shape

conv1 32 11×11 2 32×100×150
maxPool1 – 3×3 2 32×49×74
conv2-1 64 3×3 1 64×49×74
conv2-2 64 3×3 1 64×49×74
maxPool2 – 3×3 2 64×24×36
conv3-1 96 3×3 1 96×24×36
conv3-2 96 3×3 1 96×24×36
maxPool3 – 3×3 2 96×11×17
conv4-1 128 3×3 1 128×11×17
conv4-2 128 3×3 1 128×11×17
maxPool4 – 3×3 2 128×5×8
fc5 – – – 512
fc6-KL – – – 5
fc6-LatJSN – – – 4
fc6-MedJSN – – – 4
fc6-FemLatOst – – – 4
fc6-FemMedOst – – – 4
fc6-TibLatOst – – – 4
fc6-TibMedOst – – – 4

6.5.2 Results from Initial Configuration

Figure 6.4 shows the learning curves for KL grades classification whilst jointly

training this CNN (Table 6.7). The learning curves show gradual increase in the

validation and training accuracies with decrease in the validation and training

losses. Table 6.8 shows the classification results for the joint training: accuracy,

balanced accuracy, mean average precision, mean recall, and mean F1 score on the

test set. The balanced accuracy is calculated as there is high imbalance in the

datasets. The results show small improvement in the KL grade classification

accuracy (64.9%) in comparison to the previous results (Table 5.27 on Page 125)

that gave classification accuracy (64.6%) for jointly training the CNN for

classification and regression losses. The classification accuracy, mean precision,

recall, and F1 score for multi-class classification of JSN and osteophytes are high,

but the balanced classification accuracy is still low. This is due to the dataset
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Figure 6.3: Initial configuration of the jointly trained network for classification of
knee images based on KL grades, JSN, and osteophytes.

imbalance. Table 6.1 shows the grade-wise distribution of the knee radiographs as

per KL grades, JSN, and osteophytes. The number of training and test samples is

very low for JSN and osteophytes grades 2, 3 and 4 in comparison to grade 1.

Table 6.9 shows the grade-wise precision, recall, and F1 score of the jointly trained

CNN for classifying femur medial osteophytes. These results are influenced by the

number of training samples. For grade 0 the number of training samples are high

(∼10,000) in total and the precision, recall, and F1 score values are high (Table

6.9). Whereas for the other grades: grade 1 (∼3,000), grade 2 (∼1,000), and grade

3 (∼1,000), the number of training samples is low and the lack of sufficient

training data is a reason for low balanced accuracy (42.1%) and also low precision,

recall, and F1 score for grade 1, 2, and 3 femur lateral osteophytes classification.

These results are from the initial configuration. Next, the hyper-parameters of this

network are tuned to investigate if there is an improvement in the classification
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Figure 6.4: Learning curves for KL grades classification in jointly trained CNN.

Table 6.8: Classification results of jointly trained CNN to classify knee images based
on KL grades, JSN, and osteophytes.

Variable Acc. Balanced Acc. Precision Recall F1 Score

KL grade 64.9% 63.4% 0.62 0.65 0.61
Lateral JSN 93.8% 70.2% 0.94 0.94 0.93
Medial JSN 79.0% 73.6% 0.78 0.79 0.78

Femur lateral osteophytes 72.7% 45.3% 0.67 0.73 0.68
Femur medial osteophytes 72.1% 46.3% 0.66 0.72 0.65
Tibia lateral osteophytes 74.4% 49.9% 0.72 0.74 0.72
Tibia medial osteophytes 63.1% 42.8% 0.61 0.63 0.6

performance.

6.5.3 Tuning the Hyper-parameters

The initial configuration (Table 6.7) contains eight layers of learned weights: seven

convolutional layers and a fully connected layer. The hyper-parameters of this

network are tuned by varying the number of convolutional layers,

convolutional-pooling stages, number of convolutional kernels and kernel size.

There is a slight decrease (∼ 1 to 2%) in classification accuracy and other

performance metrics on the validation set, when reducing the number of

convolutional layers. Removing the conv4-1 and conv4-2 layers from the CNN
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Table 6.9: Results of jointly trained CNN to classify femur medial osteophytes.

Grade Precision Recall F1 Score

0 0.78 0.97 0.87
1 0.37 0.12 0.19
2 0.31 0.08 0.12
3 0.50 0.51 0.50

Mean 0.66 0.73 0.67

(Table 6.7) decreases the classification accuracy of KL grades from 64.9% to

63.5%, and the balanced classification accuracy from 63.4% to 62%. There are no

significant variations in the classification results of JSN and osteophytes.

Next, the number of convolutional layers are increased to check if there is any

further improvement in the joint classification of KL grades, JSN, and osteophytes.

A convolutional layer (conv5-1) is included after the maxPool4 layer to this CNN

(Table 6.7) and this network is trained retaining the other previous settings. There

is a small improvement in the overall classification results on increasing the depth

of the network i.e. the number of layers with learned weights from eight to nine.

The classification accuracy of KL grades increases from 64.9% to 65.5%, and the

balanced accuracy increases from 63% to 63.6%. There is no further improvement

in the classification results on increasing the number of convolutional layers. This

also increases the number of free parameters in the network and leads to over fitting

after 35 epochs, and also there is increase in total training time of the network for

the same number of epochs.

6.5.4 Joint Training for Classification and Regression

In Section 5.4.3, it was shown that jointly training a CNN to optimise two loss

functions: categorical cross-entropy for multi-class classification, and mean-squared

error for regression of KL grades, giving better results in comparison to the

individual networks trained for classification and regression. Motivated by this, a

CNN is jointly trained for simultaneous classification and regression of JSN,
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Table 6.10: Best performing jointly trained CNN for classification of knee images
based on KL grades, JSN, and osteophytes.

Layer Kernel Kernel Size Strides Output shape

conv1 32 11×11 2 32×100×150
maxPool1 – 3×3 2 32×49×74
conv2-1 64 3×3 1 64×49×74
conv2-2 64 3×3 1 64×49×74
maxPool2 – 3×3 2 64×24×36
conv3-1 96 3×3 1 96×24×36
conv3-2 96 3×3 1 96×24×36
maxPool3 – 3×3 2 96×11×17
conv4-1 128 3×3 1 128×11×17
conv4-2 128 3×3 1 128×11×17
maxPool4 – 3×3 2 128×5×8
conv5-1 128 3×3 1 128×5×8
fc6 – – – 512
fc7-KL – – – 5
fc7-LatJSN – – – 4
fc7-MedJSN – – – 4
fc7-FemLatOst – – – 4
fc7-FemMedOst – – – 4
fc7-TibLatOst – – – 4
fc7-TibMedOst – – – 4

osteophytes, and KL grades. A similar architecture is used from the previous

approach (Table 6.7), except the last fully connected layer (fc6) includes seven

multi-class classification outputs and seven regression outputs to quantify lateral

and medial JSN, osteophytes in lateral and medial compartments of femur and

tibia, and KL grades. The network is optimised with a weighted ratio of fourteen

loss functions: seven classification losses (categorical cross-entropy) plus seven

regression losses (mean-squared error). Different weight ratios are tested for the

regression loss from 0.3 to 0.7. There is no improvement in the multi-class

classification and regression results. Moreover, this joint training increases the

complexity of the network by including more objectives to optimise the network.
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Figure 6.5: Learning curves for KL grades classification in jointly trained CNN.

6.5.5 Best Performing Jointly trained CNN for Classification

An optimal configuration is reached after experimenting with different settings and

the best performing jointly trained CNN (Table 6.10) is identified to classify the

knee images based on KL grades, JSN, and osteophytes. This network contains

∼3.1 million free parameters in total and nine layers of learned weights: eight

convolutional layers and a fully connected layer. Each convolutional layer is

followed by batch normalisation and ReLU activation. The last fully connected

layer (fc7) contains seven multi-class classification outputs. To avoid over-fitting a

drop out regularisation with a drop out ratio 0.3 is included after the fc6 layer,

and L2 weight regularisation of 0.01 is included in all the convolutional and fully

connected layers. This network is trained to optimise on the cumulative sum of

seven categorical cross-entropy loss functions. The Adam optimiser is used with

default parameters: initial learning rate (α) = 0.001, β1 = 0.9, β2 = 0.999,

ε = 1e−8 and train the network for 80 epochs.

The learning curves (Figure 6.5 and Figure 6.6) obtained whilst training the

jointly trained network for KL grades and JSN classifications show convergence to

minimum values of validation and training losses with consistent increase in the
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(a) Lateral JSN

(b) Medial JSN

Figure 6.6: Learning curves for classification of (a) lateral JSN and (b) medial JSN
in jointly trained CNN.

training and validation accuracies. The learning curves for classifying osteophytes

severity in femur (Figure 6.7) and tibia (Figure 6.8) show less variations in the

training and validation losses, and the accuracies are reaching a plateau early in

training. This shows the network is not able to learn an effective representation to

discriminate osteophyte severity in the knee joints. The author suspects the main

reason for this is the lack of sufficient training samples.
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(a) Femur Lateral Osteophytes

(b) Femur Medial Osteophytes

Figure 6.7: Learning curves for classification of (a) femur lateral and (b) femur
medial osteophytes severity in jointly trained CNN.

6.5.6 Jointly Trained CNN Classification Results

Table 6.11 shows the classification results: the multi-class classification accuracy,

balanced accuracy, mean average precision, recall, and F1 score of the best

performing jointly trained CNN on the test data. The classification results show

improvement in the multi-class classification accuracy and balanced accuracy for
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(a) Tibia Lateral Osteophytes

(b) Tibia Medial Osteophytes

Figure 6.8: Learning curves for classification of (a) tibia lateral and (b) tibia medial
osteophytes severity in jointly trained CNN.

KL grades, lateral and medial JSN in comparison to the previous results (Table

6.8). There is no significant improvement in the mean average precision, recall and

F1 Score for the KL grades and JSN in comparison to the previous results (Table

6.8). Even though the classification accuracy, precision, recall and F1 Score are

high for the osteophytes, the balanced accuracy is low. This is likely due to the

dataset imbalance. Intuitively, the other reason for this could be the jointly
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Table 6.11: Classification results of the best performing jointly trained CNN to
classify knee images based on KL grades, JSN, and osteophytes.

Variable Acc. Balanced Acc. Precision Recall F1 Score

KL grade 65.5% 63.6% 0.63 0.65 0.60

Lateral JSN 93.9% 69.1% 0.93 0.94 0.93
Medial JSN 78.1% 73.4% 0.77 0.78 0.75

Femur lateral osteophytes 73.4% 44.3% 0.65 0.73 0.67
Femur medial osteophytes 71.8% 47.9% 0.67 0.72 0.66
Tibia lateral osteophytes 74.8% 47.6% 0.71 0.75 0.72
Tibia medial osteophytes 64.0% 45.8% 0.62 0.64 0.61

trained network is not able to discriminate the small anatomical variations due to

osteophytes formation in the knee joints.

6.6 Comparison of Individual and Joint Training

Results

The results of the jointly trained CNN are compared to the results of the

individually trained CNNs to classify KL grades, JSN, and osteophytes. The

results show (Table 6.12) high multi-class classification accuracies for the jointly

trained CNN in comparison to the individual CNNs. There is an improvement in

the balanced classification accuracy of the KL grades from 59% (individual

training) to 63.6% (joint training). Plus there is an improvement in the balanced

classification accuracy of the lateral JSN from 48.6% to 69.1%, and medial JSN

from 72.3% to 73.4%. These results shows that jointly training a CNN following

multi-objective convolutional learning is highly effective in comparison to

individually training CNNs to classify knee images based on KL grades and JSN.

However, there is no significant improvement in the balanced classification

accuracies of osteophytes in the joint training. This is mainly due to the lack of

sufficient training samples for severe grades of osteophytes and the imbalance in

the datasets. Due to the lack of training data, the network is not learning an
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Table 6.12: Comparing the results from individually trained CNNs to the jointly
trained CNN for classifying knee images based on KL grades, JSN, and osteophytes.

Variable
Individual CNNs Jointly Trained CNN

Acc. Balanced Acc. Acc. Balanced Acc.

KL grade 61.8% 59.0% 65.5% 63.6%

Lateral JSN 90.8% 48.6% 93.9% 69.1%
Medial JSN 76.5% 72.3% 78.1% 73.4%

Femur lateral osteophytes 70.3% 44.7% 73.4% 44.3%
Femur medial osteophytes 70.8% 47.4% 71.8% 47.9%
Tibia lateral osteophytes 70.2% 45.3% 74.8% 47.6%
Tibia medial osteophytes 57.3% 46.0% 64.0% 45.8%

effective representation to discriminate the severity of osteophytes formation in the

knee. In the next section, more evidence is provided to support this argument by

using binary classification of knee images to detect knee OA.

6.7 Comparison of Classification Results to the OAI

Reliability Readings

The automatic knee OA assessment results are compared to the radiologic

outcomes from the OAI: specifically project 15 test-retest reliability of

semi-quantitative readings from knee radiographs. In project 15, the OAI reading

centre used 150 participants (300 knee joints) to evaluate the reliability of the KL

scores and the OARSI central reading scores. There is a declaration quoting that

this sample was representative of the entire cohort with respect to the grades of

knee OA, radiographic progression and incidence, and the number of time points

with radiographs for a participant. Two separate readings were used to retest the

original readings and the readers were blinded to the original scores of the

readings. Simple kappa coefficientswere used to evaluate agreement between the

two readings when the variable was dichotomous. Weighted kappa coefficients were

used if the variable had more than two ordinal categories.

The OAI provide kappa coefficients with 95% confidence interval (CI) for the
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agreement between the first and the second readings of the KL grades and all the

distinct knee OA features. The reliability readings from the OAI can be classified

into two: 1) Weighted kappa values for multi-class classification of KL grades in

an ordinal scale of (0–4), and for JSN and osteophytes in a scale (0–3), 2) Simple

Kappa values for binary classification of KL grades in a binary scale such as KL

grade < 2 is 0 and KL grade ≥ 2 is 1, and for any JSN, or any osteophytes < 1 is

0; for grades (1–3) is 1.

6.7.1 Multi-class Classification

The weighted kappa values are calculated for the multi-class classification results

from the jointly trained CNN (Table 6.10) and compare this to the gold standard:

the weighted kappa values from the OAI reliability readings based on an ordinal

scale. Figure 6.9 and Table 6.13 shows the kappa values with 95% CI on the jointly

trained CNN for multi-class classification and the radiologic reliability readings from

the OAI, and the kappa values with 95% CI for the assessments based on an ordinal

scale. There is an overlap in the error bars (CI) of the classification results and the

OAI reliability readings. From the results it is evident that our results (predictions)

agree with the gold standard as well as the annotators or evaluators who produced

the gold standard agree with one another.

Unfortunately, the results for osteophytes classification show low kappa values in

comparison to the OAI reliability readings. The reason for this is lack of sufficient

training data belonging to higher grades (1–3) of osteophytes. Due to scarce training

data, the network is not able to learn an effective representation to discriminate

the small anatomical variations for osteophytes formation in the knee joints. The

classification of osteophytes can perhaps be improved by increasing the number of

training samples and investigating other CNN configurations.
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Table 6.13: Comparison of the multi-class classification results to the OAI radiologic
reliability readings in ordinal scale.

Variable Multi-class Clsf. Kappa (95% CI) OAI Kappa (95% CI)

KL grade 0.69 (0.68 – 0.71) 0.70 (0.65 – 0.76)

Lateral JSN 0.80 (0.77 – 0.83) 0.87 (0.76 – 0.98)
Medial JSN 0.75 (0.73 – 0.77) 0.75 (0.68 – 0.81)

Femur lateral ost. 0.47 (0.44 – 0.50) 0.69 (0.60 – 0.79)
Femur medial ost. 0.61 (0.59 – 0.63) 0.73 (0.66 – 0.81)
Tibia lateral ost. 0.52 (0.49 – 0.54) 0.70 (0.61 – 0.79)
Tibia medial ost. 0.48 (0.46 – 0.51) 0.69 (0.60 – 0.77)

Figure 6.9: Comparison of the results to the OAI radiologic reliability readings.

6.7.2 Binary Classification

The same network configuration (Table 6.10) that gave the previous best results

for multi-class classification is used to jointly train a CNN for binary classification

of knee images based on KL grades, JSN, and osteophytes. The same strategy

followed by the OAI is used to prepare the labels to train the network for binary

classification of KL grades (KL grade < 2 is 0 and KL grade ≥ 2 is 1), and for

binary classification of JSN and osteophytes (any variable < 1 is 0; otherwise 1).

The fc6 layers are replaced with 2 outputs for binary classification and change the

loss functions to binary cross-entropy. The network is trained for 80 epochs using
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Table 6.14: Comparison of the binary classification results to the OAI radiologic
reliability readings in binary scale.

Variable Binary Clsf. Kappa (95% CI) OAI Kappa (95% CI)

KL grade 0.68 (0.65 – 0.70) 0.70 (0.62 – 0.78)

Lateral JSN 0.80 (0.76 – 0.83) 0.83 (0.70 – 0.96)
Medial JSN 0.67 (0.65 – 0.70) 0.74 (0.66 – 0.82)

Femur lateral ost. 0.50 (0.47 – 0.54) 0.78 (0.70 – 0.85)
Femur medial ost. 0.60 (0.58 – 0.64) 0.78 (0.70 – 0.85)
Tibia lateral ost. 0.57 (0.54 – 0.60) 0.71 (0.63 – 0.79)
Tibia medial ost. 0.52 (0.49 – 0.55) 0.71 (0.63 – 0.79)

the Adam optimiser with default parameters: initial learning rate (α) = 0.001,

β1 = 0.9, β2 = 0.999, ε = 1e−8.

Table 6.14 shows the the kappa values with 95% CI for the binary classification

and the radiologic reliability readings from the OAI for the assessments based on a

binary scale. Like the multi-class classification, the binary classification results are

also on par with the reliability readings and agrees with the gold standard. However,

for the osteophytes classification the kappa values are low in comparison to the gold

standard. This is again due to the lack of sufficient training data.

6.7.3 Comparison of Binary and Multi-class Classifications

The results of binary and multi-class classifications (Table 6.15) from the same

network configuration are compared to show that more training data can improve

the classification of KL grades, JSN, and osteophytes. From the results it is

evident that both the classification accuracy and balanced accuracy is high for

binary classification in comparison to multi-class classification. Even the kappa

values for binary classification (Table 6.14) of osteophytes is high in comparison to

the multi-class classification. This emphasises the fact that sufficient training data

is essential to learn an effective representation and the predictions of the network

to generalise well. The assessments on a binary scale are useful to detect if there is

any joint space narrowing between the femur and tibia, presence of osteophytes in
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Table 6.15: Comparing the results of multi-class classification to binary classification
for classifying knee images based on KL grades, JSN, and osteophytes.

Variable
Multi-class Classification Binary Classification
Acc. Balanced Acc. Acc. Balanced Acc.

KL grade 65.5% 63.6% 83.6% 84.1%

Lateral JSN 93.9% 69.1% 96.2% 87.2%
Medial JSN 78.1% 73.4% 84.3% 82.8%

Femur lateral ost. 73.4% 44.3% 80.7% 72.8%
Femur medial ost. 71.8% 47.9% 82.4% 78.6%
Tibia lateral ost. 74.8% 47.6% 82.4% 76.9%
Tibia medial ost. 64.0% 45.8% 75.9% 76.3%

femur or tibia and to detect knee OA incidence.

In summary, the jointly trained CNN achieves high binary classification accuracy

for detecting the incidence of knee OA, and presence of JSN and osteophytes. The

multi-class classification results are on par with the inter-rater agreement to quantify

knee OA severity based on KL grades and JSN.

6.8 An Automatic Knee OA Diagnostic System

In this chapter, two approaches are presented to quantify knee OA severity: 1)

training CNNs separately to classify knee images based on KL grades, JSN, and

osteophytes, and 2) jointly training a CNN using multi-objective convolutional

learning for simultaneous classification of KL grades, JSN, and osteophytes. The

classification results (Table 6.12) show that the jointly trained network

outperforms the individual CNNs to classify KL grades, JSN, and osteophytes. An

automatic knee OA diagnostic system is developed combining the automatic

localisation pipeline (Section 4.3) and the quantification pipeline developed in the

previous section.

Figure 6.10 shows the proposed end-to-end diagnostic pipeline to automatically

quantify knee OA severity based on KL grades and the knee OA diagnostic

features: JSN and osteophytes. The input X-ray images are subjected to
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Figure 6.10: An end-to-end knee OA diagnostic pipeline.

histogram equalisation, mean normalisation and resized to a fixed size 256×256. A

fully convolutional network (FCN) is used to automatically detect the ROI, the

knee joint regions. The bounding box coordinates of the ROI are calculated using

simple contour detection. The knee joint regions are extracted from the knee

radiographs using the bounding box coordinates. The localised and extracted knee

images are resized to 200×300 to preserve the mean aspect ratio (∼1.6) and fed to

the jointly trained CNN (Table 6.10). This CNN gives seven multi-class

classification outputs in total based on KL grades, lateral and medial JSN,

osteophytes severity of femur and tibia in the lateral and the medial

compartments.

The major pathological features that indicate the onset of knee OA include:

reduction in joint space width due to loss of knee cartilage, and the formation of

bone spurs (osteophytes) or bony projections along the joint margins. The author

believes that quantifying these features along with the KL grades can provide

deeper insights to assess knee OA severity and to study the progression of knee
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OA. Therefore, a deep learning-based automatic knee OA diagnostic system that

can provide simultaneous predictions of KL grades, JSN, and osteophytes is

developed.

6.9 Chapter Summary

Two approaches are presented in this chapter to automatically quantify the

distinct knee OA diagnostic features, JSN and osteophytes based on the OARSI

central reading scores. First, CNNs are trained separately to classify the knee

images based on the lateral and medial JSN, femoral and tibial osteophytes in

lateral and medial compartments. Next, CNNs are jointly trained following the

multi-objective convolutional learning approach to quantify JSN and osteophytes

along with the KL grades. The rationale behind this is providing multiple ground

truths to the network can improve the overall quantification results. The jointly

trained CNN gave better classification results in comparison to the individually

trained CNNs. High classification accuracy for KL grades and JSN classification

was achieved. However, classifying osteophytes is challenging due to scarce data in

the higher grades of osteophytes.

The automatic quantification results are compared to the gold standard: the

reliability readings from the OAI. Kappa coefficients were used to evaluate inter-

rater agreement. The classification results are on par with the inter-rater agreement

and reliability readings (kappa values) to assess the KL grades, JSN, and osteophytes

in an ordinal scale. Classification results for osteophytes, however, are below par

to the kappa values. High binary classification accuracies to assess the presence of

JSN and osteophytes, and to detect the incidence of knee OA are achieved.

To conclude this chapter, an automatic knee OA diagnostic system is presented

combining the localisation] pipeline based on the FCN (Section 4.3) and the classifier

based on the jointly trained CNN (Section 6.5) to quantify KL grades, JSN, and

osteophytes.
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Conclusion

7.1 Thesis Overview

The main goal of this thesis is to advance the state-of-the-art in computer aided

diagnostics of the severity of knee OA by developing deep learning based

automatic methods. According to the literature, automatic assessment of knee OA

severity has been previously approached as an image classification problem and

existing approaches report low accuracy for multi-class and classification of

successive grades. The state-of-the-art machine learning based methods are

investigated for image classification, and developed new methods using

convolutional neural networks (CNNs) to automatically classify knee OA images.

A significant outcome of this thesis is a new automatic knee OA diagnostic system

that achieves high accuracy, on par with radiologic reliability readings, which are

considered the gold standard for knee OA assessment.

A summary of the investigations, research findings, experimental results, and

the proposed solutions in this thesis is as follows.

Chapter 1 introduced knee OA degradation and knee OA diagnostic features,

discussed the clinical significance of knee OA research, described the motivations

for this thesis, presented the hypotheses, the research questions and the research

objectives, and outlined the structure of this thesis.

Chapter 2 reviewed the literature in knee OA assessment, computer aided

diagnostics of knee OA and the diagnostic features, and introduced necessary

technical background. According to the literature, an automatic knee OA
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diagnostic pipeline consists of two steps: localising the knee joints and quantifying

the OA severity in the localised knee joints. The previous approaches for detecting

knee joints in X-ray images can be classified into manual, interactive, and

automatic methods. The drawbacks of manual and interactive methods, and the

advantages of automatic methods are outlined. It was concluded that according to

the literature the automatic localisation of knee joints in radiographs still remains

a challenge.

The previous approaches in the literature for assessing radiographic knee OA

severity were classified into interactive and automatic methods. The interactive

methods are objective and accurate, but a great deal of manual intervention is

required and these methods may become laborious and time-consuming for a large

number of subjects. Some of these drawbacks are overcome in automatic methods.

However, existing approaches achieve low multi-class classification accuracy and

classifying successive grades remains a challenge.

Chapter 3 presented the baseline approaches and the preliminary experiments

to automatically localise knee joints in radiographs and to classify the localised

knee joints. Template matching was implemented as a baseline for the automatic

localisation of knee joints. The computations in template matching are mainly

based on intensity-level differences and this method gave low precision (∼ 30%) for

detecting the knee joints. A new method based on a SVM for automatic detection

of knee joints was proposed. This method improved the results with a detection

precision above 80%. The reason for improved results in this method is due to the

use of Sobel horizontal image gradients and horizontal edge based discrimination,

unlike simple intensity-level discrimination used in the template matching method.

In Chapter 3, two approaches were explored for classifying knee images: 1)

using hand-crafted features with conventional classifiers such as SVM, kNN and

SVR, and 2) learning feature representations in a supervised manner using a CNN.

First, the state-of-the-art hand-crafted features were tested to classify knee images.

From the experimental results it was concluded that the classification methods
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using hand-crafted features and conventional classifiers can be further improved by

including more effective features. Next, supervised feature learning using

off-the-shelf CNNs such as the VGG-16 network was investigated to classify knee

images and promising results were achieved. The outcomes of the baseline

methods in this chapter motivated the use of deep learning methods for automatic

localisation of knee joints and classification of the localised knee joints to quantify

OA severity.

Chapter 4 focused on developing automatic methods to localise knee joints in

radiographs using supervised feature learning. Two new approaches were introduced

for automatically detecting and localising the knee joints in X-ray images using full

convolutional networks (FCNs). First, FCNs were trained to automatically detect

the knee joint centres. A fixed size region was cropped as the ROI with reference to

the detected centres. Even though this approach achieved high detection accuracy,

the extracted knee joints had some limitations due to the variations in the resolution

of the knee radiographs and the anatomical variations of the knees. Next, FCNs

were trained to directly localise the ROI instead of knee joint centres. The objective

was to overcome the drawbacks in the previous approach and to further improve

the localisation accuracy. Near perfect localisation results were achieved and the

experimental results outperformed the previous methods to localise the knee joints.

Chapter 5 focused on automatically quantifying knee OA severity using

CNNs. Four approaches were presented for the classification, regression and

ordinal regression of knee OA images based on KL grades. First, the existing

pre-trained CNNs were investigated for fixed feature extraction and classified the

knee OA images using CNN features and linear SVMs. Next, the pre-trained

CNNs were fine-tuned using the transfer learning approach. The predictions or

outputs from these methods are ordinal KL grades (0, 1, 2, 3, or 4). The author

argued that quantifying knee OA severity in a continuous scale (0–4) is more

appropriate as the OA degradation is progressive in nature, not discrete.

Regression was used to quantify the knee OA severity in a continuous scale. The
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classification and regression results from the methods proposed in this chapter

outperformed the previous best results.

In the second approach, CNNs were trained from scratch for classification and

regression of knee images. The objective was to further improve the quantification

results. A Lightweight architecture was used with fewer (∼4 to ∼5 million) free

parameters in the CNNs as the training data is relatively scarce. The fully trained

CNN for classification achieved high classification accuracy in comparison to the pre-

trained CNNs. The fully trained CNN for regression did not achieve good results

as no ground truth of KL grades in a continuous scale is available.

In the third approach, CNNs were fully trained using multi-objective learning

for simultaneous classification and regression. The author argued that optimising a

CNN with two loss functions provides a stronger error signal and was a step towards

improving the overall quantification, considering both classification and regression

results. The jointly trained CNN achieved better quantification results with a high

classification accuracy in comparison to the previous methods.

As the last approach, CNNs were fully trained for ordinal regression. This

method achieved low mean-squared error and outperformed the other methods for

assessing knee OA severity in a continuous scale. In summary, A progressive

improvement was achieved in the quantification performance with increase in

classification accuracy and other performance metrics. This chapter was concluded

with an error analysis that discussed the possible reasons for the misclassification

from the jointly trained CNN.

Chapter 6 presented two new approaches to automatically quantify distinct

knee OA features: specifically JSN and osteophytes. First, CNNs were trained

separately to classify the knee images based on the lateral and medial JSN,

femoral and tibial osteophytes in lateral and medial compartments. Next, CNNs

were jointly trained following the multi-objective convolutional learning approach

to quantify JSN and osteophytes along with the KL grades. The author believed

that providing multiple ground truths to the network could improve the overall
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quantification results. The jointly trained CNN gave better classification results in

comparison to the separately trained CNNs. High classification accuracy for KL

grades and JSN classification was achieved. Nevertheless, classifying osteophytes

was challenging due to scarcity of training data in the higher grades of

osteophytes. The automatic quantification results were compared to the reliability

readings from the OAI, which is considered the gold standard for knee OA

assessment. The classification results are on par with the inter-rater agreement

and reliability readings (kappa values) to assess the KL grades, and JSN.

Unfortunately, the classification results for osteophytes are poor in comparison to

the gold standard. This chapter concluded presenting an automatic knee OA

diagnostic system combining the localisation pipeline based on the FCN

(developed in Chapter 4) and the classifier based on the jointly trained CNN

(Section 6.5) to quantify KL grades, JSN, and osteophytes.

7.2 Research Questions and Proposed Solutions

This thesis investigated automated methods to assess knee OA severity and the

diagnostic features based on six research questions in conjunction with four

hypotheses. The hypothesis and research questions are revisited, and these are

examined with respect to the proposed solutions and the experimental results.

H1. Learning feature representation and classification using supervised deep

learning is more effective for assessing the severity of knee OA than

conventional classification using hand-crafted features.

H2. Evaluating the automatic knee OA predictions using a continuous

distance-based metric like mean squared error instead of classification

accuracy is more appropriate and KL grades predictions can be

approached as a regression problem. Consequently, training a CNN for

optimising a weighted ratio of two loss functions for simultaneous

classification and regression can improve the accuracy of quantifying
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knee OA severity.

H3. Jointly training a CNN for quantifying the clinical diagnostic features of

knee OA such as joint space narrowing (JSN) and osteophytes, along with

the KL grades will improve the overall quantification of knee OA severity.

H4. As a result, a highly accurate computer aided diagnostic system can be

built to assess knee OA.

From the hypotheses, the following research questions are outlined.

H1 - RQ1. What is the most efficient method for localising the ROI: the knee

joint regions in X-ray images, in terms of speed and accuracy that

also supports feature learning and classification using CNNs?

A new FCN based pipeline was developed to automatically localise the knee

joint regions in X-ray images. This research question is linked to hypothesis

H1, and is investigated in Chapters 3 and 4. The investigation included the

following methods. As a baseline approach, template matching was

implemented for detecting knee joints in Section 3.3.1. and this method was

not precise. A new SVM-based method using Sobel horizontal image

gradients was proposed in Section 3.3.2, in an attempt to improve the

precision of knee joint detection. This method gave better results, but falls

short of perfect detection. Two new approaches were investigated for

localising the knee joint regions in Chapter 4. FCNs were trained to directly

localise the knee joint region in Section 4.3 and this method achieved near

perfect localisation results. Later, this localisation pipeline was combined

with the quantification pipeline (Chapter 6) to develop an automatic knee

OA diagnostic system.

H1 - RQ2. Instead of using hand-crafted features, is it possible to learn effective

feature representations using a supervised deep learning method, in
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particular a convolutional neural network (CNN), for efficient and

accurate fine-grained classification of knee OA images?

This research question is also linked to hypothesis H1, and is investigated in

Chapter 3 and 5. Supervised feature learning using CNNs for efficient

classification of knee OA images was investigated in Section 3.4.3, instead of

using hand-crafted features. The off-the-shelf pre-trained CNNs were

fine-tuned through transfer learning in Section 5.2. The author argued that

the knowledge transfer may be limited by the substantial differences between

the source and the target domains, and can mitigate the performance of the

fine tuned CNNs. Therefore, as the next approach CNNs were trained from

scratch specific to this task instead of fine-tuning the existing CNNs in

Section 5.3. Better classification results in comparison to the previous

methods were achieved.

H2 - RQ3. As knee OA is progressive, can the categorisation of knee OA images

be approached as a regression problem instead of classification?

This research question is linked to hypothesis H2, and is investigated in

Chapter 5. The pre-trained CNNs were fine-tuned using both classification

loss and regression loss in Section 5.2. It was shown that the CNN fine-tuned

with regression loss improves the classification accuracy in comparison to the

CNN fine-tuned with classification loss in Section 5.2.5. CNNs were trained

from scratch in order to improve the regression results in Section 5.3.8.

Better results were achieved for regression of knee OA images in the jointly

trained network for classification and regression in Section 5.4.4.

H2 - RQ4. an a CNN trained with a weighted ratio of two loss functions such

as categorical cross entropy and mean squared error improve the

assessment of knee OA severity?

This research question is linked to hypothesis H2, and is investigated in

Chapter 5. A CNN was jointly trained for simultaneous classification and
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regression of knee OA images in Section 5.4. It was shown that there was an

improvement in the classification performance in this jointly trained CNN in

comparison to the CNN only trained for classification in Section 5.4.5.

H2 - RQ5. Can ordinal regression be applied to automatically assess knee OA

severity? How does this improve the overall assessment of knee OA

severity?

This research question is linked to hypothesis H2, and is investigated in

Chapter 5. The jointly trained CNN configuration was modified to perform

ordinal regression. A CNN was trained with a softmax dense layer as a

hidden layer, applying linear weights to the classification output followed by

a dense layer with linear activations for regression (Section 5.5). It was

shown that the ordinal regression improves the assessment of knee OA

severity in a continuous scale in Section 5.5.3.

H3 - RQ6. Can joint training a CNN for quantifying knee OA clinical features

such as JSN and osteophytes along with KL grades further improve

the overall quantification of knee OA severity?

This research question is linked to hypothesis H3, and is investigated in

Chapter 6. First, CNNs were trained from scratch to quantify lateral and

medial JSN individually in Section 6.3, to quantify femoral and tibial

osteophytes in lateral and medial compartments in Section 6.4. Jointly

trained CNNs were investigated for quantifying JSN and osteophytes along

with the KL grades to explore if there is any further improvement in the

overall quantification of knee OA in Section 6.5. It was concluded that the

joint training achieves better quantification results in comparison to the

individual trainings in Section 6.6.

H4 - RQ7. How well do the results agree with the gold standard for assessing

knee OA? Can the proposed methods be applied in practical

computer aided diagnosis (CAD) of knee OA?

172



Chapter 7. Conclusion

This research question is linked to hypothesis H4, and is investigated in

Chapter 6. An automatic knee OA diagnostic system was developed

combining the FCN for localising the knee joints and the CNN jointly

trained for quantifying knee OA severity in Section 6.8. The performance of

knee OA diagnostic system was compared to the radiologic reliability

readings from the OAI in Section 6.7. Cohen’s weighted kappa values were

used for the comparison of the results. The quantification results for KL

grades and JSN are on par with the OAI reliability readings, which is

considered the gold standard for knee OA assessment. In conclusion, the

proposed methods in this thesis can be used as a supporting system to assess

knee OA severity and to study the progression of knee OA.

7.3 Research Contributions

The research contributions of this thesis are as follows.

1. Proposing a novel and highly accurate technique to automatically detect and

localise the knee joints from the X-ray images using a fully convolutional

network (FCN).

2. Developing a classifier based on a CNN to assess knee OA severity that is

highly accurate in comparison to existing methods.

3. Proposing a novel approach to train a CNN with a weighted ratio of two

loss functions: categorical cross entropy and mean squared error with the

natural benefit of predicting knee OA severity in ordinal (0,1,2,3, and 4) and

continuous (0–4) scales.

4. Developing an ordinal regression approach using CNNs to automatically

quantify knee OA severity in a continuous scale.

5. Developing CNN classifiers to assess the distinct knee OA diagnostic features:

lateral and medial JSN, femoral and tibial osteophytes in lateral and medial
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compartments.

6. Further improving the quantification of knee OA severity by jointly training

CNN to predict the knee OA clinical features along with the KL grades.

7. Developing an automatic knee OA diagnostic system i.e. an end-to-end

pipeline incorporating the FCN for automatically localising the knee joints

and the CNN for automatically quantifying the localised knee joints. The

overall assessment of knee OA by this system agrees with the gold standard.

7.4 Future Work

There are several potential directions for future work and further development of

the research in this thesis. Some of the interesting extensions and prospects are

outlined in the following.

Training an end-to-end deep learning model: The knee OA diagnostic

pipeline consists of two steps: 1) localising the knee joints in radiographs and 2)

assessing the knee OA severity from the localised knee joints. In this thesis, a

FCN was trained for automatic localisation and a CNN was jointly trained for

classification and regression of knee OA images. It would be interesting to train

a single deep learning model integrating the FCN for localisation and the CNN

for classification and/or regression, as this would further improve the automatic

assessment of knee OA. Recently, end-to-end trained CNNs have become highly

successful in saliency prediction [113], object detection [114], video classification

[115], text recognition [60], and speech recognition [116].

Using semantic segmentations to measure joint space width: Among

the knee OA diagnostic features, JSN is highly sensitive to changes due to disease

progression. The proposed approach to automatically localise the knee joints using

fully convolutional network can be extended for semantic segmentation of the knee

joints and can be used to automatically measure the joint space width (JSW)

between the femur and tibia. Pixel level knee joint annotations in radiographs are
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needed to measure the JSW.

Assessing the progression of knee OA severity: The automatic

quantification methods developed in this thesis can be extended to assess the

progression and early detection of knee OA severity. The baseline datasets are

used from the OAI and the MOST dataset. Datasets are available for annual

follow-up visits up to 9 years. These datasets could be used to detect the features

predictive of radiographic knee OA progression. Shamir et al. reported a similar

approach using WNDCHRM that predicted whether a knee would change from KL

grade 0 to grade 3 with 72% accuracy using 20 years of data [2].

Relating the automatic quantification results to knee pain: The primary

clinical features to assess knee OA are radiographic evidence of deformity and pain

[117]. It would be interesting to study the relationship between the automatic

assessments of the proposed methods (KL grades) to WOMAC scores for knee pain.

WOMAC is one among the most widely used assessments in knee OA.

Relating the automatic quantification results to physiological

variables: There are several pathological and physiological variables available in

the OAI and the MOST datasets. These variables include potential predictors of

knee pain status. It would be interesting to study the relationship between the

outcomes of the automatic methods and the predictions from the pathological and

physiological variables.

Investigating human level accuracy: The radiologic reliability readings from

the OAI used 150 participants (300 knees) to evaluate the test-retest reliability of

semi-quantitative readings. This is considered the current gold standard for knee

OA assessment. Simple kappa coefficients and weighted kappa coefficients were used

to evaluate the inter-rater agreement. Investigating the human level accuracy for

a large sample and comparing it with the automatic quantification results would

provide insight to help reduce the error involved in automatic assessments.
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7.5 Concluding Remarks

In recent years, deep learning-based approaches, in particular convolutional neural

networks have become highly successful in many computer vision tasks and

medical applications. This thesis mainly focused on developing a deep

learning-based computer aided diagnostic system. The proposed approaches in this

thesis are related to two main medical applications: localising or automatically

detecting and extracting a region of interest (ROI) from a radiograph, and

classifying the ROI to automatically assess disease severity. The FCN-based

localisation approach could be extended to other medical applications such as

localising a substructure or a ROI in MRI and CT scan images, object or lesion

detection, and locating anatomical landmarks or identifying imaging markers to

study the disease progression. For instance, a similar FCN-based approach was

followed to automatically detect and quantify ischemic injury (brain lesions) on

diffusion-weighted MRI of infants, and the state-of-the-art was improved by

achieving promising results.

In the author’s opinion the most interesting research findings in this thesis are

as follows. First, fine-tuning off-the-shelf CNNs pre-trained on very large datasets

such as ImageNet (with ∼1M images) to classify knee images with relatively small

datasets (with ∼10,000 images) is promising for medical image classification. The

main challenge in medical image classification is a lack of sufficient annotated data

for training deep networks from scratch. Fine-tuning existing CNNs that have

been trained using a large annotated dataset from a different application is the

best alternative to full training for medical applications. A second extremely

interesting result it that training CNNs optimising a weighted ratio of two loss

functions for simultaneous classification and regression provides a better error

signal to the network and improves the overall classification performance. Many

diseases are progressive by nature such as Alzheimer’s disease, cancer, emphysema,

tumours, lesions, and muscular dystrophy. Automatic quantification of such
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diseases using jointly trained CNNs may improve the quantification performance

and provide insights to study the progression of the disease. Finally, it is very

interesting that using multi-objective convolutional learning to jointly train CNNs

based on different diagnostic features of a disease as ground truth can produce an

overall improvement in the quantification performance achieving results on par

with human accuracy. Multi-objective learning and joint prediction of multiple

regression and classification variables can be useful to assess diseases involving

multiple diagnostic features like Alzheimer’s, multiple sclerosis, and multiple

myeloma (cancer).
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