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Deep learning, a branch of artificial intelligence, has achieved unprecedented performance in several 
domains including medicine to assist with efficient diagnosis of diseases, prediction of disease 
progression and pre-screening step for physicians. Due to its significant breakthroughs, deep learning 
is now being used for the diagnosis of arthritis, which is a chronic disease affecting young to aged 
population. This paper provides a survey of recent and the most representative deep learning techniques 
(published between 2018 to 2020) for the diagnosis of osteoarthritis and rheumatoid arthritis. The paper 
also reviews traditional machine learning methods (published 2015 onward) and their application for 
the diagnosis of these diseases. The paper identifies open problems and research gaps. We believe that 
deep learning can assist general practitioners and consultants to predict the course of the disease, make 
treatment propositions and appraise their potential benefits.

© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Arthritis is a term which is used for various inflammatory con-
ditions that affect different parts of the body such as joints, bones, 
and muscles. It can be of several types such as Osteoarthritis 
(OA), Rheumatoid Arthritis (RA), juvenile Arthritis, psoriatic arthri-
tis, and gouty Arthritis, which can result in stiffness, pain, redness 
and swelling in the joints [47]. According to [5], it has been re-
vealed that about 3.6 million (15%) of people are affected from 
arthritis which includes 17.9% females and 12.1% males. Moreover, 
62% of patients affected from arthritis had Osteoarthritis, 12.7% 
had rheumatoid arthritis, and 32.1% had suffered from an unspeci-
fied form of arthritis. One in every seven Australians has Arthritis 
[6]. The prevalence of arthritis rises with age, primarily affecting 
the females (ABS, 2017). Moreover, higher mortality risk is also 
recorded in patients with rheumatoid arthritis (RA) as compared 
to the general population [22], [52].

Rheumatic diseases are chronic and fluctuating in nature, in-
volving complicated and unclear etiology, which further intricates 
the treatment of this kind of arthritis [12], [57], [52]. Regardless, 
even from the invention of various biological and synthetic treat-
ments for rheumatoid arthritis (RA), the decrease in disease pro-
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gression is achieved only in a small subset of patients [23], [36]. 
Moreover, the clinical experiments for another rheumatic disease 
that is Osteoarthritis (OA) are not very fruitful due to different 
disease phenotypes involved in the disease. Therefore, the dis-
ease diagnosis at an early stage can slow down its progression, 
where diagnosis involves numerous imaging modalities such as X-
rays, MRI and CT. However, diagnosis techniques, such as Kellgren-
Lawrence (KL) grade suffer from subjectivity, as their accuracy 
heavily depends on the practitioner’s experience [65]. Table 1 pro-
vides details of Kellgren and Lawrence grading for completion. In 
order to make the diagnosis process more systematic and reli-
able, computer-aided analysis and predictive modelling is required 
to overcome the human errors and for early disease detection in 
places where there are fewer experts available.

In addition, to advent an appropriate treatment for arthritis, a 
data-intensive investigation is essential where artificial intelligence 
(AI) can play a significant role in disease detection. Exclusively, ma-
chine learning (ML), a subfield of AI aims to design data-driven 
predictive models which possess the ability to learn from the ex-
perience regardless of the rules explicitly specified by individuals 
[23]. It uses methods, algorithms and processes to expose con-
cealed associations within data and to produce prescriptive, de-
scriptive and predictive tools in order to exploit these associations 
[27]. Additionally, the advancement of Machine Learning principles 
and Artificial Intelligence techniques has increased the productiv-
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Table 1
Kellgren and Lawrence (KL) grading.

KL grade Diagnosis

0 No features of osteophytes are present
1 Narrowing of joint space, doubtful OA
2 Certain narrowing of joint space, minor OA
3 Multiple osteophytes, sure joint space narrowing and some sclerotic areas, moderate OA
4 Large osteophytes, severe joint space narrowing, severe sclerosis and bone deformity, Severe OA

ity and effectiveness in medical imaging research [55]. Machine 
learning concepts, when applied to medical data, have great po-
tential to improve disease diagnosis and early detection of diseases 
[11], [48], [57], [8]. In clinical settings, these techniques can help 
medical experts to analyse the disease in a better way to predict 
potential future issues and treat patients more effectively.

Machine learning algorithms are capable of learning useful data 
representations automatically [40], [50]. They can deal with a vari-
ety of data inputs such as genetic information, text e.g., electronic 
health records, patient cohorts and medical images. Furthermore, it 
can also learn from the knowledge available from clinical data and 
generate outcomes by recognising disease patterns, and features. 
Further, it can also help in optimising treatment strategies. Hence, 
it is quite evident that ML has helped in significantly filling the gap 
of automatic learning from clinical experience. Furthermore, Deep 
learning (DL), is a subfield of ML, which utilises multi-layered neu-
ral networks, intensive computational algorithms and big data [23], 
[46]. Over the last decade, both ML and DL have been used in the 
field of medicine for medical imaging, and it has been depicted 
that ML-based decision-making is superior to physicians’ individ-
ual clinical trial decisions [23].

Inspired by the recent advent of artificial intelligence in medical 
field, this paper presents a survey of deep learning and traditional 
machine learning techniques for the diagnosis of osteoarthritis and 
rheumatoid arthritis. The paper also aims to identify the current 
challenges and open research problems in this area. In contrast to 
current review papers [23], [55], [24], [28] which mainly focus on a 
specific type of arthritis e.g., OA or RA and machine learning tech-
niques only, this paper reviews deep learning as well as machine 
learning methods for the diagnosis of both OA and RA. In addition, 
this paper also provides detailed information about the publicly 
available datasets for RA and OA research (Section 4.2). This makes 
our survey paper different from the existing review articles.

The rest of the paper is organised as follows. Section 2 discusses 
most common arthritis types. Overview of the most popular ma-
chine and deep learning techniques is presented in Section 3. An 
overview of imaging techniques and arthritis datasets is provided 
in Section 4. Machine learning and deep learning approaches for 
the diagnosis of arthritis are presented in Section 5 and 6, respec-
tively. Section 7 discusses some of the open research problems and 
research challenges. The paper is concluded in Section 8.

2. Arthritis and its types

Arthritis is a degenerative disorder associated with human 
joints that can result in disability. There are numerous types 
of arthritis such as rheumatoid arthritis, Osteoarthritis, Juvenile 
Arthritis, Psoriatic arthritis and gout arthritis. In the following, we 
will briefly discuss rheumatoid arthritis, osteoarthritis and Psori-
atic arthritis.

2.1. Rheumatoid arthritis

Rheumatoid Arthritis (RA) is an autoimmune inflammatory dis-
order which involves multiple organs affecting one or more joints 
[27]. It is a disease with unclear etiology and a combination of ge-
netic and environmental factors. The complex interactions of these 

factors affect disease development and progression [29]. In gen-
eral, RA is categorised through morning stiffness and inflammation 
of joints that requires skills and experience for proper diagnosis 
of disease. In 1987, ACR (American College of Rheumatology) es-
tablished a standard for diagnosis of rheumatoid arthritis based on 
morning stiffness, swelling of joints, but that was not appropri-
ate for early disease analysis. Later in 2010, ACR/EULAR proposed 
a new criterion to make an early prediction of rheumatic patients 
[29], as early detection and treatment of rheumatoid arthritis can 
slow down the disease progression and also increase the chances 
of cure.

2.2. Osteoarthritis

Osteoarthritis (OA) is one of the most common musculoskele-
tal conditions which can result in significant disability among pa-
tients. Knee OA is ranked as the 11th highest cause of disability 
worldwide [65]. OA is a disorder which can cause articular carti-
lage breakdown. Cartilage is a smooth, steady layer that ensures an 
effortless movement of knee joints. In OA, cartilage is erupted, lose 
elasticity and becomes feeble [17]. In general, it affects the joints 
in the knee, hip, spine, and feet. According to [15], firstly, OA can 
occur either due to genetic reasons or ageing factors. Secondly, OA 
can be seen in early stages of life due to some injury, diabetes, 
obesity, athletics or in rheumatoid arthritis patients. The primary 
symptoms of OA include joint pain and trouble in joint movement, 
joint stiffness during the morning or after a long rest [16]. Usually, 
due to unclear etiology OA is not diagnosed at a later stage for an 
effective treatment, and sometimes expensive and invasive joint 
replacement surgery is required [65]. However, early detection of 
disease can slow down its progression. The current OA evaluation 
of OA is based on the combination of clinical examination, symp-
toms and radiographic assessment techniques such as X-ray, MRI, 
and CT as required [62]. Besides various proposed methods of OA 
diagnosis, Kellgren-Lawrence (KL) grading system is a gold clinical 
standard for classifying individual joints into five grades based on 
OA severity [17].

2.3. Psoriatic arthritis

Psoriatic arthritis is a type of arthritis that affects people 
with psoriasis — a disease that features red skin patches sur-
mounted with silvery scales. Most people develop psoriasis first 
and are diagnosed with psoriatic arthritis later, but sometimes 
joint problems may start before skin patches appear. The main 
signs and symptoms of psoriatic arthritis are joint pain, stiffness, 
and swelling. This disease can have effect on any part of body, 
including the tips of fingers and the spine, and can range from rel-
atively mild to serious [8].

In this paper, we will focus on Rheumatoid Arthritis and Os-
teoarthritis, which are the most common types of arthritis and 
chronic diseases [69].

3. Machine learning overview

Machine learning algorithms can be categorised into two types 
i.e., supervised and unsupervised learning. In supervised learning, 
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the machine learning model looks for the relationship between in-
put variables i.e., a set of features and output variables that output 
classes or labels. It then computes a function capable of predicting 
output value for a set of unlabelled input values [27]. Hence, su-
pervised learning uses labelled data to train models. On the other 
hand, unsupervised learning recognises the underlying patterns 
and structure in data, and does not require class labels [27]. Thus, 
learning with unlabelled data is known as unsupervised learning. 
In the following, we discuss the most popular supervised and un-
supervised learning techniques including deep learning methods.

3.1. Supervised techniques

3.1.1. K-nearest neighbours
K-nearest neighbours (KNN) is a supervised learning algorithm 

that is used for both classification and regression. It is used to 
predict a new sample through K-closest samples from the train-
ing set [30]. The output varies accordingly depending on whether 
it is used for classification or regression. In k-NN classification, the 
samples are classified by the majority vote of its neighbours and 
assigned a class most common among k samples with the most 
identical features [23]. In k-NN regression, the outcome is a prop-
erty value of the object i.e., the average of k nearest neighbours.

3.1.2. Support vector machine
SVM is a traditional supervised machine learning model that is 

used for classification tasks. Generally, it is used in binary prob-
lems, however, with the help of various kernels such as polyno-
mial, it is able to handle multi-class problems as well. SVM takes 
training samples as input and separates them into different cate-
gories for classification using hyperplanes. Therefore, SVM can be 
used as a model capable of assigning categories to newer sam-
ples [30]. SVM is trained to discover the best probable separation 
of distinct categories by using different function weights such as 
polynomial [23].

3.1.3. Decision trees
The Decision trees are tree-like models, which consist of de-

cisions and their likely consequences [23]. In contrast to other 
machine learning methods, the decision trees incorporate the clas-
sification functions and the collection of features within one model 
[70].

3.1.4. Random forest
Random forest [20] is an improvement over decision trees [23]. 

It is an ensemble classifier for machine learning consisting of sev-
eral local classifiers and regression tree classifiers. It classifies the 
input samples based on majority votes of all the trees and results 
in lower variance and lower bias. It has been used to rate the in-
dividual predictors and to pick the best performing models [70].

Random Forest method helps in the reduction of predictors and 
related variables. Importantly, sub-trees’ grouping property allows 
the Random Forest to address correlation and interaction between 
variables adequately. The Random Forest approach selects two-
thirds of the data to create each of the trees and then uses the 
remaining one-third to determine misclassification. While the Ran-
dom Forest algorithm has established several potential trees that 
perform well in selecting important predictors to identify patients 
with RA or non-RA, however, it is a “black-box” process, as it is 
difficult to induce the clear classification rules and interpret the 
model’s predictions [70].

3.1.5. Artificial neural networks
Artificial neural networks (ANNs) are computational models 

which are inspired by human biological nervous systems and con-
tain parts like neurons and have a layered structure [38]. ANN 

is mostly used for supervised learning tasks such as classifica-
tion of labelled data. Artificial neural networks are also capable 
of performing regression tasks. A typical ANN contains an input 
layer, hidden layers and output layer. These layers consist of neu-
rons and are connected by different weights [2]. Artificial neural 
networks have shown to achieve better results compared to tra-
ditional methods such as Logistic Regression and Support Vector 
machines.

3.2. Unsupervised techniques

In the following, we discuss the most representative unsuper-
vised learning methods including the most popular autoencoder 
and generative adversarial networks.

3.2.1. K-means clustering
K-means clustering is an unsupervised learning technique [37]. 

In this method, data is clustered into k clusters, reducing the sep-
aration space that is irregular with each cluster [54]. A centroid is 
selected, and classification is achieved depending on the distance 
between the centroid and adjacent data [69].

3.2.2. Reinforcement learning
Reinforcement Learning is an unsupervised technique, which is 

based on rewarding desired behaviours and/or punishing undesired 
ones [58]. Reinforcement learning is about an agent, which is able 
to perceive and interpret its environment, take actions and learn 
through trial and error.

In reinforcement learning, a method of rewarding desired 
behaviours and punishing negative behaviours is devised. This 
method assigns positive values to the desired actions to encour-
age the agent and negative values to undesired behaviours. This 
programs the agent to seek long-term and maximum overall re-
ward to achieve an optimal solution [58].

3.3. Deep learning techniques

Deep learning further expands the capabilities of ANNs by util-
ising deep neural networks in order to map input data to the 
desired outcome [27]. In deep learning, the data representations 
are learned automatically by deep neural networks, which consist 
of numerous consecutive layers and several basic non-linear op-
erations known as neurons [23]. These architectures can process 
different kind of input data, for instance, medical images, text, or 
combination of both. With the deep neural network, the perfor-
mance of image processing methods in particular has been signif-
icantly improved [51]. With the availability of large scale dataset 
such as ImageNet, it has become possible to train data hungry 
deep neural networks to recognise and classify a wide range of 
images and objects [55]. The major difference between an artificial 
neural network (ANN) and Deep neural network structure is that a 
deep neural network contains more than one hidden layer [45].

3.3.1. Auto-encoder
An Auto-Encoder (AE) consists of two parts i.e., an encoder and 

a decoder [51]. Both the encoder and the decoder have hidden lay-
ers each, with a shared third layer (the central hidden layer). The 
encoder part of the auto-encoder finds a compact low dimensional 
meaningful representation of the input data. The encoder param-
eters are learnt by combining the encoder with the decoder and 
jointly training the encoder-decoder structure to reconstruct the 
input data by minimization of a cost function. The decoder can 
therefore be defined as a combination of layers joined together by 
a non-linear activation function which reconstruct the input from 
the encoder output.
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3.3.2. Generative adversarial networks
Generative Adversarial Networks (GANs) [14] were first intro-

duced by Goodfellow et al., in 2014. The main idea behind a GAN is 
to have two competing neural network models. The first model is 
called generator, which takes noise as input and generates samples. 
The other neural network, called discriminator, receives samples 
from both the generator (i.e., fake data) and the training data (i.e., 
real data), and discriminates between the two sources [25]. These 
two networks undergo a continuous learning process, where the 
generator learns to produce more realistic samples, and the dis-
criminator learns to get better at distinguishing generated data 
from real data. These two networks are trained simultaneously 
with the aim that this training will drive the generated samples 
to be indistinguishable from real data. One of the advantages of 
GANs is that they can back-propagate the gradient information 
from the discriminator back to the generator network. The gen-
erator, therefore, knows how to adapt its parameters in order to 
produce output data that can fool the discriminator.

3.3.3. Convolutional neural networks
Convolutional Neural networks are different from typical ANNs 

as they are generally used for pattern recognition [45]. CNN con-
sists of convolutional layers and pooling layers to learn image spe-
cific features and generate feature maps [25]. CNNs have shown 
much better results for computer vision applications than tradi-
tional ANNs [45].

The convolutional neural network is a popular architecture for 
most image recognition, classification, and detection tasks. It has 
been used for improved treatment of rheumatic and musculoskele-
tal diseases (RMDs) in patients. Researchers have used CNNs to 
detect bone erosions. Similar networks have been used in Doppler 
Ultrasound images to measure the synovitis disease. One problem 
with DCNN is that they need enormous quantities of training data 
and precise training parameters tuning [18].

3.3.4. Fully convolutional network
A fully convolutional network (FCN) has been developed for 

semantic segmentation of images. FCN is an improved model com-
pared to previous architectures. It uses multiresolution layer com-
binations and extends classification capability of modern convo-
lutional networks for segmentation. FCN has been reported to 
achieve high accuracy and is efficient. FCN performs pixel-wise 
prediction and requires supervised pre-training. FCN can be built 
by using different deep neural networks such as AlexNet, VGG net 
and GoogleNet and adapt those into fully convolutional networks 
to perform the segmentation tasks [35].

3.3.5. U-net
U-net architecture is used mainly for medical image segmen-

tation. It has few parameters compared to other segmentation 
architectures. The input given to a network is a whole image 
and matching segmentation masks are created through a series 
of trainable weights. It has been revealed by [43] that bounding 
boxes generated by U-net outperform template matching methods 
for image localisation tasks.

3.3.6. RetinaNet
RetinaNet is another popular architecture, which has been used 

for joint localisation. It is quite efficient in placing the bound-
ing boxes accurately in order to detect joints [49]. RetinaNet was 
developed to fix the problem of foreground and background im-
balance as the previous approaches did not address it properly. 
RetinaNet addressed the issue of extreme foreground and back-
ground imbalance with dense detectors. The RetinaNet uses a novel 
Focal Loss to fix the imbalance issue. This resulted in high accuracy 
and in less computation time [33].

Although deep neural networks provide outputs with high ac-
curacy, it is important to generalise these models to avoid one 
of the major issues such as overfitting. Therefore, fine-tuning the 
model for generalizability is very important. In addition to this, 
deep neural networks can also be seen as a black box, which 
can make the medical practitioners question their reliability and 
methodology.

4. Imaging techniques and arthritis data

In the first part of this section, we briefly discuss commonly 
used imaging techniques for the diagnosis of RA and OA. We will 
then discuss arthritis data, which has been used in the literature 
and the publicly available datasets.

4.1. Imaging techniques

There is a wide range of imaging modalities involved in the 
diagnosis of rheumatoid arthritis (RA) and Osteoarthritis (OA) such 
as plain radiographs (X-ray images), ultrasonography, magnetic res-
onance imaging (MRI), computer tomography (CT). In the follow-
ing, we briefly discuss these imaging techniques.

4.1.1. X-ray
X-ray imaging is the most widely accessible and used tool for 

the diagnosis of the knee OA, as it is a non-invasive method. It is 
comparatively inexpensive, rapid and easy to assess imaging tech-
nique in order to monitor disease progression [67]. In addition to 
this, X-ray imaging can reflect the variations in the structure of 
bones at early stage [34].

4.1.2. Computed tomography (CT)
CT is a 3D volume image of an organ. It is the most commonly 

used method to image the human body. In addition, CT also in-
volves the injection of contrast agents and contact with significant 
ionising radiations that are the negatives of CT [26].

4.1.3. Magnetic resonance imaging (MRI)
The non-invasive magnetic resonance imaging is also appro-

priate and widely used for rheumatoid arthritis diagnosis [13]. It 
offers a precise diagnosis of the core pathophysiologic phenom-
ena that occur in the myocardium of individuals suffering from RA 
e.g., myocarditis, vasculitis, and macro-/microcoronary artery dis-
ease [26]. The disadvantage of this imagining modality is that it is 
expensive and inefficient for patients with retained metallic medi-
cal prostheses.

4.1.4. Positron emission tomography (PET)
PET is a nuclear imaging modality that utilises radioactive ma-

terial. It is generally taken up at places of active inflammation and 
offers improved visualisation of the target lesion [26]. This tech-
nique perceives acceptance of positron-emitting radiotracers and 
allows exact measurement of volumes along with quantification of 
blood flow. Its disadvantages include high cost and ionising radia-
tion [13].

4.1.5. Carotid ultrasound (CUS)
CUS is currently the most effective non-invasive technique that 

provides the most robust and confirmed assessments of develop-
ment of RA. It is also cost-effective imaging modality that gives 
disease information at an early stage of RA patients.

4.2. Arthritis data and datasets

4.2.1. Rheumatoid arthritis
Since arthritis is a disease which affects different areas of the 

body such as knee, hands and hips, the data collection method and 
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popular dataset sources significantly vary between them. Firstly, 
various studies have tried to understand RA, but they have consis-
tently relied on one or few hospital data to do the task. Kim et 
al., [27] used medical records to identify patients with Rheuma-
toid Arthritis. Only 2% of 9,482 patients responded and consented 
on the review of their medical data. In studies carried out by 
Yoo et al., [69] and Lezcano-Valverde et al., [31] clinical data was 
used. In former approach, the study involved data from 60 patients 
from Euji University Hospital, and for the latter the researchers 
utilised data from two datasets including 1461 records from Hos-
pital Clinics San Carlos and 280 from Universitario de La Princesa 
Early Arthritis Register Longitudinal study dataset for Rheumatoid 
Arthritis patients.

Murakami et al., [39] utilised hand radiographs selected by ex-
pert radiologists, however, the study only has 159 cases in total out 
of which 30 of them were used for verification of the Deep Con-
volutional Neural Network. Orange et al., [44] reported the identi-
fication of three distinct synovial subtypes based on the synovial 
gene signatures of patients with RA. These labels were used to de-
sign a histologic scoring algorithm in which the histologic scores 
correlated with clinical parameters such as ESR and C-reactive pro-
tein (CRP) level. The authors selected 14 histologic features from 
129 synovial samples (123 RA and six osteoarthritis [OA] patients) 
and the 500 most variably expressed genes in 45 synovial sam-
ples (from 39 RA and six OA patients). Gene-expression-driven 
subgrouping was explored by k-means clustering, in which n ob-
jects are partitioned into k clusters, with each object belonging 
to the cluster with the nearest mean. Clustering was most robust 
at 3 and this subgrouping was validated by principal component 
analysis, but not in an independent dataset. Three subgroups com-
prising high-inflammatory, low-inflammatory, and mixed subtypes 
were designated based on their gene patterns and enriched ontol-
ogy. The aim of the study was to determine the synchrony between 
synovial histologic features and genomic subtype, thereby yield-
ing a convenient histology-based approach to characterization of 
synovial tissue. To this end, a leave-one-out cross-validation SVM 
classifier was implemented. The aim of an SVM is to find a deci-
sion hyperplane that separates data points of different classes with 
a maximal margin (i.e., the maximal distance to the nearest train-
ing data points). The model’s performance in separating both the 
high and the low inflammatory subtypes from the other subtypes 
was relatively good, however, their evaluation dataset was small 
that resulted into overfitting of SVM.

Some other studies have performed analysis on a smaller num-
ber of patients. For instance, Singh et al., [54] used numerical 
data from 60 anonymous patients. Further, Ureten et al., [67] used 
datasets from two hospitals, where one of the datasets is used for 
training, and the other was used for testing. This extra data helped 
to understand the validity and applicability of the research. The 
data was attained from UH and SNH Cohorts, respectively. To add 
on, various studies started to use medical image data for analysis, 
such as [67] used radiographs from the outpatient clinic of medi-
cal faculty and 50 used ultrasounds, which contains 1342 Doppler 
US Images.

Yoo et al., [69] investigated the clinical data to predict Rheuma-
toid Arthritis (RA). The study was conducted on 60 RA patients 
where data was provided by Euji University Hospital. During this 
study, it was found that the typical diagnosis criteria of RA diag-
nosis recommended by ACR (American College of Rheumatology), 
established in 1987, was insufficient for early detection of the dis-
ease. Therefore, to help rheumatologists the clinical data including 
Rheumatoid factor (RF), Anti CCP, SJC and ESR was utilized in order 
to make early predictions. The data of patients was analyzed using 
k-means clustering to examine the threshold value of four factors 
where RA factor (RF)>7, Anti CCP>18, SJ>4 and ESR>25. These 
factors were used to predict RA. The research concluded that for 

K=4 the achieved accuracy was 84%. In addition to this, selecting 
two factors and finding their association is higher than selecting 
only one parameter. The K-means algorithm exhibited that RA can 
be predicted from two out of these four factors and if one of the 
two factors i.e., RF and AC are positive rheumatic disease can oc-
cur.

4.2.2. Osteoarthritis
For Osteoarthritis, since the problem is different from Rheuma-

toid Arthritis, different type of data collection, processing and 
analysis is performed. There has been a lot of progress due to 
the presence of publicly available image databases such as OAI 
(The Osteoarthritis Initiative) and MOST (Multicentre Osteoarthri-
tis Study). These datasets make the training and testing of deep 
neural networks feasible.

Thomson et al., [61] used OAI dataset of 4796 participants, out 
of which 500 were used for performance testing. In 2016, Antony 
et al., also used X-ray Images from OAI dataset to evaluate their 
technique on 4,476 images. There have been some studies that 
have used smaller datasets such as, Gornale et al., [15], [16], which 
only utilised 200 and 207 knee X-ray Images for training and test-
ing, respectively.

Gornale et al., [17] used 616 X-ray images from various hospi-
tals. Tiulpin et al., [65] used multiple sources such as MOST, Cen-
tral Finland Centre Hospital and OKOA to acquire 1574, 93 and 77 
knee radiographs, respectively. Few other studies such as Tiulpin 
et al., [64], Tiulpin et al., [62] and Antony et al., [3] have combined 
the MOST and OAI datasets, and split them into training and test 
sets. This helped to determine whether their proposed framework 
is able to handle big data and possible to apply on general popu-
lations.

Furthermore, due to the advantages of 3D images, few studies 
started to use MRIs such as Tolpadi et al., [66]. They used both 2D 
radiographs and 3D MRI Images from 4,796 patients to attain high 
performance with the help of 3D CNNs.

Wang et al., [68] used TSE Images and DESS Images from 718 
case-control patients (274: Male, 444: Female). Yoo et al., [69] used 
KNHANES V-1, and bilateral radiographs were accessed for par-
ticipants who are over the age of 50. The study involved 2665 
participants and performed an external validation of 4731 partici-
pants from the OAI dataset. Liu et al., [34] used a dataset collected 
at a hospital in Shanghai that consisted of 2,770 X-ray images. Von 
et al., [49] used 15,364 hip joint scans to model the severity of hip 
osteoarthritis.

5. Machine learning for the diagnosis of arthritis

One of the major and challenging steps in automatic diagnosis 
of arthritis is the detection of joints in images such as X-rays, MRIs 
and CT scans. In the following, we review some of the recent ML 
based joint detection techniques followed by ML techniques for the 
diagnosis of arthritis.

5.1. ML techniques for joint detection

Shamir et al., [53] proposed a template matching method for 
detecting the knee joint centre in an image patch of 20×20 pix-
els. In their approach, the x-ray image was downscaled to 10% of 
the actual image size and then exposed to histogram equalisation 
for normalising the intensity. Next, each input image was scanned 
through a sliding window of 20×20 to calculate the Euclidean dis-
tance. The window that recorded smallest Euclidean distance was 
declared as the knee joint centre. Although the method was easy 
to implement, but detection accuracy was low and was slow for 
big data [3].
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The research conducted by [1] used Fully convolutional n[3]. 
The size of the input image was selected as 200×300 in order to 
preserve the aspect ratio on the basis of mean aspect ratio (1.6) 
for all the extracted regions of interest. They used Knee X-ray im-
ages and graded the severity level of the impairments according to 
the Kellgren and Lawrence criteria (an ordinal scale of five points). 
Elastic Net (EN) and Random Forest (RF) approaches were used 
to build predictive models using patients’ clinical assessment data. 
X-ray images were used to train a convolutional neural network. 
Linear mixed-effect (LMM) models have been used to construct the 
relation between the two knees. For the CNN, EN and RF models, 
the root mean square error was 0.77, 0.97 and 0.94, respectively. 
Overall, the LMM reveals close predictive accuracy to the EN re-
gression. However, this multi-stage pipeline approach, which ex-
tracts and crops knee joints from the x-ray image requires a lot of 
memory [34].

[9] used YOLOv2 for knee detection by keeping the initial knee 
joint size similar to the actual knee joint size where the initial 
knee size was obtained through clustering on all the available 
training knee joints. In YOLOv2 object detection is considered as 
a regression problem that enhances height, width, centre coordi-
nates along with confidence score for every bounding box located 
in all the grid centres. Their experimental results demonstrated 
that YOLOv2 performed better than FCN [4] and HOG-SVM [65].

Norman et al., [43] applied U-net model to localise knee joints. 
The x-ray radiographs were pre-processed by splitting it into left 
and right knees by dividing the image in the middle and then left 
side of the image was flipped. Next, a 2-D cross-correlation tem-
plate method was used to generate bounding boxes around the 
knee (approximately 500 images). These 500 bounding boxes were 
then processed to ensure that the template extracted the knee 
joint area correctly. In addition to this, 450 scans of the localised 
knee joints were used to train the U-net network. The result of this 
model was then verified manually on a new dataset of 500 knee 
images. Their experimental results showed that bounding boxes 
generated by U-net localised the knee correctly. U-net recorded 
accuracy of 98.3% for 1000 randomly sampled cases which indi-
cated an improvement over the baseline template matching tech-
nique. They next applied deep learning on radiographs to predict 
OA severity. Interestingly, the authors grouped together KL grade 0 
and KL grade 1 as they believed that clinical response is the same 
for both.

Tiulpin et al., [62] proposed a regression-based deep learning 
approach to address the issues related to anatomical landmark 
localisation within knee x-ray radiographs for different stages of 
Osteoarthritis. According to the authors, the landmark localisa-
tion is divided into two sub-tasks i.e., the localisation of region 
of interest (ROI) and self-localisation of landmarks. The former is 
deployed for a complete analysis of knee images, and the later 
is utilised for bone shape and texture analysis. Moreover, man-
ual annotation without prior information on knee anatomy is a 
minor challenge, which even becomes more complex with increas-
ing OA severity. In their study, initially, they trained a model to 
localise ROIs while using low-cost annotations within a bilateral 
radiograph. Later, the model was trained over localised ROIs in or-
der to predict 16 anatomical landmarks on femur and tibia. They 
also used the VGG image annotation tool to perform annotations 
and implemented BoneFinder tool for annotations. This technique 
used the hourglass convolutional network to localise landmarks 
and soft-argmax layer to evaluate every landmark point directly. 
The performance of the method was evaluated on two indepen-
dent datasets, and it demonstrated a better performance compared 
to state-of-art baseline methods.

Liu et al., [34] deployed region proposal network (RPN) to lo-
calise joints in the input X-ray images. The traditional object de-
tection methods usually rely on inexpensive features and economic 

inference schemes which are computationally expensive. Fully con-
volutional network eliminates this bottleneck and generates high-
quality region proposals which are further utilised by fast R-CNN 
for object detection. The network consists of 101 layers where 
each convolutional layer is followed by batch normalisation and 
ReLU activation layer in order to avoid overfitting issue. In ad-
dition to this, the convolutional and max-pooling layers abstract 
features and generate shared convolutional feature maps used by 
both RPN and Fast R-CNN. These feature maps serve as input to 
RPN and to produce an output of region proposals. Once the RPN 
inferencing scores and coordinates of all the regions are computed, 
non-maximal suppression (NMS) is applied to remove the redun-
dancy during detection. After applying NMS, the anchor box with 
highest RPN score was kept. Their proposed approach was able to 
design an end to end deep learning model for the diagnosis of 
knee osteoarthritis.

Tolpadi et al., [66] used MRI Images on DenseNet-121 to pre-
dict the knee replacement probability in the next five years of a 
patient’s life. The study used OAI dataset, which contained both 
Imaging and Non-Imaging variables. They adopted the same ap-
proach as in [43] to pre-process the radiographic MRI images by 
cropping them to 500×500 region across the centre of the knee 
joint. Next, 2D cross-correlation template matching was used to 
identify bounding box. Subsequently, they trained a U-net architec-
ture that identified posteroanterior radiographs from the OAI study.

Hoang et al., [21] used random forest Regression voting con-
strained local model technique implemented in BoneFinder tool 
similar to [62]. Next, based on localised anatomical landmarks and 
cropped ROIs of 140 mm×140 mm around the knee joint image 
(at most two ROIs per image), they executed standardisation of 
each ROI by aligning tibial plateau horizontally. Images were frag-
mented, flipped, and eventually intensities were normalised. In [4]
and [64] training set statistics were used to normalise input data. 
However, in their study, the authors used a mean of 0.5 and a 
standard deviation of 0.5.

In a recent study [49], RetinaNet was trained to detect the left 
and right hip joint within a radiograph. Furthermore, the depicted 
image (input size 640×640) of one hip was cropped, contrast-
stretched and rescaled to 224×224 pixels. A pretrained DenseNet 
161 served as a shared convolutional feature extractor with mul-
titask loss function for the implementation of multitask neural 
network. Each fully connected layer was trained for every radio-
graphic feature of OA to attain final evaluation. The results showed 
that RetinaNet placed bounding boxes accurately for all the joint 
images and the model had accuracy of 80.8%.

In a technique proposed by Thomas et al., [60], the image was 
split to generate left and right knee joint and all the images of the 
dataset were resized to 299×299 in order to provide a consistent 
input to neural network model. Initially, two model architectures 
were considered as the original images varied in resolution, pixel 
sizes and scale. During image augmentation, the original images 
were cropped, zoomed in, up scaled, noise was added, flipped hor-
izontally and adjusted contrast so that generated images could 
follow the distribution of images in original dataset. In addition 
to this, the training set images were replaced by numerous altered 
versions (for instance mirroring an image and alteration of con-
trast for converting a right knee of high contrast to a left knee of 
low contrast), a model was prepared to do predictions for new im-
ages with different parameters than those traced in original non-
augmented training set.

5.2. ML techniques for arthritis diagnosis

Lezcano-Valverde et al., [31] demonstrated the use of machine 
learning method in the development and validation of a predictive 
model for rheumatoid arthritis mortality based on demographic 
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and clinical variables. The Random Survival Forests (RSF) a non-
parametric approach is used to overcome the challenges of tra-
ditional survival techniques such as restricted assumptions, pro-
portional hazards, parametric and non-linear effects which results 
in overfitting. RSF method creates multiple decision trees through 
bootstrap sampling and generates cumulative hazards function 
(CHF) from every single tree that are then averaged out to pro-
duce an ensemble CHF. Two different datasets were used in this 
study. One is from Hospital Clinico San Carlos RA cohort (HCSC-
RAC) and includes 1,461 patients. It is a daily clinical practice 
cohort collected as a clinical diagnosis of RA by rheumatologists. 
It is used for the training of the model. The other dataset is from 
Hospital Universitario de La Princesa Early Arthritis Register Longi-
tudinal (PEARL), which consists of 280 RA patients. It is used for 
the model validation. The demographic and clinical variables were 
collected in first two years of RA diagnosis. It is observed that the 
mortality rate was 22.1% and 14.6% for HCSC-RA and PERAL in a 
follow-up time of 4.3 and 5 years respectively. The variables such 
as age at diagnosis, median ESR (erythrocyte sedimentation rate) 
and count of hospital admissions showed higher predictive capac-
ity. The prediction errors for training cohort was 0.187 and for 
validation cohort was 0.233. Overall, potential mortality risk fac-
tors have been identified. They were successful in developing a 
prediction model for RA mortality which has allowed to identify 
subgroups with higher mortality risks. For further studies, external 
validation and specific interventions can be applied to reduce the 
mortality risks for the subgroups with high mortality risk.

Gornale et al., [15] proposed a computer aided analysis of knee 
OA using active contour segmentation method and K-NN is used to 
classify various computed features. Dataset consists of 207 knee X-
ray images of individuals with different ages, gender, blood group 
and occupations. In this investigation, image acquisition and pre-
processing is performed followed by image segmentation, which 
is carried out using Active Contour Segmentation method (Chan-
Vese and Edge methods are used). Next, image enhancement (Con-
trast Adjustment technique) is performed to get better quality im-
age. Then various features like Shape features, Statistical features, 
First-four moments, Haralick features, Texture analysis features and 
Zernike moments are computed, and classification is performed 
using the K-nearest neighbour classifier. The reported classifica-
tion accuracy rate is 88.88% and their technique classifies whether 
given image is normal or affected.

Gornale et al., [16] implemented a semi-automated method for 
the diagnosis of Knee OA. Dataset used in their study consists of 
200 Knee X-ray images collected from various hospitals based on 
age, gender, blood group and occupation. In their proposed tech-
nique, first image acquisition and pre-processing are performed 
and then image is segmented using Active Contour segmentation 
method (Chan-Vese Edge methods). After that image enhancement 
technique (Contrast adjustment) is used to improve the image 
quality. Later, Various features such as Haralick, Statistical, First 
four moments, Texture and Shape are computed. These features 
are further classified using Random Forest classifier. According to 
authors, as only radiological assessment of knee X-ray has been 
considered for this investigation, therefore, a misclassification rate 
is observed while considering individuals. The classification accu-
racy rate of their technique is 87.92%, when features are merged 
together. In future, both clinical symptoms and radiographic as-
sessments need to be considered to develop a detection method 
for a better classification rate.

In another work, Gornale et al., [17] developed a machine vi-
sion method for diagnosis of Knee OA using region based and 
active shape model. The feature computation involves histogram 
of oriented gradient (HOG) method. The computed gradients are 
classified using multiclass SVM classifier to examine OA based on 
KL (Kellgren Lawrence) grading system. The dataset consists of 616 

digital knee X-ray images collected from various Hospitals and Di-
agnostic Centers based on numerous attributes such as age, gender, 
blood group, occupation and weight of patients. The images are of 
dimension 1345×2451 and DICOM Standard (Digital Imaging and 
Communications in Medicine). Two distinguished medical experts 
assigned KL grades to each Knee X-ray image. Initially, X-ray im-
ages were prepossessed and segmented using implicit active con-
tour algorithm. HOG features were extracted from these X-ray im-
ages for further processing and then these features were classified 
using SVM. The classification rate of 97.96% for Grade-0, 92.85% for 
Grade-1, 86.20% for Grade-2, 100% for Grade-3 and Grade-4 is ob-
tained, respectively. The classification results validated by the two 
experts are in close agreement which is 94.96% and 94.64% respec-
tively. Moreover, the proposed method yielded better results with 
accuracy of 95% compared to methods that used active contour 
segmentation to acquire ROI and Random Forest Classifier with 
recognition rate of 87.92% and K-NN Classifier with classification 
rate of 88.88%.

Thomson et al., [61] implemented a Random Forest Regression 
Voting Constrained Local Model (RFCLM) for the detection of bone 
positions and for locating the primary landmarks around the tibia 
and femur efficiently. They combined features from bone shape 
and image texture in tibia from 500 X-ray images and then applied 
two random forests using a weighted approach. Their reported 
results showed that the combination of shape and texture-based 
models provide a significant improvement in overall classification 
performance as the accuracy value increased from 0.789 to 0.849 
when using both shape and texture instead of the shape only.

Tiulpin et al., [65] used HOG feature descriptor for preprocess-
ing and applied linear SVM which was pre-trained on radiographic 
images from three sources (MOST dataset - 1,574 Images, Central 
Finland centre hospital – 93 and OKOA - 77). This study proposed a 
system which can be applied for large scale analysis. There is, how-
ever, one limitation of this study. The images were annotated by 
one person and therefore could have a potential bias. In addition 
to this, more research on localisation is required to be conducted 
to improve this method.

Subramoniam et al., [56] used SVM with fused kernel func-
tions for classifying 130 (30 normal and 100 abnormal) radio-
graphic images as the haralick features extracted from ROI was 
one-dimensional data and not sufficient for the appropriate classi-
fication. Therefore, kernel functions (such as linear, Polynomial and 
radial basis) were used to map the one-dimensional data to higher 
dimensional in order to make classification effective. KL grading 
system was used in order to grade Articular Space (AS) between 
bones as the reduction in space indicates OA. Further, only the 
cases under grade 0, grade 1 and grade 2 were considered and rest 
all were discarded as joint space narrowing was easily predictable 
without using any supporting tool. During classification, SVM clas-
sifier used hyperplane classification to classify features extracted 
from ROI of knee joint into normal AS and abnormal AS joints. 
The results depicted that better classification results were obtained 
with RBF kernel functions. Further, the classification accuracy was 
improved by aggregating extracted features and cascading kernel 
functions.

6. Deep learning techniques for arthritis diagnosis

Besides traditional machine learning approaches, advanced 
deep learning techniques have also been used for the diagnosis 
of arthritis. In the following, we discuss the relevant deep learning 
techniques. (See also Table 2.)

Antony et al., [4] applied Convolutional neural networks on 
Radiographs (4,476 Participants) to obtain Knee Severity using 
Kellgren and Lawrence Grade. The classification results with fea-
tures extracted using pre-trained CNNs (VGG16, VGG-M-128 and 
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Table 2
Summary of machine and deep learning techniques for the diagnosis of arthritis (in chronological order).

Reference Year Technique Dataset size 
No. of patients or images

Modality∗

Thomson et al., [61] 2015 RFRVCL/SVM 500 images X-ray
Subramoniam et al., [56] 2015 SVM 130 images Radiographs
Antony et al., [4] 2016 CNN 4476 patients MRI
Gornale et al., [15] 2016 Active Contour Segmentation 200 images X-ray
Gornale et al., [16] 2016 KNN 207 images X-ray
Yoo et al., [69] 2016 k-means 60 patients EHR
Gornale et al., [17] 2017 HoG/SVM 616 images X-ray
Antony et al., [3] 2017 FCN/CNN 7502 patients MRI
Lezcano-Valverde et al., [31] 2017 Random Survival Forest 1741 patients EHR
Murakami et al., [39] 2018 CNN 30 patients Radiographs
Tang et al., [59] 2018 CNN – Ultrasound
Orange et al., [44] 2018 SVM 129 patients Tissue Samples
Norgeot et al., [42] 2019 LSTM 820 patients EHR
Hemalatha et al., [19] 2019 CNN – Ultrasound
Abedin et al., [1] 2019 ElasticNet/Random Forest/CNN 4796 patients MRI
Chen et al., [9] 2019 Yolo v2 – X-ray
Tiulpin et al., [63] 2019 ResNet-34 – Radiographs
Norman et al., [43] 2019 U-Net 500 images X-ray
Tiuplin et al., [62] 2019 Deep Learning Regression – X-ray
Liu et al., [34] 2020 Fast RCNN – X-ray
Tolpadi et al., [63] 2020 DenseNet-121 MRI
Hoang et al., [21] 2020 Forest Regression Voting – X-ray
Bonaretti et al., [7] 2020 - Extended Phase Graph (EPG) 10 patients MRI
Dang et al., [10] 2020 CNN 200 patients X-ray
Von et al., [49] 2020 RetinaNet – X-ray
Chen et al., [9] 2019 CNN – X-ray
Nguyen et al., [41] 2020 Siamese Network 500 images X-ray

∗ As reported in the original paper.

BVLC Caffenet) were shown to be better than OA classification 
using Wndchrm, which is an open source utility for biological 
image analysis. Moreover, features from conv4 layer, pool5 layer 
of VGG-M-128 net and conv5 layer, pool5 layer of BVLC Caffenet 
had higher classification accuracy than fully connected layers (fc6 
and fc7) of VGGnets and Caffenet. Later, multi-class classification 
through linear SVM was performed, and again CNN features out-
performed Wndchrm tool, and classification accuracy of convolu-
tional as well as pooling layers was better than a fully connected 
layer. In addition to this, BVLC CaffeNet and VGG-M-128 networks 
were fine-tuned by repacing the top fully connected layer, which 
further improved multi-class classification where fine-tuned BVLC 
performed slightly better than VGG-M-128. Moreover, authors ar-
gued that treating KL grades as discrete variables can cause classi-
fication issues and incorrect predictions. Thus, they proposed more 
appropriate measure to assess the performance of Knee OA sever-
ity by using a continuous evaluation metric such as mean squared 
error. The pre-trained BVLC CaffeNet model was fine-tuned us-
ing both classification loss (cross-entropy on softmax outputs) and 
regression loss (mean squared error) to compare performance of 
knee OA severity assessment. The results revealed that it reduced 
both mean squared error and improved multi-class classification 
accuracy of the model. The MSE was significantly lower in the 
case of CNN Regression loss (that is 0.504) than CNN classifica-
tion network and Wndchrm (that is 0.836 and 2.459 respectively). 
To evaluate that regression loss provides better classification accu-
racy, the network trained with classification loss and trained with 
regression loss were also compared. It was reported that the mul-
ticlass classification accuracy of networks fine-tuned for regression 
loss was 59.6% and it is 43% in case of classification loss. Hence, 
the network trained with regression performed better than the 
network trained with classification loss. This is because of the fact 
that regression provides more information to network about the 
relationships between KL grades and allows them to better gener-
alise for the unseen data.

In another study, Antony et al., [3] applied the combination of 
FCN and CNN where FCN was used for Knee Detection, and CNN 

was used for both classification (0, 1, 2, 3, 4) and regression (0 to 
4) tasks to predict the KL grade severity. The classification re-
sults are compared with Wndchrm, and this model trained from 
scratch outperformed Wndchrm with accuracy of 60.3% and MSE 
0.898. Even the results are better than their previously reported 
methods that used BVLC CaffeNet for classifying Knee OA X-rays 
through transfer learning. These improvements are because of the 
lightweight architecture of the network with less (5.4 million) pa-
rameters compared to 62 million parameters of BVLC. When the 
network is jointly trained for classification and regression of knee 
images, the learning curves show a decrease in training and vali-
dation losses, and also an increase in training and validation ac-
curacies over the training. In addition, an improvement in the 
multi-class classification accuracy was observed for network jointly 
trained for classification and regression as compared to the previ-
ous method. The confusion matrix indicated that the classification 
of Knee OA images conditioned on KL grade 1 was problematic be-
cause of small variations.

Chen et al., [9] applied two deep convolutional neural networks 
(CNN) to automatically assess the severity of knee OA and used 
the Kellgren-Lawrence (KL) grading system. First, a customised 
one-stage YOLOv2 network was proposed to detect knee joints, 
in X-ray images with slight variations. Secondly, the most popular 
CNN models, including ResNet, VGG, and DenseNet (different vari-
ants) as well as InceptionV3, have been fine tuned to classify the 
detected knee joint images. They also developed new adjustable 
ordinal loss function which improved the classification accuracy 
and reduced the MAE of all classification models. The size of X-
ray images of the knee is 2048×2560, which was very large for 
YOLOv2. Therefore, it was resized to the size of 256×320 for all the 
x-ray images. The results were obtained by using the cross-entropy 
loss and the proposed ordinal loss. In all comparative classifiers, 
the ordinal loss obtains greater accuracy and lower MAE in manu-
ally cropped knee joints. Most classifiers (except ResNet-152, VGG-
16bn, InceptionV3) get higher accuracy at automatically detected 
knee joints. All classifiers, however, get lower MAE. These findings 
indicate the superior impact of a proposed ordinal loss function 
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for KL grading of the knee. Some classifiers, such as ResNet-101 
(MAE: 0.408, 0.391, accuracy: 65.5% and 66.7%) and VGG-16 (MAE: 
0.356, 0.358, accuracy: 68.5% and 69.1%), get even greater accuracy 
and lower MAE for automatically identified knee joints. The fine-
tuned VGG-19 model achieves the best classification performance 
for knee KL grading compared to the ResNet or DenseNet variants, 
validating that the performance of CNN models was highly depen-
dent on the training task. The fine-tuned VGG-19 model with the 
proposed ordinal failure on the knee grading function obtains the 
best classification accuracy of 69.7 per cent and average absolute 
error (MAE) of 0.344.

Norgeot et al., [42] proposed long short term memory (LSTM) 
based technique for the diagnosis and predicting the progression 
of RA disease. In their study, electronic health record (EHR) of pa-
tients was used to train and test the LSTM. The dataset used in 
their study consists of 820 patients.

Li et al., [32] used Convolutional Siamese Neural networks to 
score knee severity using KL grading scale. The study takes fine-
tuned ResNet-34 as a baseline and shows novelties such as gen-
erating a new approach that uses Siamese networks to reduce the 
learnable parameters and making the model less sensitive to noise. 
The study was able to use radiographs from both MOST and OAI 
datasets. However, only the 5, 10- and 15-degree beam angle im-
ages were used from the MOST dataset. For processing the images, 
rather than learning images in similarity metric between the pairs, 
the study used symmetry in the image itself and the network was 
able to learn the identical weights for image sides. The Siamese 
network was able to reduce the number of parameters that were 
needed to be learned. This helped the model to contain itself to 
features that a human expert would focus on. The model achieved 
a multiclass accuracy of 66.71% and AUC of 0.93 on OAI dataset. 
However, the qualitative assessment on test set revealed that the 
fine-tuned model can learn features that are not useful or are ir-
relevant. The study also used GradCAM to determine whether the 
model has been learning the correct features. One of the biggest 
strengths of this approach is that the model and the results re-
produced as both the dataset and the implementation (code) are 
publicly available.

Tiulpin et al., [63] developed a multimodal pipeline to generate 
output prediction on Osteoarthritis progression. The researchers 
proposed models for the pipeline which can take the input from 
raw images to generate results. The best results were generated by 
the combination of Convolutional Neural network and other fea-
tures such as Age, Sex, BMI, Injury, Surgery, WOMAC score and 
KL-grade. Next, it was fused with Gradient Boosted Machines. The 
best model received the AUC of 0.81 (0.79-0.82) and an AP of 0.70 
(0.68-0.72). The researchers also used GradCAM to visualize that 
the model was learning correctly.

Bonaretti et al., [7] presented the mean characteristics of the 
OAI Control and Incidence Cohort of the selected patients. All sub-
jects in OA groups were monitored for the symptomatic progres-
sion of KL grades of 0 baselines. In WOMAC, the control group 
had a decrease of 0.1 over 36 months, suggesting a lack of de-
velopment. The OA group’s symptomatic progression had a change 
in WOMAC of 25, indicating a consistent development of the OA 
symptoms over a follow-up span of 36 months. The OA group’s 
symptomatic development was significantly higher in the theme 
age and BMI than in the control group (age: 56, BMI: 25, Mean 
change in WOMAC: −0.1, Mean baseline KL: 0) and (age: 59, BMI: 
29, Mean change in WOMAC: −25, Mean baseline KL: 0).

Nguyen et al., [41] proposed a method which consists of two 
parts: a) A novel variant of Siamese network and b) a novel Deep 
SSL technique. In their proposed approach, the Siamese model fo-
cuses on the medial and lateral sides of the examined knee. They 
selected three architectures including, GAP, SAM-VH, SAM-HV ac-
cording to their average BAs. The best one among these (i.e., SAM-

HV) has been selected as the basic model of SSL approaches. Their 
reported results show that their SAM architecture performed bet-
ter than the Baseline SL model for all dataset settings. In fact, their 
SAM-HV architecture was 9% better than the BAs Baseline. In the 
case of 500 samples per KL, SAM-HV model exceeded the base-
line model by 6%. The accuracy of their early detection OA system 
(which implies KL = 2) with 500 and 1000 marks per grade KL, 
was 58% and 74%, respectively.

Yoo et al., [69] built a scoring system and improved ANN model 
using predictive factors such as sex, age, body mass index, edu-
cational status, hypertension, moderate physical activity, and knee 
pain. Both the scoring system and ANN predicted radiographic 
knee OA (AUC 0.73 vs. 0.81, p < 0.001) and symptomatic knee 
OA (AUC 0.88 vs. 0.94, p < 0.001) with strong discriminative ca-
pability in internal validation. All the scoring system and ANN 
showed lower discriminative potential in predicting radiographic 
knee OA (AUC 0.62 versus 0.67, p < 0.001) and symptomatic knee 
OA (AUC 0.7) in external validation. For the OAI population, the 
scoring system predicted radiographic and symptomatic knee OA 
with the AUCs of 0.62 and 0.70 respectively, and the ANN with the 
AUCs of 0.66 and 0.76, respectively. Table 2 provides summary (in 
chronological order) of machine and deep learning techniques for 
the diagnosis of arthritis.

7. Open problems and research challenges

In view of the above, it can be noted that most of the tech-
niques use the publicly available datasets including MOST and OAI 
for the diagnosis and prediction of arthritis. We also found that 
several recent papers have made their code publicly available, thus 
making it easier for other researchers to reproduce the model and 
experimental results. The availability of code and evaluation on 
publicly available datasets can contribute towards the future re-
search and innovation in the field of arthritis diagnosis.

We have also noticed that the recent studies have started to 
use MRI images for research as they can provide better results than 
simple 2D images. While acquisition of MRIs is expensive, however, 
these scans can provide valuable information to machine learning 
techniques. From the deep learning point of view, several interest-
ing and novel architectures have been developed to address the 
challenging problem of the arthritis diagnosis.

Despite of this progress, there are still some research challenges 
which need to be addressed. These are briefly discussed below.

7.1. Deep learning models

Nowadays, deep learning is dominating the field of vision and it 
has achieved remarkable improvements in this context. However, it 
has not received much attention in addressing the challenges par-
ticular to early diagnosis of arthritis and prediction. By reviewing 
the current techniques, the number of deep learning methods pro-
posed in the literature is too few.

7.2. Data scarcity - large scale dataset

Data scarcity is a serious issue in medical researcher due to pa-
tients’ privacy and several other factors such as ethic approvals. 
Currently, there is no large scale dataset publicly available for the 
training of data hungry deep learning models. The current tech-
niques have been evaluated on small datasets, which contain only 
few hundred images. Deep learning algorithms perform better on 
a large scale dataset and availability of large scale OA and RA 
datasets can help in the early diagnosis of these diseases and im-
prove the overall diagnostic system performance.
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7.3. Data imbalance

Data imbalance is another challenge in machine learning based 
arthritis diagnosis. The available datasets are imbalanced and the 
research papers do not mention how they deal with data imbal-
ance. This is also a significant issue for deep learning. Therefore, 
having a balanced dataset and information on how to handle the 
imbalanced medical dataset would be very useful.

7.4. RA and OA research gaps

The current literature review suggests that a lot of work has 
been done on osteoarthritis particularly knee OA. However, there 
are few studies on other types of OA such as hip osteoarthritis. In 
addition, machine learning techniques for the diagnosis of rheuma-
toid arthritis are also very few. There is a room for research in 
these areas. A combination of imaging technology and electronic 
health record for the diagnosis of RA and other types of OA will be 
a good research direction.

8. Conclusion

Early diagnosis of arthritis, including OA and RA, and the ability 
to track disease progression is challenging. Progress is needed to 
help medical practitioners and researchers make efficient and re-
liable decisions within a short time. Accurate predictive modelling 
for arthritis progression might be difficult to achieve without ad-
vanced machine learning (ML) and deep learning (DL) techniques.

In view of the above, our literature survey discussed the current 
machine learning and deep learning techniques for the diagno-
sis of OA and RA. The article also highlights open problems and 
current research challenges. It can be noted that there is a rising 
trend of ML/DL-related studies and papers in the field of arthritis. 
This indicates the need for enhancing our understanding about the 
onset and progression of the disease, and new data-driven tools 
that could enable early diagnosis and prediction of arthritis. ML 
and DL could play a key role towards these directions extracting 
valuable knowledge from various types of clinical data and finding 
new solutions that utilize data from the greatest possible variety 
of sources.

Efficient and reliable screening of patients with early arthritis 
and patients who will progress rapidly using prediction models is 
important, not only from a medical and patient standpoint but also 
for the pharmaceutical industry, scientific community and society 
in general. Such screening could be used as a tool to guide clin-
ical decision making, representing a major advancement towards 
attaining precision medicine.

In developing predictive modelling approaches, huge dataset 
is needed particularly for RA research. In addition, to increase 
the prediction accuracy and interpretability of arthritis prediction 
models, advanced deep learning techniques are required to be de-
veloped. We believe that there are a lot of research opportunities 
particularly in the artificial intelligence/deep learning domain for 
the diagnosis of OA and RA that may assist physicians to predict 
the course of the diagnosis and suggest appropriate treatment for 
the patients.
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