2,455 research outputs found

    Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction

    Full text link
    We tackle image question answering (ImageQA) problem by learning a convolutional neural network (CNN) with a dynamic parameter layer whose weights are determined adaptively based on questions. For the adaptive parameter prediction, we employ a separate parameter prediction network, which consists of gated recurrent unit (GRU) taking a question as its input and a fully-connected layer generating a set of candidate weights as its output. However, it is challenging to construct a parameter prediction network for a large number of parameters in the fully-connected dynamic parameter layer of the CNN. We reduce the complexity of this problem by incorporating a hashing technique, where the candidate weights given by the parameter prediction network are selected using a predefined hash function to determine individual weights in the dynamic parameter layer. The proposed network---joint network with the CNN for ImageQA and the parameter prediction network---is trained end-to-end through back-propagation, where its weights are initialized using a pre-trained CNN and GRU. The proposed algorithm illustrates the state-of-the-art performance on all available public ImageQA benchmarks

    Efficient Gauss Elimination for Near-Quadratic Matrices with One Short Random Block per Row, with Applications

    Get PDF
    In this paper we identify a new class of sparse near-quadratic random Boolean matrices that have full row rank over F_2 = {0,1} with high probability and can be transformed into echelon form in almost linear time by a simple version of Gauss elimination. The random matrix with dimensions n(1-epsilon) x n is generated as follows: In each row, identify a block of length L = O((log n)/epsilon) at a random position. The entries outside the block are 0, the entries inside the block are given by fair coin tosses. Sorting the rows according to the positions of the blocks transforms the matrix into a kind of band matrix, on which, as it turns out, Gauss elimination works very efficiently with high probability. For the proof, the effects of Gauss elimination are interpreted as a ("coin-flipping") variant of Robin Hood hashing, whose behaviour can be captured in terms of a simple Markov model from queuing theory. Bounds for expected construction time and high success probability follow from results in this area. They readily extend to larger finite fields in place of F_2. By employing hashing, this matrix family leads to a new implementation of a retrieval data structure, which represents an arbitrary function f: S -> {0,1} for some set S of m = (1-epsilon)n keys. It requires m/(1-epsilon) bits of space, construction takes O(m/epsilon^2) expected time on a word RAM, while queries take O(1/epsilon) time and access only one contiguous segment of O((log m)/epsilon) bits in the representation (O(1/epsilon) consecutive words on a word RAM). The method is readily implemented and highly practical, and it is competitive with state-of-the-art methods. In a more theoretical variant, which works only for unrealistically large S, we can even achieve construction time O(m/epsilon) and query time O(1), accessing O(1) contiguous memory words for a query. By well-established methods the retrieval data structure leads to efficient constructions of (static) perfect hash functions and (static) Bloom filters with almost optimal space and very local storage access patterns for queries

    Variational Deep Semantic Hashing for Text Documents

    Full text link
    As the amount of textual data has been rapidly increasing over the past decade, efficient similarity search methods have become a crucial component of large-scale information retrieval systems. A popular strategy is to represent original data samples by compact binary codes through hashing. A spectrum of machine learning methods have been utilized, but they often lack expressiveness and flexibility in modeling to learn effective representations. The recent advances of deep learning in a wide range of applications has demonstrated its capability to learn robust and powerful feature representations for complex data. Especially, deep generative models naturally combine the expressiveness of probabilistic generative models with the high capacity of deep neural networks, which is very suitable for text modeling. However, little work has leveraged the recent progress in deep learning for text hashing. In this paper, we propose a series of novel deep document generative models for text hashing. The first proposed model is unsupervised while the second one is supervised by utilizing document labels/tags for hashing. The third model further considers document-specific factors that affect the generation of words. The probabilistic generative formulation of the proposed models provides a principled framework for model extension, uncertainty estimation, simulation, and interpretability. Based on variational inference and reparameterization, the proposed models can be interpreted as encoder-decoder deep neural networks and thus they are capable of learning complex nonlinear distributed representations of the original documents. We conduct a comprehensive set of experiments on four public testbeds. The experimental results have demonstrated the effectiveness of the proposed supervised learning models for text hashing.Comment: 11 pages, 4 figure

    Fast hashing with Strong Concentration Bounds

    Full text link
    Previous work on tabulation hashing by Patrascu and Thorup from STOC'11 on simple tabulation and from SODA'13 on twisted tabulation offered Chernoff-style concentration bounds on hash based sums, e.g., the number of balls/keys hashing to a given bin, but under some quite severe restrictions on the expected values of these sums. The basic idea in tabulation hashing is to view a key as consisting of c=O(1)c=O(1) characters, e.g., a 64-bit key as c=8c=8 characters of 8-bits. The character domain Σ\Sigma should be small enough that character tables of size ∣Σ∣|\Sigma| fit in fast cache. The schemes then use O(1)O(1) tables of this size, so the space of tabulation hashing is O(∣Σ∣)O(|\Sigma|). However, the concentration bounds by Patrascu and Thorup only apply if the expected sums are ≪∣Σ∣\ll |\Sigma|. To see the problem, consider the very simple case where we use tabulation hashing to throw nn balls into mm bins and want to analyse the number of balls in a given bin. With their concentration bounds, we are fine if n=mn=m, for then the expected value is 11. However, if m=2m=2, as when tossing nn unbiased coins, the expected value n/2n/2 is ≫∣Σ∣\gg |\Sigma| for large data sets, e.g., data sets that do not fit in fast cache. To handle expectations that go beyond the limits of our small space, we need a much more advanced analysis of simple tabulation, plus a new tabulation technique that we call \emph{tabulation-permutation} hashing which is at most twice as slow as simple tabulation. No other hashing scheme of comparable speed offers similar Chernoff-style concentration bounds.Comment: 54 pages, 3 figures. An extended abstract appeared at the 52nd Annual ACM Symposium on Theory of Computing (STOC20
    • …
    corecore