871 research outputs found

    Fully Homomorphic Encryption over the Integers Revisited

    Get PDF
    Two main computational problems serve as security foundations of current fully homomorphic encryption schemes: Regev\u27s Learning With Errors problem (LWE) and Howgrave-Graham\u27s Approximate Greatest Common Divisor problem (AGCD). Our first contribution is a reduction from LWE to AGCD. As a second contribution, we describe a new AGCD-based fully homomorphic encryption scheme, which outperforms all prior AGCD-based proposals: its security does not rely on the presumed hardness of the so-called Sparse Subset Sum problem, and the bit-length of a ciphertext is only softO(lambda), where lambda refers to the security parameter

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Conditionals in Homomorphic Encryption and Machine Learning Applications

    Get PDF
    Homomorphic encryption aims at allowing computations on encrypted data without decryption other than that of the final result. This could provide an elegant solution to the issue of privacy preservation in data-based applications, such as those using machine learning, but several open issues hamper this plan. In this work we assess the possibility for homomorphic encryption to fully implement its program without relying on other techniques, such as multiparty computation (SMPC), which may be impossible in many use cases (for instance due to the high level of communication required). We proceed in two steps: i) on the basis of the structured program theorem (Bohm-Jacopini theorem) we identify the relevant minimal set of operations homomorphic encryption must be able to perform to implement any algorithm; and ii) we analyse the possibility to solve -- and propose an implementation for -- the most fundamentally relevant issue as it emerges from our analysis, that is, the implementation of conditionals (requiring comparison and selection/jump operations). We show how this issue clashes with the fundamental requirements of homomorphic encryption and could represent a drawback for its use as a complete solution for privacy preservation in data-based applications, in particular machine learning ones. Our approach for comparisons is novel and entirely embedded in homomorphic encryption, while previous studies relied on other techniques, such as SMPC, demanding high level of communication among parties, and decryption of intermediate results from data-owners. Our protocol is also provably safe (sharing the same safety as the homomorphic encryption schemes), differently from other techniques such as Order-Preserving/Revealing-Encryption (OPE/ORE).Comment: 14 pages, 1 figure, corrected typos, added introductory pedagogical section on polynomial approximatio

    On the IND-CCA1 Security of FHE Schemes

    Get PDF
    Fully homomorphic encryption (FHE) is a powerful tool in cryptography that allows one to perform arbitrary computations on encrypted material without having to decrypt it first. There are numerous FHE schemes, all of which are expanded from somewhat homomorphic encryption (SHE) schemes, and some of which are considered viable in practice. However, while these FHE schemes are semantically (IND-CPA) secure, the question of their IND-CCA1 security is much less studied, and we therefore provide an overview of the IND-CCA1 security of all acknowledged FHE schemes in this paper. To give this overview, we grouped the SHE schemes into broad categories based on their similarities and underlying hardness problems. For each category, we show that the SHE schemes are susceptible to either known adaptive key recovery attacks, a natural extension of known attacks, or our proposed attacks. Finally, we discuss the known techniques to achieve IND-CCA1-secure FHE and SHE schemes. We concluded that none of the proposed schemes were IND-CCA1-secure and that the known general constructions all had their shortcomings.publishedVersio

    Secure kk-ish Nearest Neighbors Classifier

    Get PDF
    In machine learning, classifiers are used to predict a class of a given query based on an existing (classified) database. Given a database S of n d-dimensional points and a d-dimensional query q, the k-nearest neighbors (kNN) classifier assigns q with the majority class of its k nearest neighbors in S. In the secure version of kNN, S and q are owned by two different parties that do not want to share their data. Unfortunately, all known solutions for secure kNN either require a large communication complexity between the parties, or are very inefficient to run. In this work we present a classifier based on kNN, that can be implemented efficiently with homomorphic encryption (HE). The efficiency of our classifier comes from a relaxation we make on kNN, where we allow it to consider kappa nearest neighbors for kappa ~ k with some probability. We therefore call our classifier k-ish Nearest Neighbors (k-ish NN). The success probability of our solution depends on the distribution of the distances from q to S and increase as its statistical distance to Gaussian decrease. To implement our classifier we introduce the concept of double-blinded coin-toss. In a doubly-blinded coin-toss the success probability as well as the output of the toss are encrypted. We use this coin-toss to efficiently approximate the average and variance of the distances from q to S. We believe these two techniques may be of independent interest. When implemented with HE, the k-ish NN has a circuit depth that is independent of n, therefore making it scalable. We also implemented our classifier in an open source library based on HELib and tested it on a breast tumor database. The accuracy of our classifier (F_1 score) were 98\% and classification took less than 3 hours compared to (estimated) weeks in current HE implementations
    • …
    corecore