16 research outputs found

    Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast query and close to linear update time

    No full text
    For any fixed 1 > [epsilon] > 0 we present a fully dynamic algorithm for maintaining (2 + [epsilon])-approximate all-pairs shortest paths in undirected graphs with positive edge weights. We use a randomized (Las Vegas) update algorithm (but a deterministic query procedure), so the time given is the expected amortized update time. Our query time O(log log log n). The update time is O[over ~](mnO(1/[sqrt](log n)) log (nR)), where R is the ratio between the heaviest and the lightest edge weight in the graph (so R = 1 in unweighted graphs). Unfortunately, the update time does have the drawback of a super-polynomial dependence on e. it grows as (3/[epsilon])[sqrt]log n/log(3/[epsilon]) = n [sqrt]log (3/[epsilon])/log n. Our algorithm has a significantly faster update time than any other algorithm with sub-polynomial query time. For exact distances, the state of the art algorithm has an update time of O[over ~](n[superscript 2]). For approximate distances, the best previous algorithm has a O(kmn[superscript 1/k]) update time and returns (2 k - 1) stretch paths. Thus, it needs an update time of O(m[sqrt](n)) to get close to our approximation, and it has to return O([sqrt](log n)) approximate distances to match our update time

    Almost Shortest Paths with Near-Additive Error in Weighted Graphs

    Get PDF
    Let G=(V,E,w)G=(V,E,w) be a weighted undirected graph with nn vertices and mm edges, and fix a set of ss sources SVS\subseteq V. We study the problem of computing {\em almost shortest paths} (ASP) for all pairs in S×VS \times V in both classical centralized and parallel (PRAM) models of computation. Consider the regime of multiplicative approximation of 1+ϵ1+\epsilon, for an arbitrarily small constant ϵ>0\epsilon > 0 . In this regime existing centralized algorithms require Ω(min{Es,nω})\Omega(\min\{|E|s,n^\omega\}) time, where ω<2.372\omega < 2.372 is the matrix multiplication exponent. Existing PRAM algorithms with polylogarithmic depth (aka time) require work Ω(min{Es,nω})\Omega(\min\{|E|s,n^\omega\}). Our centralized algorithm has running time O((m+ns)nρ)O((m+ ns)n^\rho), and its PRAM counterpart has polylogarithmic depth and work O((m+ns)nρ)O((m + ns)n^\rho), for an arbitrarily small constant ρ>0\rho > 0. For a pair (s,v)S×V(s,v) \in S\times V, it provides a path of length d^(s,v)\hat{d}(s,v) that satisfies d^(s,v)(1+ϵ)dG(s,v)+βW(s,v)\hat{d}(s,v) \le (1+\epsilon)d_G(s,v) + \beta \cdot W(s,v), where W(s,v)W(s,v) is the weight of the heaviest edge on some shortest svs-v path. Hence our additive term depends linearly on a {\em local} maximum edge weight, as opposed to the global maximum edge weight in previous works. Finally, our β=(1/ρ)O(1/ρ)\beta = (1/\rho)^{O(1/\rho)}. We also extend a centralized algorithm of Dor et al. \cite{DHZ00}. For a parameter κ=1,2,\kappa = 1,2,\ldots, this algorithm provides for {\em unweighted} graphs a purely additive approximation of 2(κ1)2(\kappa -1) for {\em all pairs shortest paths} (APASP) in time O~(n2+1/κ)\tilde{O}(n^{2+1/\kappa}). Within the same running time, our algorithm for {\em weighted} graphs provides a purely additive error of 2(κ1)W(u,v)2(\kappa - 1) W(u,v), for every vertex pair (u,v)(V2)(u,v) \in {V \choose 2}, with W(u,v)W(u,v) defined as above. On the way to these results we devise a suit of novel constructions of spanners, emulators and hopsets

    Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models

    Full text link
    We present a method for solving the transshipment problem - also known as uncapacitated minimum cost flow - up to a multiplicative error of 1+ε1 + \varepsilon in undirected graphs with non-negative edge weights using a tailored gradient descent algorithm. Using O~()\tilde{O}(\cdot) to hide polylogarithmic factors in nn (the number of nodes in the graph), our gradient descent algorithm takes O~(ε2)\tilde O(\varepsilon^{-2}) iterations, and in each iteration it solves an instance of the transshipment problem up to a multiplicative error of polylogn\operatorname{polylog} n. In particular, this allows us to perform a single iteration by computing a solution on a sparse spanner of logarithmic stretch. Using a randomized rounding scheme, we can further extend the method to finding approximate solutions for the single-source shortest paths (SSSP) problem. As a consequence, we improve upon prior work by obtaining the following results: (1) Broadcast CONGEST model: (1+ε)(1 + \varepsilon)-approximate SSSP using O~((n+D)ε3)\tilde{O}((\sqrt{n} + D)\varepsilon^{-3}) rounds, where D D is the (hop) diameter of the network. (2) Broadcast congested clique model: (1+ε)(1 + \varepsilon)-approximate transshipment and SSSP using O~(ε2)\tilde{O}(\varepsilon^{-2}) rounds. (3) Multipass streaming model: (1+ε)(1 + \varepsilon)-approximate transshipment and SSSP using O~(n)\tilde{O}(n) space and O~(ε2)\tilde{O}(\varepsilon^{-2}) passes. The previously fastest SSSP algorithms for these models leverage sparse hop sets. We bypass the hop set construction; computing a spanner is sufficient with our method. The above bounds assume non-negative edge weights that are polynomially bounded in nn; for general non-negative weights, running times scale with the logarithm of the maximum ratio between non-zero weights.Comment: Accepted to SIAM Journal on Computing. Preliminary version in DISC 2017. Abstract shortened to fit arXiv's limitation to 1920 character

    On Efficient Distributed Construction of Near Optimal Routing Schemes

    Full text link
    Given a distributed network represented by a weighted undirected graph G=(V,E)G=(V,E) on nn vertices, and a parameter kk, we devise a distributed algorithm that computes a routing scheme in (n1/2+1/k+D)no(1)(n^{1/2+1/k}+D)\cdot n^{o(1)} rounds, where DD is the hop-diameter of the network. The running time matches the lower bound of Ω~(n1/2+D)\tilde{\Omega}(n^{1/2}+D) rounds (which holds for any scheme with polynomial stretch), up to lower order terms. The routing tables are of size O~(n1/k)\tilde{O}(n^{1/k}), the labels are of size O(klog2n)O(k\log^2n), and every packet is routed on a path suffering stretch at most 4k5+o(1)4k-5+o(1). Our construction nearly matches the state-of-the-art for routing schemes built in a centralized sequential manner. The previous best algorithms for building routing tables in a distributed small messages model were by \cite[STOC 2013]{LP13} and \cite[PODC 2015]{LP15}. The former has similar properties but suffers from substantially larger routing tables of size O(n1/2+1/k)O(n^{1/2+1/k}), while the latter has sub-optimal running time of O~(min{(nD)1/2n1/k,n2/3+2/(3k)+D})\tilde{O}(\min\{(nD)^{1/2}\cdot n^{1/k},n^{2/3+2/(3k)}+D\})

    Deterministic Algorithms for Decremental Approximate Shortest Paths: Faster and Simpler

    Full text link
    In the decremental (1+ϵ)(1+\epsilon)-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph G=(V,E)G=(V,E) with n=V,m=En = |V|, m = |E|, undergoing edge deletions, and a distinguished source sVs \in V, and we are asked to process edge deletions efficiently and answer queries for distance estimates dist~G(s,v)\widetilde{\mathbf{dist}}_G(s,v) for each vVv \in V, at any stage, such that distG(s,v)dist~G(s,v)(1+ϵ)distG(s,v)\mathbf{dist}_G(s,v) \leq \widetilde{\mathbf{dist}}_G(s,v) \leq (1+ \epsilon)\mathbf{dist}_G(s,v). In the decremental (1+ϵ)(1+\epsilon)-approximate All-Pairs Shortest Path (APSP) problem, we are asked to answer queries for distance estimates dist~G(u,v)\widetilde{\mathbf{dist}}_G(u,v) for every u,vVu,v \in V. In this article, we consider the problems for undirected, unweighted graphs. We present a new \emph{deterministic} algorithm for the decremental (1+ϵ)(1+\epsilon)-approximate SSSP problem that takes total update time O(mn0.5+o(1))O(mn^{0.5 + o(1)}). Our algorithm improves on the currently best algorithm for dense graphs by Chechik and Bernstein [STOC 2016] with total update time O~(n2)\tilde{O}(n^2) and the best existing algorithm for sparse graphs with running time O~(n1.25m)\tilde{O}(n^{1.25}\sqrt{m}) [SODA 2017] whenever m=O(n1.5o(1))m = O(n^{1.5 - o(1)}). In order to obtain this new algorithm, we develop several new techniques including improved decremental cover data structures for graphs, a more efficient notion of the heavy/light decomposition framework introduced by Chechik and Bernstein and the first clustering technique to maintain a dynamic \emph{sparse} emulator in the deterministic setting. As a by-product, we also obtain a new simple deterministic algorithm for the decremental (1+ϵ)(1+\epsilon)-approximate APSP problem with near-optimal total running time O~(mn/ϵ)\tilde{O}(mn /\epsilon) matching the time complexity of the sophisticated but rather involved algorithm by Henzinger, Forster and Nanongkai [FOCS 2013].Comment: Appeared in SODA'2
    corecore