35 research outputs found

    ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ์ €์žฅ์žฅ์น˜์˜ ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช… ํ–ฅ์ƒ์„ ์œ„ํ•œ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์ตœ์ ํ™” ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€์ง€ํ™.์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด, ๊ธฐ์กด์˜ ๋Š๋ฆฐ ํ•˜๋“œ๋””์Šคํฌ(HDD)๋ฅผ ๋น ๋ฅธ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ๋ฐ˜ ์ €์žฅ์žฅ์น˜(SSD)๋กœ ๋Œ€์ฒดํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ตœ๊ทผ ํ™œ๋ฐœํžˆ ์ง„ํ–‰ ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ง€์†์ ์ธ ๋ฐ˜๋„์ฒด ๊ณต์ • ์Šค์ผ€์ผ๋ง ๋ฐ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ๋ง ๊ธฐ์ˆ ๋กœ SSD ๊ฐ€๊ฒฉ์„ ๋™๊ธ‰ HDD ์ˆ˜์ค€์œผ๋กœ ๋‚ฎ์•„์กŒ์ง€๋งŒ, ์ตœ๊ทผ์˜ ์ฒจ๋‹จ ๋””๋ฐ”์ด์Šค ๊ธฐ์ˆ ์˜ ๋ถ€์ž‘์šฉ์œผ ๋กœ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ˆ˜๋ช…์ด ์งง์•„์ง€๋Š” ๊ฒƒ์€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์—์„œ์˜ SSD์˜ ๊ด‘๋ฒ”์œ„ํ•œ ์ฑ„ํƒ์„ ๋ง‰๋Š” ์ฃผ์š” ์žฅ๋ฒฝ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ๊ทผ์˜ ๊ณ ๋ฐ€๋„ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ˆ˜๋ช… ๋ฐ ์„ฑ๋Šฅ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ์˜ ๊ฐœ์„  ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ๋ฒ•์€ ์‘์šฉ ํ”„๋กœ ๊ทธ๋žจ์˜ ์“ฐ๊ธฐ ๋ฌธ๋งฅ์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์กด์—๋Š” ์–ป์„ ์ˆ˜ ์—†์—ˆ๋˜ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ํŒจํ„ด ๋ฐ ์ค‘๋ณต ๋ฐ์ดํ„ฐ ํŒจํ„ด์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ, ๋‹จ์ผ ๊ณ„์ธต์˜ ๋‹จ์ˆœํ•œ ์ •๋ณด๋งŒ์„ ํ™œ์šฉํ–ˆ ๋˜ ๊ธฐ์กด ๊ธฐ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•จ์œผ๋กœ์จ ํšจ๊ณผ์ ์œผ๋กœ NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช…์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ I/O ์ž‘์—…์—๋Š” ๋ฌธ๋งฅ์— ๋”ฐ๋ผ ๊ณ ์œ ํ•œ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…๊ณผ ์ค‘ ๋ณต ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์ด ์กด์žฌํ•œ๋‹ค๋Š” ์ ์„ ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋ฌธ๋งฅ ์ •๋ณด๋ฅผ ํšจ๊ณผ ์ ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ (์“ฐ๊ธฐ ๋ฌธ๋งฅ) ์ถ”์ถœ ๋ฐฉ๋ฒ•์„ ๊ตฌํ˜„ ํ•˜์˜€๋‹ค. ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ์ •๋ณด๋ฅผ ํ†ตํ•ด ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜ ๋ถ€ํ•˜์™€ ์ œํ•œ๋œ ์ˆ˜๋ช…์˜ NAND ํ”Œ ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ฐœ์„ ์„ ์œ„ํ•œ ๊ธฐ์กด ๊ธฐ์ˆ ์˜ ํ•œ๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ๋ฉ€ํ‹ฐ ์ŠคํŠธ๋ฆผ SSD์—์„œ WAF๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์ˆ˜๋ช… ์˜ˆ์ธก์˜ ์ •ํ™• ์„ฑ์„ ๋†’์ด๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ I/O ์ปจํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉ ํ•˜๋Š” ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์˜ ํ•ต์‹ฌ ๋™๊ธฐ๋Š” ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…์ด LBA๋ณด๋‹ค ๋†’์€ ์ถ”์ƒํ™” ์ˆ˜์ค€์—์„œ ํ‰๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ํ”„ ๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๋ช…์„ ๋ณด๋‹ค ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ, ๊ธฐ์กด ๊ธฐ๋ฒ•์—์„œ LBA๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ ์ˆ˜๋ช…์„ ๊ด€๋ฆฌํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ ๋กœ ๋”ฐ๋ผ์„œ ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰์…˜์˜ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ˆ˜๋ช…์ด ์งง์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜๋ช…์ด ๊ธด ๋ฐ์ดํ„ฐ์™€ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฆฌ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์“ฐ๊ธฐ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์˜ ์ค‘๋ณต ๋ฐ์ดํ„ฐ ํŒจํ„ด ๋ถ„์„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆํ•„์š”ํ•œ ์ค‘๋ณต ์ œ๊ฑฐ ์ž‘์—…์„ ํ”ผํ•  ์ˆ˜์žˆ๋Š” ์„ ํƒ์  ์ค‘๋ณต ์ œ๊ฑฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ค‘๋ณต ๋ฐ ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์ง€ ์•Š๋Š” ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๊ฐ€ ์กด์žฌํ•จ์„ ๋ถ„์„์ ์œผ๋กœ ๋ณด์ด๊ณ  ์ด๋“ค์„ ์ œ์™ธํ•จ์œผ๋กœ์จ, ์ค‘๋ณต์ œ๊ฑฐ ๋™์ž‘์˜ ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐœ์ƒ ํ•˜๋Š” ํŒจํ„ด์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ธฐ๋ก๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ด€๋ฆฌํ•˜๋Š” ์ž๋ฃŒ๊ตฌ์กฐ ์œ ์ง€ ์ •์ฑ…์„ ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ์„œ๋ธŒ ํŽ˜์ด์ง€ ์ฒญํฌ๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ค‘๋ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐ ํ•  ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ด๋Š” ์„ธ๋ถ„ํ™” ๋œ ์ค‘๋ณต ์ œ๊ฑฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ์ˆ ์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹ค์ œ ์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘ ๋œ I/O ํŠธ๋ ˆ์ด์Šค์— ๊ธฐ๋ฐ˜ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ‰๊ฐ€ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์—๋ฎฌ๋ ˆ์ดํ„ฐ ๊ตฌํ˜„์„ ํ†ตํ•ด ์‹ค์ œ ์‘์šฉ์„ ๋™์ž‘ํ•˜๋ฉด์„œ ์ผ๋ จ์˜ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ๋ฉ€ํ‹ฐ ์ŠคํŠธ๋ฆผ ๋””๋ฐ”์ด์Šค์˜ ๋‚ด๋ถ€ ํŽŒ์›จ์–ด๋ฅผ ์ˆ˜์ •ํ•˜์—ฌ ์‹ค์ œ์™€ ๊ฐ€์žฅ ๋น„์Šทํ•˜๊ฒŒ ์„ค์ •๋œ ํ™˜๊ฒฝ์—์„œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜ ์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ ์ˆ˜์ค€ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ด ์„ฑ๋Šฅ ๋ฐ ์ˆ˜๋ช… ๊ฐœ์„  ์ธก๋ฉด์—์„œ ๊ธฐ์กด ์ตœ์ ํ™” ๊ธฐ๋ฒ•๋ณด๋‹ค ๋” ํšจ๊ณผ์ ์ด์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ–ฅํ›„ ์ œ์•ˆ๋œ ๊ธฐ ๋ฒ•๋“ค์ด ๋ณด๋‹ค ๋” ๋ฐœ์ „๋œ๋‹ค๋ฉด, ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์ดˆ๊ณ ์† ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ์ฃผ ์ €์žฅ์žฅ์น˜๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐ์— ๊ธ์ •์ ์ธ ๊ธฐ์—ฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Replacing HDDs with NAND flash-based storage devices (SSDs) has been one of the major challenges in modern computing systems especially in regards to better performance and higher mobility. Although the continuous semiconductor process scaling and multi-leveling techniques lower the price of SSDs to the comparable level of HDDs, the decreasing lifetime of NAND flash memory, as a side effect of recent advanced device technologies, is emerging as one of the major barriers to the wide adoption of SSDs in highperformance computing systems. In this dissertation, system-level lifetime improvement techniques for recent high-density NAND flash memory are proposed. Unlike existing techniques, the proposed techniques resolve the problems of decreasing performance and lifetime of NAND flash memory by exploiting the I/O context of an application to analyze data lifetime patterns or duplicate data contents patterns. We first present that I/O activities of an application have distinct data lifetime and duplicate data patterns. In order to effectively utilize the context information, we implemented the program context extraction method. With the program context, we can overcome the limitations of existing techniques for improving the garbage collection overhead and limited lifetime of NAND flash memory. Second, we propose a system-level approach to reduce WAF that exploits the I/O context of an application to increase the data lifetime prediction for the multi-streamed SSDs. The key motivation behind the proposed technique was that data lifetimes should be estimated at a higher abstraction level than LBAs, so we employ a write program context as a stream management unit. Thus, it can effectively separate data with short lifetimes from data with long lifetimes to improve the efficiency of garbage collection. Lastly, we propose a selective deduplication that can avoid unnecessary deduplication work based on the duplicate data pattern analysis of write program context. With the help of selective deduplication, we also propose fine-grained deduplication which improves the likelihood of eliminating redundant data by introducing sub-page chunk. It also resolves technical difficulties caused by its finer granularity, i.e., increased memory requirement and read response time. In order to evaluate the effectiveness of the proposed techniques, we performed a series of evaluations using both a trace-driven simulator and emulator with I/O traces which were collected from various real-world systems. To understand the feasibility of the proposed techniques, we also implemented them in Linux kernel on top of our in-house flash storage prototype and then evaluated their effects on the lifetime while running real-world applications. Our experimental results show that system-level optimization techniques are more effective over existing optimization techniques.I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Garbage Collection Problem . . . . . . . . . . . . . 2 1.1.2 Limited Endurance Problem . . . . . . . . . . . . . 4 1.2 Dissertation Goals . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . 7 II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 NAND Flash Memory System Software . . . . . . . . . . . 9 2.2 NAND Flash-Based Storage Devices . . . . . . . . . . . . . 10 2.3 Multi-stream Interface . . . . . . . . . . . . . . . . . . . . 11 2.4 Inline Data Deduplication Technique . . . . . . . . . . . . . 12 2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Data Separation Techniques for Multi-streamed SSDs 13 2.5.2 Write Traffic Reduction Techniques . . . . . . . . . 15 2.5.3 Program Context based Optimization Techniques for Operating Systems . . . . . . . . 18 III. Program Context-based Analysis . . . . . . . . . . . . . . . . 21 3.1 Definition and Extraction of Program Context . . . . . . . . 21 3.2 Data Lifetime Patterns of I/O Activities . . . . . . . . . . . 24 3.3 Duplicate Data Patterns of I/O Activities . . . . . . . . . . . 26 IV. Fully Automatic Stream Management For Multi-Streamed SSDs Using Program Contexts . . 29 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 No Automatic Stream Management for General I/O Workloads . . . . . . . . . 33 4.2.2 Limited Number of Supported Streams . . . . . . . 36 4.3 Automatic I/O Activity Management . . . . . . . . . . . . . 38 4.3.1 PC as a Unit of Lifetime Classification for General I/O Workloads . . . . . . . . . . . 39 4.4 Support for Large Number of Streams . . . . . . . . . . . . 41 4.4.1 PCs with Large Lifetime Variances . . . . . . . . . 42 4.4.2 Implementation of Internal Streams . . . . . . . . . 44 4.5 Design and Implementation of PCStream . . . . . . . . . . 46 4.5.1 PC Lifetime Management . . . . . . . . . . . . . . 46 4.5.2 Mapping PCs to SSD streams . . . . . . . . . . . . 49 4.5.3 Internal Stream Management . . . . . . . . . . . . . 50 4.5.4 PC Extraction for Indirect Writes . . . . . . . . . . 51 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . 53 4.6.1 Experimental Settings . . . . . . . . . . . . . . . . 53 4.6.2 Performance Evaluation . . . . . . . . . . . . . . . 55 4.6.3 WAF Comparison . . . . . . . . . . . . . . . . . . . 56 4.6.4 Per-stream Lifetime Distribution Analysis . . . . . . 57 4.6.5 Impact of Internal Streams . . . . . . . . . . . . . . 58 4.6.6 Impact of the PC Attribute Table . . . . . . . . . . . 60 V. Deduplication Technique using Program Contexts . . . . . . 62 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Selective Deduplication using Program Contexts . . . . . . . 63 5.2.1 PCDedup: Improving SSD Deduplication Efficiency using Selective Hash Cache Management . . . . . . 63 5.2.2 2-level LRU Eviction Policy . . . . . . . . . . . . . 68 5.3 Exploiting Small Chunk Size . . . . . . . . . . . . . . . . . 70 5.3.1 Fine-Grained Deduplication . . . . . . . . . . . . . 70 5.3.2 Read Overhead Management . . . . . . . . . . . . . 76 5.3.3 Memory Overhead Management . . . . . . . . . . . 80 5.3.4 Experimental Results . . . . . . . . . . . . . . . . . 82 VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . 88 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2.1 Supporting applications that have unusal program contexts . . . . . . . . . . . . . 89 6.2.2 Optimizing read request based on the I/O context . . 90 6.2.3 Exploiting context information to improve fingerprint lookups . . . . .. . . . . . 91 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Docto

    ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์—์„œ ๋ฒ„์ŠคํŠธ ๋ฒ„ํผ๋ฅผ ์œ„ํ•œ I/O ๋ถ„๋ฆฌ ๊ธฐ๋ฒ•์˜ ์‹ค์ฆ์  ๊ตฌํ˜„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2019. 8. ์—„ํ˜„์ƒ.To meet the exascale I/O requirements in the High-Performance Computing (HPC), a new I/O subsystem, named Burst Buffer, based on non-volatile memory, has been developed. However, the diverse HPC workloads and the bursty I/O pattern cause severe data fragmentation to SSDs, which creates the need for expensive garbage collection (GC) and also increase the number of bytes actually written to SSD. The new multi-stream feature in SSDs offers an option to reduce the cost of garbage collection. In this paper, we leverage this multi-stream feature to group the I/O streams based on the user IDs and implement this strategy in a burst buffer we call BIOS, short for Burst Buffer with an I/O Separation scheme. Furthermore, to optimize the I/O separation scheme in burst buffer environments, we propose a stream-aware scheduling policy based on burst buffer pools in workload manager and implement the real burst buffer system, BIOS framework, by integrating the BIOS with workload manager. We evaluate the BIOS and framework with a burst buffer I/O traces from Cori Supercomputer including a diverse set of applications. We also disclose and analyze the benefits and limitations of using I/O separation scheme in HPC systems. Experimental results show that the BIOS could improve the performance by 1.44ร— on average and reduce the Write Amplification Factor (WAF) by up to 1.20ร—, and prove that the framework can keep on the benefits of the I/O separation scheme in the HPC environment.Abstract Introduction 1 Background and Challenges 5 Burst Buffer 5 Write Amplification in SSDs 6 Multi-streamed SSD 7 Challenges of Multi-stream Feature in Burst Buffers 7 I/O Separation Scheme in Burst Buffer 10 Stream Allocation Criteria 10 Implementation 12 Limitations of User ID-based Stream Allocation 14 BIOS Framework 15 Support in Workload Manager 15 Burst Buffer Pools 16 Stream-Aware Scheduling Policy 18 Workflow of BIOS Framework 20 Evaluation 21 Experiment Setup 21 Evaluation with Synthetic Workload 21 Evaluation with HPC Applications 25 Evaluation with Emulated Workload 27 Evaluation with Different Striping Configuration 29 Evaluation on BIOS Framework 30 Summary and Lessons Learned 33 An I/O Separation Scheme in Burst Buffer 33 Evaluation with Synthetic Workload 33 Evaluation with HPC Applications 33 Evaluation with Emulated Workload 34 Evaluation with Striping Configurations 34 A BIOS Framework 34 Evaluation with Real Burst Buffer Environments 34 Discussion 36 Limited Number of Nodes 36 Advanced BIOS Framework 37 Related work 38 Conclusions 40 Bibliography 42 ์ดˆ๋ก 48Maste

    DeltaFS: Pursuing Zero Update Overhead via Metadata-Enabled Delta Compression for Log-structured File System on Mobile Devices

    Full text link
    Data compression has been widely adopted to release mobile devices from intensive write pressure. Delta compression is particularly promising for its high compression efficacy over conventional compression methods. However, this method suffers from non-trivial system overheads incurred by delta maintenance and read penalty, which prevents its applicability on mobile devices. To this end, this paper proposes DeltaFS, a metadata-enabled Delta compression on log-structured File System for mobile devices, to achieve utmost compressing efficiency and zero hardware costs. DeltaFS smartly exploits the out-of-place updating ability of Log-structured File System (LFS) to alleviate the problems of write amplification, which is the key bottleneck for delta compression implementation. Specifically, DeltaFS utilizes the inline area in file inodes for delta maintenance with zero hardware cost, and integrates an inline area manage strategy to improve the utilization of constrained inline area. Moreover, a complimentary delta maintenance strategy is incorporated, which selectively maintains delta chunks in the main data area to break through the limitation of constrained inline area. Experimental results show that DeltaFS substantially reduces write traffics by up to 64.8\%, and improves the I/O performance by up to 37.3\%

    LSM-tree based Database System Optimization using Application-Driven Flash Management

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2019. 8. ์—ผํ—Œ์˜.Modern data centers aim to take advantage of high parallelism in storage de- vices for I/O intensive applications such as storage servers, cache systems, and key-value stores. Key-value stores are the most typical applications that should provide a highly reliable service with high-performance. To increase the I/O performance of key-value stores, many data centers have actively adopted next- generation storage devices such as Non-Volatile Memory Express (NVMe) based Solid State Devices (SSDs). NVMe SSDs and its protocol are characterized to provide a high degree of parallelism. However, they may not guarantee pre- dictable performance while providing high performance and parallelism. For example, heavily mixed read and write requests can result in performance degra- dation of throughput and response time due to the interference between the requests and internal operations (e.g., Garbage Collection (GC)). To minimize the interference and provide higher performance, this paper presents IsoKV, an isolation scheme for key-value stores by exploiting internal parallelism in SSDs. IsoKV manages the level of parallelism of SSD directly by running application-driven flash management scheme. By storing data with dif- ferent characteristics in each dedicated internal parallel units of SSD, IsoKV re- duces interference between I/O requests. We implement IsoKV on RocksDB and evaluate it using Open-Channel SSD. Our extensive experiments have shown that IsoKV improves overall throughput and response time on average 1.20ร— and 43% compared with the existing scheme, respectively.์ตœ์‹  ๋ฐ์ดํ„ฐ ์„ผํ„ฐ๋Š” ์Šคํ† ๋ฆฌ์ง€ ์„œ๋ฒ„, ์บ์‹œ ์‹œ์Šคํ…œ ๋ฐ Key-Value stores์™€ ๊ฐ™์€ I/O ์ง‘์•ฝ์ ์ธ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•œ ์Šคํ† ๋ฆฌ์ง€ ์žฅ์น˜์˜ ๋†’์€ ๋ณ‘๋ ฌ์„ฑ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. Key-value stores๋Š” ๊ณ ์„ฑ๋Šฅ์˜ ๊ณ ์‹ ๋ขฐ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•ด์•ผ ํ•˜๋Š” ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์ด๋‹ค. Key-value stores์˜ I/O ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋งŽ์€ ๋ฐ ์ดํ„ฐ ์„ผํ„ฐ๊ฐ€ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ ์ต์Šคํ”„๋ ˆ์Šค(NVMe) ๊ธฐ๋ฐ˜ SSD(Solid State Devices) ์™€ ๊ฐ™์€ ์ฐจ์„ธ๋Œ€ ์Šคํ† ๋ฆฌ์ง€ ์žฅ์น˜๋ฅผ ์ ๊ทน์ ์œผ๋กœ ์ฑ„ํƒํ•˜๊ณ  ์žˆ๋‹ค. NVMe SSD์™€ ๊ทธ ํ”„ ๋กœํ† ์ฝœ์€ ๋†’์€ ์ˆ˜์ค€์˜ ๋ณ‘๋ ฌ์„ฑ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ NVMe SSD๊ฐ€ ๋ณ‘๋ ฌ์„ฑ์„ ์ œ๊ณตํ•˜๋ฉด์„œ๋„ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜์ง€๋Š” ๋ชปํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์ฝ๊ธฐ ๋ฐ ์“ฐ๊ธฐ ์š”์ฒญ์ด ๋งŽ์ด ํ˜ผํ•ฉ๋˜๋ฉด ์š”์ฒญ๊ณผ ๋‚ด๋ถ€ ์ž‘์—…(์˜ˆ: GC) ์‚ฌ์ด์˜ ๊ฐ„์„ญ์œผ๋กœ ์ธํ•ด ์ฒ˜๋ฆฌ๋Ÿ‰ ๋ฐ ์‘๋‹ต ์‹œ๊ฐ„์˜ ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ„์„ญ์„ ์ตœ์†Œํ™”ํ•˜๊ณ  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Key-value stores๋ฅผ ์œ„ํ•œ ๊ฒฉ๋ฆฌ ๋ฐฉ์‹์ธ IsoKV๋ฅผ ์ œ์‹œํ•œ๋‹ค. IsoKV๋Š” ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ค‘์‹ฌ ํ”Œ๋ž˜์‹œ ์ €์žฅ์žฅ ์น˜ ๊ด€๋ฆฌ ๋ฐฉ์‹์„ ํ†ตํ•ด SSD์˜ ๋ณ‘๋ ฌํ™” ์ˆ˜์ค€์„ ์ง์ ‘ ๊ด€๋ฆฌํ•œ๋‹ค. IsoKV๋Š” SSD์˜ ๊ฐ ์ „์šฉ ๋‚ด๋ถ€ ๋ณ‘๋ ฌ ์žฅ์น˜์— ์„œ๋กœ ๋‹ค๋ฅธ ํŠน์„ฑ์„ ๊ฐ€์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•จ์œผ๋กœ์จ I/O ์š”์ฒญ ๊ฐ„์˜ ๊ฐ„์„ญ์„ ์ค„์ธ๋‹ค. ๋˜ํ•œ IsoKV๋Š” SSD์˜ LSM ํŠธ๋ฆฌ ๋กœ์ง๊ณผ ๋ฐ์ดํ„ฐ ๊ด€๋ฆฌ๋ฅผ ๋™๊ธฐํ™”ํ•˜ ์—ฌ GC๋ฅผ ์ œ๊ฑฐํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” RocksDB๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ IsoKV๋ฅผ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, Open-Channel SSD๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์„ฑ๋Šฅํ‰๊ฐ€ํ•˜์˜€๋‹ค.. ๋ณธ ์—ฐ๊ตฌ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด IsoKV๋Š” ๊ธฐ์กด์˜ ๋ฐ์ดํ„ฐ ์ €์žฅ ๋ฐฉ์‹๊ณผ ๋น„๊ตํ•˜์—ฌ ํ‰๊ท  1.20ร— ๋น ๋ฅด๊ณ  ๋ฐ 43% ๊ฐ์†Œ๋œ ์ฒ˜๋ฆฌ๋Ÿ‰๊ณผ ์‘๋‹ต์‹œ๊ฐ„ ์„ฑ๋Šฅ ๊ฐœ์„  ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. ๊ด€์ ์—์„œ 43% ๊ฐ์†Œํ•˜์˜€๋‹ค.Abstract Introduction 1 Background 8 Log-Structured Merge tree based Database 8 Open-Channel SSDs 9 Preliminary Experimental Evaluation using oc bench 10 Design and Implementation 14 Overview of IsoKV 14 GC-free flash storage management synchronized with LSM-tree logic 15 I/O type Isolation through Application-Driven Flash Management 17 Dynamic Arrangement of NAND-Flash Parallelism 19 Implementation 21 Evaluation 23 Experimental Setup 23 Performance Evaluation 25 Related Work 31 Conclusion 34 Bibliography 35 ์ดˆ๋ก 40Maste

    ์ดˆ๊ณ ์šฉ๋Ÿ‰ ์†”๋ฆฌ๋“œ ์Šคํ…Œ์ด๋“œ ๋“œ๋ผ์ด๋ธŒ๋ฅผ ์œ„ํ•œ ์‹ ๋ขฐ์„ฑ ํ–ฅ์ƒ ๋ฐ ์„ฑ๋Šฅ ์ตœ์ ํ™” ๊ธฐ์ˆ 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021.8. ๊น€์ง€ํ™.The development of ultra-large NAND flash storage devices (SSDs) is recently made possible by NAND flash memory semiconductor process scaling and multi-leveling techniques, and NAND package technology, which enables continuous increasing of storage capacity by mounting many NAND flash memory dies in an SSD. As the capacity of an SSD increases, the total cost of ownership of the storage system can be reduced very effectively, however due to limitations of ultra-large SSDs in reliability and performance, there exists some obstacles for ultra-large SSDs to be widely adopted. In order to take advantage of an ultra-large SSD, it is necessary to develop new techniques to improve these reliability and performance issues. In this dissertation, we propose various optimization techniques to solve the reliability and performance issues of ultra-large SSDs. In order to overcome the optimization limitations of the existing approaches, our techniques were designed based on various characteristic evaluation results of NAND flash devices and field failure characteristics analysis results of real SSDs. We first propose a low-stress erase technique for the purpose of reducing the characteristic deviation between wordlines (WLs) in a NAND flash block. By reducing the erase stress on weak WLs, it effectively slows down NAND degradation and improves NAND endurance. From the NAND evaluation results, the conditions that can most effectively guard the weak WLs are defined as the gerase mode. In addition, considering the user workload characteristics, we propose a technique to dynamically select the optimal gerase mode that can maximize the lifetime of the SSD. Secondly, we propose an integrated approach that maximizes the efficiency of copyback operations to improve performance while not compromising data reliability. Based on characterization using real 3D TLC flash chips, we propose a novel per-block error propagation model under consecutive copyback operations. Our model significantly increases the number of successive copybacks by exploiting the aging characteristics of NAND blocks. Furthermore, we devise a resource-efficient error management scheme that can handle successive copybacks where pages move around multiple blocks with different reliability. By utilizing proposed copyback operation for internal data movement, SSD performance can be effectively improved without any reliability issues. Finally, we propose a new recovery scheme, called reparo, for a RAID storage system with ultra-large SSDs. Unlike the existing RAID recovery schemes, reparo repairs a failed SSD at the NAND die granularity without replacing it with a new SSD, thus avoiding most of the inter-SSD data copies during a RAID recovery step. When a NAND die of an SSD fails, reparo exploits a multi-core processor of the SSD controller to identify failed LBAs from the failed NAND die and to recover data from the failed LBAs. Furthermore, reparo ensures no negative post-recovery impact on the performance and lifetime of the repaired SSD. In order to evaluate the effectiveness of the proposed techniques, we implemented them in a storage device prototype, an open NAND flash storage device development environment, and a real SSD environment. And their usefulness was verified using various benchmarks and I/O traces collected the from real-world applications. The experiment results show that the reliability and performance of the ultra-large SSD can be effectively improved through the proposed techniques.๋ฐ˜๋„์ฒด ๊ณต์ •์˜ ๋ฏธ์„ธํ™”, ๋‹ค์น˜ํ™” ๊ธฐ์ˆ ์— ์˜ํ•ด์„œ ์ง€์†์ ์œผ๋กœ ์šฉ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ๋‹จ์œ„ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ ๋ฉ”๋ชจ๋ฆฌ์™€ ํ•˜๋‚˜์˜ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ ๊ธฐ๋ฐ˜ ์Šคํ† ๋ฆฌ์ง€ ์‹œ์Šคํ…œ ๋‚ด์— ์ˆ˜ ๋งŽ์€ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ ๋ฉ”๋ชจ๋ฆฌ ๋‹ค์ด๋ฅผ ์‹ค์žฅํ•  ์ˆ˜ ์žˆ๊ฒŒํ•˜๋Š” ๋‚ธ๋“œ ํŒจํ‚ค์ง€ ๊ธฐ์ˆ ๋กœ ์ธํ•ด ํ•˜๋“œ๋””์Šคํฌ๋ณด๋‹ค ํ›จ์”ฌ ๋” ํฐ ์ดˆ๊ณ ์šฉ๋Ÿ‰์˜ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ ์ €์žฅ์žฅ์น˜์˜ ๊ฐœ๋ฐœ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค. ํ”Œ๋ž˜์‰ฌ ์ €์žฅ์žฅ์น˜์˜ ์šฉ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•  ์ˆ˜๋ก ์Šคํ† ๋ฆฌ์ง€ ์‹œ์Šคํ…œ์˜ ์ด ์†Œ์œ ๋น„์šฉ์„ ์ค„์ด๋Š”๋ฐ ๋งค์šฐ ํšจ๊ณผ์ ์ธ ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋‚˜, ์‹ ๋ขฐ์„ฑ ๋ฐ ์„ฑ๋Šฅ์˜ ์ธก๋ฉด์—์„œ์˜ ํ•œ๊ณ„๋กœ ์ธํ•ด์„œ ์ดˆ๊ณ ์šฉ๋Ÿ‰ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ ์ €์žฅ์žฅ์น˜๊ฐ€ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š”๋ฐ ์žˆ์–ด์„œ ์žฅ์• ๋ฌผ๋กœ ์ž‘์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ดˆ๊ณ ์šฉ๋Ÿ‰ ์ €์žฅ์žฅ์น˜์˜ ์žฅ์ ์„ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ด๋Ÿฌํ•œ ์‹ ๋ขฐ์„ฑ ๋ฐ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐ๋ฒ•์˜ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ดˆ๊ณ ์šฉ๋Ÿ‰ ๋‚ธ๋“œ๊ธฐ๋ฐ˜ ์ €์žฅ์žฅ์น˜(SSD)์˜ ๋ฌธ์ œ์ ์ธ ์„ฑ๋Šฅ ๋ฐ ์‹ ๋ขฐ์„ฑ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด ๊ธฐ๋ฒ•๋“ค์˜ ์ตœ์ ํ™” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์šฐ๋ฆฌ์˜ ๊ธฐ์ˆ ์€ ์‹ค์ œ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ ์†Œ์ž์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ํŠน์„ฑ ํ‰๊ฐ€ ๊ฒฐ๊ณผ์™€ SSD์˜ ํ˜„์žฅ ๋ถˆ๋Ÿ‰ ํŠน์„ฑ ๋ถ„์„๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ ์•ˆ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด์„œ ๋‚ธ๋“œ์˜ ํ”Œ๋ž˜์‰ฌ ํŠน์„ฑ๊ณผ SSD, ๊ทธ๋ฆฌ๊ณ  ํ˜ธ์ŠคํŠธ ์‹œ์Šคํ…œ์˜ ๋™์ž‘ ํŠน์„ฑ์„ ๊ณ ๋ คํ•œ ์„ฑ๋Šฅ ๋ฐ ์‹ ๋ขฐ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ์งธ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ ๋ถˆ๋ก๋‚ด์˜ ํŽ˜์ด์ง€๋“ค๊ฐ„์˜ ํŠน์„ฑํŽธ์ฐจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด์„œ ๋™์ ์ธ ์†Œ๊ฑฐ ์ŠคํŠธ๋ ˆ์Šค ๊ฒฝ๊ฐ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๋‚ธ๋“œ ๋ธ”๋ก์˜ ๋‚ด๊ตฌ์„ฑ์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด์„œ ํŠน์„ฑ์ด ์•ฝํ•œ ํŽ˜์ด์ง€๋“ค์— ๋Œ€ํ•ด์„œ ๋” ์ ์€ ์†Œ๊ฑฐ ์ŠคํŠธ๋ ˆ์Šค๊ฐ€ ์ธ๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋‚ธ๋“œ ํ‰๊ฐ€ ๊ฒฐ๊ณผ๋กœ ๋ถ€ํ„ฐ ์†Œ๊ฑฐ ์ŠคํŠธ๋ ˆ์Šค ๊ฒฝ๊ฐ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ๋˜ํ•œ ์‚ฌ์šฉ์ž ์›Œํฌ๋กœ๋“œ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ, ์†Œ๊ฑฐ ์ŠคํŠธ๋ ˆ์Šค ๊ฒฝ๊ฐ ๊ธฐ๋ฒ•์˜ ํšจ๊ณผ๊ฐ€ ์ตœ๋Œ€ํ™” ๋  ์ˆ˜ ์žˆ๋Š” ์ตœ์ ์˜ ๊ฒฝ๊ฐ ์ˆ˜์ค€์„ ๋™์ ์œผ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด์„œ ๋‚ธ๋“œ ๋ธ”๋ก์„ ์—ดํ™”์‹œํ‚ค๋Š” ์ฃผ์š” ์›์ธ์ธ ์†Œ๊ฑฐ ๋™์ž‘์„ ํšจ์œจ์ ์œผ๋กœ ์ œ์–ดํ•จ์œผ๋กœ์จ ์ €์žฅ์žฅ์น˜์˜ ์ˆ˜๋ช…์„ ํšจ๊ณผ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๋‘˜์งธ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ์šฉ๋Ÿ‰ SSD์—์„œ์˜ ๋‚ด๋ถ€ ๋ฐ์ดํ„ฐ ์ด๋™์œผ๋กœ ์ธํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฌธ์ œ๋ฅผ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ์˜ ์ œํ•œ๋œ ์นดํ”ผ๋ฐฑ(copyback) ๋ช…๋ น์„ ํ™œ์šฉํ•˜๋Š” ์ ์‘ํ˜• ๊ธฐ๋ฒ•์ธ rCPB์„ ์ œ์•ˆํ•œ๋‹ค. rCPB์€ Copyback ๋ช…๋ น์˜ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™” ํ•˜๋ฉด์„œ๋„ ๋ฐ์ดํ„ฐ ์‹ ๋ขฐ์„ฑ์— ๋ฌธ์ œ๊ฐ€ ์—†๋„๋ก ๋‚ธ๋“œ์˜ ๋ธ”๋Ÿญ์˜ ๋…ธํ™”ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ์ƒˆ๋กœ์šด copyback ์˜ค๋ฅ˜ ์ „ํŒŒ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ๋‹ค. ์ด์—๋”ํ•ด, ์‹ ๋ขฐ์„ฑ์ด ๋‹ค๋ฅธ ๋ธ”๋Ÿญ๊ฐ„์˜ copyback ๋ช…๋ น์„ ํ™œ์šฉํ•œ ๋ฐ์ดํ„ฐ ์ด๋™์„ ๋ฌธ์ œ์—†์ด ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ž์› ํšจ์œจ์ ์ธ ์˜ค๋ฅ˜ ๊ด€๋ฆฌ ์ฒด๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด์„œ ์‹ ๋ขฐ์„ฑ์— ๋ฌธ์ œ๋ฅผ ์ฃผ์ง€ ์•Š๋Š” ์ˆ˜์ค€์—์„œ copyback์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜์—ฌ ๋‚ด๋ถ€ ๋ฐ์ดํ„ฐ ์ด๋™์„ ์ตœ์ ํ™” ํ•จ์œผ๋กœ์จ SSD์˜ ์„ฑ๋Šฅํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ดˆ๊ณ ์šฉ๋Ÿ‰ SSD์—์„œ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ์˜ ๋‹ค์ด(die) ๋ถˆ๋Ÿ‰์œผ๋กœ ์ธํ•œ ๋ ˆ์ด๋“œ(redundant array of independent disks, RAID) ๋ฆฌ๋นŒ๋“œ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ตœ์†Œํ™” ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด RAID ๋ณต๊ตฌ ๊ธฐ๋ฒ•์ธ reparo๋ฅผ ์ œ์•ˆํ•œ๋‹ค. Reparo๋Š” SSD์— ๋Œ€ํ•œ ๊ต์ฒด์—†์ด SSD์˜ ๋ถˆ๋Ÿ‰ die์— ๋Œ€ํ•ด์„œ๋งŒ ๋ณต๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ๋ณต๊ตฌ ์˜ค๋ฒ„ํ—ค๋“œ๋ฅผ ์ตœ์†Œํ™”ํ•œ๋‹ค. ๋ถˆ๋Ÿ‰์ด ๋ฐœ์ƒํ•œ die์˜ ๋ฐ์ดํ„ฐ๋งŒ ์„ ๋ณ„์ ์œผ๋กœ ๋ณต๊ตฌํ•จ์œผ๋กœ์จ ๋ณต๊ตฌ ๊ณผ์ •์˜ ๋ฆฌ๋นŒ๋“œ ํŠธ๋ž˜ํ”ฝ์„ ์ตœ์†Œํ™”ํ•˜๋ฉฐ, SSD ๋‚ด๋ถ€์˜ ๋ณ‘๋ ฌ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ถˆ๋Ÿ‰ die ๋ณต๊ตฌ ์‹œ๊ฐ„์„ ํšจ๊ณผ์ ์œผ๋กœ ๋‹จ์ถ•ํ•œ๋‹ค. ๋˜ํ•œ die ๋ถˆ๋Ÿ‰์œผ๋กœ ์ธํ•œ ๋ฌผ๋ฆฌ์  ๊ณต๊ฐ„๊ฐ์†Œ์˜ ๋ถ€์ž‘์šฉ์„ ์ตœ์†Œํ™” ํ•จ์œผ๋กœ์จ ๋ณต๊ตฌ ์ดํ›„์˜ ์„ฑ๋Šฅ ์ €ํ•˜ ๋ฐ ์ˆ˜๋ช…์˜ ๊ฐ์†Œ ๋ฌธ์ œ๊ฐ€ ์—†๋„๋ก ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•๋“ค์€ ์ €์žฅ์žฅ์น˜ ํ”„๋กœํ† ํƒ€์ž… ๋ฐ ๊ณต๊ฐœ ๋‚ธ๋“œ ํ”Œ๋ž˜์‰ฌ ์ €์žฅ์žฅ์น˜ ๊ฐœ๋ฐœํ™˜๊ฒฝ, ๊ทธ๋ฆฌ๊ณ  ์‹ค์žฅ SSDํ™˜๊ฒฝ์— ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์‹ค์ œ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์„ ๋ชจ์‚ฌํ•œ ๋‹ค์–‘ํ•œ ๋ฒคํŠธ๋งˆํฌ ๋ฐ ์‹ค์ œ I/O ํŠธ๋ ˆ์ด์Šค๋“ค์„ ์ด์šฉํ•˜์—ฌ ๊ทธ ์œ ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•๋“ค์„ ํ†ตํ•ด์„œ ์ดˆ๊ณ ์šฉ๋Ÿ‰ SSD์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ์„ฑ๋Šฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.I Introduction 1 1.1 Motivation 1 1.2 Dissertation Goals 3 1.3 Contributions 5 1.4 Dissertation Structure 8 II Background 11 2.1 Overview of 3D NAND Flash Memory 11 2.2 Reliability Management in NAND Flash Memory 14 2.3 UL SSD architecture 15 2.4 Related Work 17 2.4.1 NAND endurance optimization by utilizing page characteristics difference 17 2.4.2 Performance optimizations using copyback operation 18 2.4.3 Optimizations for RAID Rebuild 19 2.4.4 Reliability improvement using internal RAID 20 III GuardedErase: Extending SSD Lifetimes by Protecting Weak Wordlines 22 3.1 Reliability Characterization of a 3D NAND Flash Block 22 3.1.1 Large Reliability Variations Among WLs 22 3.1.2 Erase Stress on Flash Reliability 26 3.2 GuardedErase: Design Overview and its Endurance Model 28 3.2.1 Basic Idea 28 3.2.2 Per-WL Low-Stress Erase Mode 31 3.2.3 Per-Block Erase Modes 35 3.3 Design and Implementation of LongFTL 39 3.3.1 Overview 39 3.3.2 Weak WL Detector 40 3.3.3 WAF Monitor 42 3.3.4 GErase Mode Selector 43 3.4 Experimental Results 46 3.4.1 Experimental Settings 46 3.4.2 Lifetime Improvement 47 3.4.3 Performance Overhead 49 3.4.4 Effectiveness of Lowest Erase Relief Ratio 50 IV Improving SSD Performance Using Adaptive Restricted- Copyback Operations 52 4.1 Motivations 52 4.1.1 Data Migration in Modern SSD 52 4.1.2 Need for Block Aging-Aware Copyback 53 4.2 RCPB: Copyback with a Limit 55 4.2.1 Error-Propagation Characteristics 55 4.2.2 RCPB Operation Model 58 4.3 Design and Implementation of rcFTL 59 4.3.1 EPM module 60 4.3.2 Data Migration Mode Selection 64 4.4 Experimental Results 65 4.4.1 Experimental Setup 65 4.4.2 Evaluation Results 66 V Reparo: A Fast RAID Recovery Scheme for Ultra- Large SSDs 70 5.1 SSD Failures: Causes and Characteristics 70 5.1.1 SSD Failure Types 70 5.1.2 SSD Failure Characteristics 72 5.2 Impact of UL SSDs on RAID Reliability 74 5.3 RAID Recovery using Reparo 77 5.3.1 Overview of Reparo 77 5.4 Cooperative Die Recovery 82 5.4.1 Identifier: Parallel Search of Failed LBAs 82 5.4.2 Handler: Per-Core Space Utilization Adjustment 83 5.5 Identifier Acceleration Using P2L Mapping Information 89 5.5.1 Page-level P2L Entrustment to Neighboring Die 90 5.5.2 Block-level P2L Entrustment to Neighboring Die 92 5.5.3 Additional Considerations for P2L Entrustment 94 5.6 Experimental Results 95 5.6.1 Experimental Settings 95 5.6.2 Experimental Results 97 VI Conclusions 109 6.1 Summary 109 6.2 Future Work 111 6.2.1 Optimization with Accurate WAF Prediction 111 6.2.2 Maximizing Copyback Threshold 111 6.2.3 Pre-failure Detection 112๋ฐ•

    ๋ฐ์ดํ„ฐ ์ง‘์•ฝ์  ์‘์šฉ์„ ์œ„ํ•œ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ I/O ์ตœ์ ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2019. 8. ๊น€์ง€ํ™.์˜ค๋Š˜๋‚ ์—๋Š” ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ ์ง‘์•ฝ์ ์ธ ์‘์šฉ์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‘์šฉ๋“ค์€ ๋Œ€์šฉ๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๊ฑฐ๋‚˜, ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์กฐํ™”ํ•˜์—ฌ ์Šคํ† ๋ฆฌ์ง€์— ์ €์žฅํ•˜๋Š” ๋“ฑ ๋งŽ์€ I/O๋ฅผ ๋ฐœ์ƒ์‹œ์ผœ, ์‹œ์Šคํ…œ์ด I/O๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์†๋„์— ๋”ฐ๋ผ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฐ›๊ฒŒ ๋œ๋‹ค. ์šด์˜์ฒด์ œ๋Š” ๋ฉ”์ธ ๋ฉ”๋ชจ๋ฆฌ๋ณด๋‹ค ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ๋–จ์–ด์ง€๋Š” ์ €์žฅ ์žฅ์น˜๋กœ์˜ ์ ‘๊ทผ์„ ์ตœ์†Œํ™”ํ•˜์—ฌ ํŒŒ์ผ I/O์˜ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ณ ์ž ๋ฉ”์ธ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ผ๋ถ€๋ฅผ ํŽ˜์ด์ง€ ์บ์‹œ๋กœ ํ• ๋‹นํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋ฉ”๋ชจ๋ฆฌ์˜ ํฌ๊ธฐ๋Š” ์ €์žฅ ์žฅ์น˜์— ๋น„ํ•ด ํฌ๊ฒŒ ์ œํ•œ๋˜์–ด ์žˆ์–ด, ํŒŒ์ผ I/O์˜ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ์•ž์œผ๋กœ ์ฐธ์กฐ๋˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ž˜ ๋ณด๊ด€ํ•˜๊ณ  ์ฐธ์กฐ๋˜์ง€ ์•Š์„ ๋ฐ์ดํ„ฐ๋ฅผ ์บ์‹œ๋กœ๋ถ€ํ„ฐ ๋‚ด๋ณด๋‚ด๋ฉฐ ํšจ์œจ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ ์–ด๋–ค ๋ฐ์ดํ„ฐ๊ฐ€ ์•ž์œผ๋กœ ์ฐธ์กฐ๋ ์ง€, ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ค ๋ฐ์ดํ„ฐ๊ฐ€ ์ฐธ์กฐ๋˜์ง€ ์•Š์„์ง€์— ๋Œ€ํ•ด์„œ ์‹œ์Šคํ…œ์ด ์ž์ฒด์ ์œผ๋กœ ์™„๋ฒฝํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ์‹œ์Šคํ…œ๋ณด๋‹ค ์ƒ์œ„ ๊ณ„์ธต์—์„œ์˜ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•œ ๋…ธ๋ ฅ ์—†์ด๋Š” I/O ์ตœ์ ํ™”์— ์žˆ์–ด ๋ช…๋ฐฑํ•œ ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‘์šฉ์ด I/O๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋งฅ๋ฝ, ์ฆ‰ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ I/O๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์‹œ์ ๊ณผ ๊ทธ ํŒจํ„ด์„ ์ž๋™์œผ๋กœ ํŒŒ์•…ํ•˜์—ฌ ๋ถ„์„ํ•˜๋Š” ๊ธฐ๋ฒ•๊ณผ, ์ด๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ๊ฐ๊ฐ์˜ I/O๊ฐ€ ๋ฐœ์ƒํ•œ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์— ์ ์šฉํ•  ์ตœ์ ํ™” ๋ฐฉ์•ˆ ์ถ”์ฒœ์„ ์ž๋™ํ™”ํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‹œ์Šคํ…œ์—์„œ ์ž์ฒด์ ์œผ๋กœ ํŒŒ์•…ํ•  ์ˆ˜ ์—†๋Š” ๋‹ค์–‘ํ•œ ํžŒํŠธ๋ฅผ ์‚ฌ์ „์— ์ œ๊ณตํ•˜๊ณ , ์ด ์ •๋ณด๋ฅผ ์‹œ์Šคํ…œ์ด ์ ๊ทน์ ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ์ด์ „๋ณด๋‹ค ํšจ์œจ์ ์ธ I/O๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค.Many kinds of data intensive applications are broadly utilized nowadays. These applications generate a lot of I/O such as analyzing a large amount of data, structuring the data and storing it in the storage, and the performance is greatly influenced by the speed of the I/O the system performs. The operating system allocates a portion of main memory to the page cache to maximize the performance of file I/O by minimizing access to the storage device which is much lower in performance than main memory. However, since the size of memory is limited compared to the size of the storage device, it is very important to keep the data to be referenced to in future and to export the data not to be referenced from the cache and to manage efficiently to improve the performance of the file I/O. However, it is impossible for the system to predict perfectly about which data will be referenced in the future and which data will not be. Thus, without I/O optimization at the application level, there is a clear limit to performance improvement. In this thesis, we propose a method to automatically detect and analyze I/O characteristics based on I/O program contexts of which an application executes I/O. We propose a technique to automate the optimization recommendation to be applied to the program context in which I/O occurs. Through this, the application can provide various hints to the system that can not be grasped by the system itself, and the system actively reflects this information so that I/O can be performed faster and resources can be used more efficiently than before.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ๊ธฐ์—ฌ 4 ์ œ 3 ์ ˆ ๋…ผ๋ฌธ ๊ตฌ์„ฑ 8 ์ œ 2 ์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ 9 ์ œ 1 ์ ˆ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ๋ฅผ ํ™œ์šฉํ•œ ๋ฒ„ํผ ์บ์‹ฑ 9 ์ œ 2 ์ ˆ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ ๋ฐ์ดํ„ฐ ๋ถ„๋ฆฌ ๊ธฐ๋ฒ• 13 ์ œ 3 ์žฅ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์— ๊ธฐ๋ฐ˜ํ•œ ์‘์šฉ I/O ๋ถ„์„ 19 ์ œ 1 ์ ˆ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์˜ ์ •์˜์™€ ์ถ”์ถœ ๋ฐฉ๋ฒ• 19 ์ œ 2 ์ ˆ PCStat: ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์— ๋”ฐ๋ฅธ I/O ํŒจํ„ด ๋ถ„์„ 22 ์ œ 3 ์ ˆ I/O ์“ฐ๋ ˆ๋“œ ํ™˜๊ฒฝ์„ ์œ„ํ•œ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์˜ ์ถ”์ถœ ๊ธฐ๋ฒ• 28 ์ œ 4 ์žฅ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ์— ๊ธฐ๋ฐ˜ํ•œ I/O ์ตœ์ ํ™” ์ ์šฉ 30 ์ œ 1 ์ ˆ ํŽ˜์ด์ง€ ์บ์‹œ์— ์ œ๊ณตํ•˜๋Š” ํžŒํŠธ 30 ์ œ 2 ์ ˆ fadvise ์ ์šฉ์„ ํ†ตํ•œ ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ I/O ์ตœ์ ํ™” 32 ์ œ 3 ์ ˆ PCAdvisor: ํ”„๋กœ๊ทธ๋žจ ์ปจํ…์ŠคํŠธ ๊ธฐ๋ฐ˜์˜ I/O ์ตœ์ ํ™” ์ž๋™ํ™” 35 ์ œ 5 ์žฅ ํ‰๊ฐ€ ์‹คํ—˜ 38 ์ œ 1 ์ ˆ ์‹คํ—˜ ํ™˜๊ฒฝ 38 ์ œ 2 ์ ˆ ์‹คํ—˜ ๊ฒฐ๊ณผ 39 ์ œ 6 ์žฅ ๊ฒฐ ๋ก  44 ์ œ 1 ์ ˆ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ๊ณ„ํš 44 ์ฐธ๊ณ ๋ฌธํ—Œ 46 Abstract 49Maste

    TACKLING PERFORMANCE AND SECURITY ISSUES FOR CLOUD STORAGE SYSTEMS

    Get PDF
    Building data-intensive applications and emerging computing paradigm (e.g., Machine Learning (ML), Artificial Intelligence (AI), Internet of Things (IoT) in cloud computing environments is becoming a norm, given the many advantages in scalability, reliability, security and performance. However, under rapid changes in applications, system middleware and underlying storage device, service providers are facing new challenges to deliver performance and security isolation in the context of shared resources among multiple tenants. The gap between the decades-old storage abstraction and modern storage device keeps widening, calling for software/hardware co-designs to approach more effective performance and security protocols. This dissertation rethinks the storage subsystem from device-level to system-level and proposes new designs at different levels to tackle performance and security issues for cloud storage systems. In the first part, we present an event-based SSD (Solid State Drive) simulator that models modern protocols, firmware and storage backend in detail. The proposed simulator can capture the nuances of SSD internal states under various I/O workloads, which help researchers understand the impact of various SSD designs and workload characteristics on end-to-end performance. In the second part, we study the security challenges of shared in-storage computing infrastructures. Many cloud providers offer isolation at multiple levels to secure data and instance, however, security measures in emerging in-storage computing infrastructures are not studied. We first investigate the attacks that could be conducted by offloaded in-storage programs in a multi-tenancy cloud environment. To defend against these attacks, we build a lightweight Trusted Execution Environment, IceClave to enable security isolation between in-storage programs and internal flash management functions. We show that while enforcing security isolation in the SSD controller with minimal hardware cost, IceClave still keeps the performance benefit of in-storage computing by delivering up to 2.4x better performance than the conventional host-based trusted computing approach. In the third part, we investigate the performance interference problem caused by other tenants' I/O flows. We demonstrate that I/O resource sharing can often lead to performance degradation and instability. The block device abstraction fails to expose SSD parallelism and pass application requirements. To this end, we propose a software/hardware co-design to enforce performance isolation by bridging the semantic gap. Our design can significantly improve QoS (Quality of Service) by reducing throughput penalties and tail latency spikes. Lastly, we explore more effective I/O control to address contention in the storage software stack. We illustrate that the state-of-the-art resource control mechanism, Linux cgroups is insufficient for controlling I/O resources. Inappropriate cgroup configurations may even hurt the performance of co-located workloads under memory intensive scenarios. We add kernel support for limiting page cache usage per cgroup and achieving I/O proportionality

    Operating System Support for High-Performance Solid State Drives

    Get PDF

    Audiovisual preservation strategies, data models and value-chains

    No full text
    This is a report on preservation strategies, models and value-chains for digital file-based audiovisual content. The report includes: (a)current and emerging value-chains and business-models for audiovisual preservation;(b) a comparison of preservation strategies for audiovisual content including their strengths and weaknesses, and(c) a review of current preservation metadata models, and requirements for extension to support audiovisual files

    GPU Accelerated protocol analysis for large and long-term traffic traces

    Get PDF
    This thesis describes the design and implementation of GPF+, a complete general packet classification system developed using Nvidia CUDA for Compute Capability 3.5+ GPUs. This system was developed with the aim of accelerating the analysis of arbitrary network protocols within network traffic traces using inexpensive, massively parallel commodity hardware. GPF+ and its supporting components are specifically intended to support the processing of large, long-term network packet traces such as those produced by network telescopes, which are currently difficult and time consuming to analyse. The GPF+ classifier is based on prior research in the field, which produced a prototype classifier called GPF, targeted at Compute Capability 1.3 GPUs. GPF+ greatly extends the GPF model, improving runtime flexibility and scalability, whilst maintaining high execution efficiency. GPF+ incorporates a compact, lightweight registerbased state machine that supports massively-parallel, multi-match filter predicate evaluation, as well as efficient arbitrary field extraction. GPF+ tracks packet composition during execution, and adjusts processing at runtime to avoid redundant memory transactions and unnecessary computation through warp-voting. GPF+ additionally incorporates a 128-bit in-thread cache, accelerated through register shuffling, to accelerate access to packet data in slow GPU global memory. GPF+ uses a high-level DSL to simplify protocol and filter creation, whilst better facilitating protocol reuse. The system is supported by a pipeline of multi-threaded high-performance host components, which communicate asynchronously through 0MQ messaging middleware to buffer, index, and dispatch packet data on the host system. The system was evaluated using high-end Kepler (Nvidia GTX Titan) and entry level Maxwell (Nvidia GTX 750) GPUs. The results of this evaluation showed high system performance, limited only by device side IO (600MBps) in all tests. GPF+ maintained high occupancy and device utilisation in all tests, without significant serialisation, and showed improved scaling to more complex filter sets. Results were used to visualise captures of up to 160 GB in seconds, and to extract and pre-filter captures small enough to be easily analysed in applications such as Wireshark
    corecore