

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

LSM-tree based Database System

Optimization using Application-Driven Flash

Management

응용 프로그램 기반의 플래시 저장 장치 관리 기법을 통한

LSM-tree 기반 데이터베이스 성능 최적화

BY

임 희 락

AUGUST 2019

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

M.S. THESIS

LSM-tree based Database System

Optimization using Application-Driven Flash

Management

응용 프로그램 기반의 플래시 저장 장치 관리 기법을 통한

LSM-tree 기반 데이터베이스 성능 최적화

BY

임 희 락

AUGUST 2019

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

LSM-tree based Database System Optimization using

Application-Driven Flash Management

응용 프로그램 기반의 플래시 저장 장치 관리 기법을

통한 LSM-tree 기반 데이터베이스 성능 최적화

지도교수 염 헌 영

이 논문을 공학석사 학위논문으로 제출함

2019 년 04 월

서울대학교 대학원

컴퓨터 공학부

임 희 락

임 희 락의 공학석사 학위논문을 인준함

2019 년 06 월

위 원 장 신영길 (인)

부위원장 염헌영 (인)

위 원 엄현상 (인)

Abstract

Modern data centers aim to take advantage of high parallelism in storage de-

vices for I/O intensive applications such as storage servers, cache systems, and

key-value stores. Key-value stores are the most typical applications that should

provide a highly reliable service with high-performance. To increase the I/O

performance of key-value stores, many data centers have actively adopted next-

generation storage devices such as Non-Volatile Memory Express (NVMe) based

Solid State Devices (SSDs). NVMe SSDs and its protocol are characterized to

provide a high degree of parallelism. However, they may not guarantee pre-

dictable performance while providing high performance and parallelism. For

example, heavily mixed read and write requests can result in performance degra-

dation of throughput and response time due to the interference between the

requests and internal operations (e.g., Garbage Collection (GC)).

To minimize the interference and provide higher performance, this paper

presents IsoKV, an isolation scheme for key-value stores by exploiting internal

parallelism in SSDs. IsoKV manages the level of parallelism of SSD directly by

running application-driven flash management scheme. By storing data with dif-

ferent characteristics in each dedicated internal parallel units of SSD, IsoKV re-

duces interference between I/O requests. We implement IsoKV on RocksDB and

evaluate it using Open-Channel SSD. Our extensive experiments have shown

that IsoKV improves overall throughput and response time on average 1.20×

and 43% compared with the existing scheme, respectively.

Keywords: Storage, NAND-flash, Open-Channel-SSD, FTL, NVMe, LSM-tree

Student Number: 2017-21118

i

Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Background 8

2.1 Log-Structured Merge tree based Database 8

2.2 Open-Channel SSDs . 9

2.3 Preliminary Experimental Evaluation using

oc bench . 10

Chapter 3 Design and Implementation 14

3.1 Overview of IsoKV . 14

3.2 GC-free flash storage management synchronized with LSM-tree

logic . 15

3.3 I/O type Isolation through Application-Driven

Flash Management . 17

3.4 Dynamic Arrangement of NAND-Flash

Parallelism . 19

3.5 Implementation . 21

ii

Chapter 4 Evaluation 23

4.1 Experimental Setup . 23

4.2 Performance Evaluation . 25

Chapter 5 Related Work 31

Chapter 6 Conclusion 34

Bibliography 35

초록 40

iii

List of Figures

Figure 1.1 Hardware Queue Contention in NVMe SSD. 2

Figure 1.2 Read and write throughput comparison based on various

read percentage in the workload. 4

Figure 2.1 Comparing architectures when read and write requests

are physically isolated and processed in Open-Channel

SSD using the oc benc tool. 10

Figure 2.2 oc bench - Read, Write, Overall throughtput performance

comparison . 13

Figure 3.1 life cycle of a virtual block (vblk). This figure shows

the state of vblk and the transition between the states.

Depending on the behavior of the LSM-tree logic, the

state of the application layer data (eg, WAL, SST) is

synchronized with the physical blocks of NAND flash.

Therefore, it is guaranteed that the physical blocks that

have stored the outdated data which is deleted in the

application are free. 16

iv

Figure 3.2 IsoKV storage backend scheme using Open-Channel SSD

and liblightnvm . 20

Figure 4.1 Striping-Arrangement VS Isolation-Arrangement. 24

Figure 4.2 Average Read Latency of key-value pair from Level-0 to

Level-3 SST files . 27

Figure 4.3 P99th Tail Latency of key-value pair from Level-0 to

Level-3 . 28

Figure 4.4 Interval throughput comparison under changing work-

load - Striping VS Isolation VS Dynamic 29

Figure 4.5 YCSB Macro-benchmarks result 30

v

List of Tables

Table 4.1 Workload descriptions and parameters 29

vi

Chapter 1

Introduction

The role of high-performance storage devices is becoming indispensable to I/O

intensive applications (e.g., key-value stores) since the performance of storage

devices directly affects their quality of service (QoS). Accordingly, many data

centers have actively adopted next-generation storage devices such as NVMe

SSDs to improve QoS and I/O performance. NVMe SSDs provides higher read

and write throughput compared with spinning drives or SATA-based SSDs.

However, modern applications or systems (e.g., key-value database [2, 3, 4, 5])

may often not fully utilize the capabilities of the NVMe SSD devices. The reason

is that they are not designed with a thorough consideration of the features of

the NVMe SSD storage devices.

For example, serious performance degradation may be caused when write

and read operations are performed simultaneously. Performance degradation

could be up to 450% under the workloads with mixed reads and writes as

mentioned in previous studies [15, 16]. It is because the processing time for

write operations is longer than that of read operations due to internal FTL

1

DBMS

R W R W R W

Storage Stack

NVMe SSD

H/W
queue

H/W
queue

H/W
queue

H/W
queue

W1 R1W2 R2 R3 Time

W1 W1 W1 W1 W1 W1 W2 W2 W2 W2 W2 R1 R2 R3

R: read request, W: write request

Figure 1.1: Hardware Queue Contention in NVMe SSD.

operations such as Garbage Collection (GC) and flushing buffer cache.

As shown in Figure 1.1, if both read and write requests arrive at the same

H/W queue in NVMe SSD, contention occurs so that read requests are de-

layed due to the write requests that require long response time. Furthermore,

unlike ordinary relational database systems, in the LSM-tree based key-value

store, additional I/O requests are generated due to the compaction that creates

higher-level Sorted String Table (SST) files by merging lower-level SST files.

For example, even if clients only send insert requests, underlying flash-based

storage devices must handle an amplified number of write requests as well as

multiple read requests due to the compaction. As a result, this I/O amplifica-

tion makes read and write requests mixed more frequently in LSM-tree based

key-value store systems.

To quantitatively measure the performance degradation under the mixed

workload of reads and writes of NVMe based SSDs and LSM-tree based Key-

2

Value store on commercial NVMe SSDs [10], we used a Flexible I/O (FIO)

benchmark tool [1] and RocksDB db bench tool [9] respectively. Figure 1.2a rep-

resents the result shows serious performance degradation depending on the de-

gree of mixed reads and writes. In particular, under the workload that read:write

ratio is 50:50, the read performance decreased by 74.4% compared with the

read performance under the read-only workload. Also, the write performance

dropped to about a quarter of the write-only performance. This graph shows

a dramatic drop in performance depending on the degree of mixed reads and

writes. Figure 1.2b illustrates that performance degradation due to I/O inter-

ference is much more serious in RocksDB. Even if write requests occupy only

10 percent and the read request accounts for 90 percent of the total workload,

the read performance drops to a quarter compared to the read-only perfor-

mance. The reason for this result comes from write amplification due to the

nature of the LSM-tree based key-value store; underlying storage device must

accommodate larger number of I/O requests than the client issues.

Modern NVMe SSDs have a set of parallel units (e.g., multiple channels) and

allow host hardware and software to fully exploit the levels of parallelism. In

the traditional FTL of legacy SSDs, when an SSD controller receives incoming

write requests, it determines the data placement in such a way that it can access

NAND flash in parallel as much as possible considering the internal geometry

of the SSD. We have found that this scheme does not guarantee predictable

and high performance.

In this paper, we propose IsoKV, an LMS-tree based key-value store which

directly manages internal parallelism of SSD taking its application context

and I/O pattern into account. We design and implement an application-driven

flash management scheme that dynamically changes the arrangement of NAND-

flash’s internal parallel units on IsoKV. The main contributions of this work

3

(a) FIO benchmark

(b) RocksDB db bench tool

Figure 1.2: Read and write throughput comparison based on various read per-

centage in the workload.

4

are listed as follows:

Preliminary experimental evaluation using oc bench. We design and

implement FIO-like benchmark tool called oc bench [8] tailored Open-Channel

SSD. oc bench is a tool for evaluating device performance, changing many pa-

rameters, such as the number of threads and file sizes like existing benchmark

tools (e.g., FIO, Iometer). In addition, oc bench can determine the physical ad-

dress of data to be stored by utilizing the features of an Open-Channel SSD.

We evaluate the I/O performance of NVMe-based SSD, a Open-Channel SSD,

when read requests are isolated from write requests physically on NAND flash.

To isolated them, we configured each I/O thread has their own region without

the interference of other I/O threads by dedicated Parallel Units (LUNs) per

I/O thread. The evaluation result demonstrates the overall performance is im-

proved by up to 220% compared with the baseline that each thread uses entire

LUNs greedily.

GC-free flash storage management synchronized with LSM-tree

logic.

We synchronize the data life cycle in LSM-tree logic with the life cycle of

data in the SSD. That is, each SST file and WAL log file are managed by using

vblk in the storage which is directly mapped with physical blocks. If a file is

created, the corresponding type of vblk allocated for it. According to the LSM-

tree logic, when a file is outdated due to compaction (SST file) or completion

of flushing memtable (WAL file), the vblk is released and become free. As a

result, this eliminates the GC that the SSD unnecessarily copies valid data into

a new block.

I/O type isolation through application-driven flash management.

In order to apply the read/write isolation scheme in oc bench to IsoKV, we

modify the RocksDB storage backend so that the write requests of different

5

I/O types (e.g., log file, Level 0 SST file, etc.) does not physically overlap

within the NAND Flash each other. Unlike the micro-benchmark tool (e.g.,

FIO or oc bench), database applications must read data at the specific location

where the data is written. Thus, IsoKV cannot completely isolate read requests

from write requests in the SSD physically. However, the characteristics of LSM-

tree base database storing data as append-only and the write-only files (Write

Ahead Log) can mitigate the contention of reads and writes in runtime.

Dynamic arrangement of NAND-flash parallelism. Under workloads

that read and write requests are frequently conflicted, Isolation-Arrangement

scheme of IsoKV shows improved performance, but in other workloads such

as read-only or write-only, existing scheme that makes the most of parallelism

performs better than our IsoKV. To ensure that IsoKV is flexible and work best

for all workloads, we add dynamic LUNs arrangement scheme to IsoKV. Under

the write-intensive workload that relatively requests are not mixed frequently,

we make each I/O type of IsoKV utilize entire LUNs to support high parallelism.

To determine the arrangement of LUNs by analyzing the nature of the workload

at runtime, we designed a simple count-based workload profiler on IsoKV’s

storage backend.

Evaluating IsoKV with realistic workloads. We carefully evaluated

IsoKV under various read:write ratio using microbenchmark tool. The result

represents that IsoKV reduces average read response time by 43% compared to

the baseline that works in a greedy manner. We also verified the flexibility of

IsoKV by running a workload in which nature is changed during runtime. The

Evaluation result shows that IsoKV responds flexibly to the changing workload

and performed better than static LUNs arrangement scheme. Furthermore, we

run YCSB benchmark to evaluate IsoKV under realistic workloads. Under four

of YCSB’s representative workloads showed improved performance, up to 1.56x

6

faster overall throughput and 60% reduced read response time. The open-source

IsoKV is available at https://github.com/RockyLim92/IsoKV.

7

Chapter 2

Background

2.1 Log-Structured Merge tree based Database

LSM-tree data structure is used in many modern key-value stores and storage

systems to provide fast I/O services [4, 3, 5, 2]. It stores data in an append-only

manner and thus provides a fast write performance. In more detail, the incoming

key-value pairs from clients are written in sorted order in the in-memory write

buffer called memtable. If data is written as much as the allocated size of

memtable, background flush threads flush data in memtable to the persistent

storage device as Sorted String Table file (SST) of level 0 (L0). If a level 0 SST

file is continuously generated in this manner, Sum of level 0 SST files size is

exceeded a predefined threshold and this spoils the shape of the LSM-tree data

structure. Then, a background compaction mechanism is triggered to constrain

the LSM tree shape. It reads multiple L0 SST files to merge them into a next

level SST file. This compaction mechanism works in the same way at level 0 as

well as at other levels.

8

While compaction, there may be multiple duplicated key-value pairs among

the input SST files of compaction. Only one valid key remains in the com-

paction output SST file, and the remaining invalid key-value pairs are removed.

Through this compaction mechanism, LSM-tree-based database can store key-

value pairs in append-only manner without in-place update. In RocksDB, our

target application, each different I/O type accesses to the storage device by

different threads. For example, foreground I/O threads append log data to the

WAL log file. On the other hand, the L0 SST files and the L* (* > 0)SST files

are flushed by background flush threads and background compaction threads

respectively.

2.2 Open-Channel SSDs

Recently, a new class of SSDs, Open-Channel SSD has been proposed as a

method to manage the internal parallelism of SSDs [41, 42, 6]. They expose

the geometry inside the SSD and share control responsibilities with the host

to implement and maintain features that typical SSDs implement strictly in

the device firmware. As a consequence, host could manage data placement, I/O

scheduling, and GC, etc. So, it is possible to optimize or manage the NAND-

flash based storage device at host side. In order to allow the host application to

interact with Open-Channel SSDs from user space, Open-Channel SSD provides

a user space I/O library, a liblightnvm [7]. The core of the library provides an

interface for performing vectorized I/O using physical addressing. virtual block

(vblk) interface of liblightnvm provides libc-like write, read, pread interface,

encapsulating command-construction including mapping a general physical ad-

dressing format to device specific. Thereby allowing the user to focus on per-

forming read/write on the vector space. A vblk consists of a set of physical

9

······

Read
Thread

Write
Thread

Region for Read/Write

···

Read
Thread

Write
Thread

64 LUNs belong to a VBLK, Isolation X

blk from
LUN #0

blk from
LUN #1

blk from
LUN #62

blk from
LUN #63

Region for Read/Write
blk from
LUN #64

blk from
LUN #65

blk from
LUN #126

blk from
LUN #127

Read 64GB(8GB per a thread), Write 64GB(8GB per a thread) from LUN #0-127

: VBLK : thread

(a) read/write reuqests are mixed

···

Write
Thread

Region for Write-Only

···

Read
Thread

64 LUNs belong to a VBLK, Isolation O

blk from
LUN #0

blk from
LUN #1

blk from
LUN #62

blk from
LUN #63 ···

Region for Read-Only
blk from
LUN #64

blk from
LUN #65

blk from
LUN #126

blk from
LUN #127

Read 64GB(8GB per a thread), Write 64GB(8GB per a thread)
Write from LUN #0-63, Read from #63-127

: VBLK : thread

(b) read/write requests are isolated each other

Figure 2.1: Comparing architectures when read and write requests are physically

isolated and processed in Open-Channel SSD using the oc benc tool.

blocks in the SSD and can be created to span all parallel units (LUNs) of

SSD or a subset thereof. For example, in Open-Channel SSD equipped with

16 channels and 8 dies(chips) per channel, an I/O thread can access up to 128

independent blocks at once using vblk which consists of 128 blocks from each

of 128 LUNs.

2.3 Preliminary Experimental Evaluation using

oc bench

We found the performance degradation due to the interference between read

and write requests through FIO experiments using commercial NVMe SSDs.

10

In this chapter, we demonstrate how performance can be improved when the

interference is eliminated by using Open-Channel SSDs.

We developed oc bench [8], an FIO-like benchmark tool tailored for Open-

Channel SSDs. oc bench spawns a number of thread doing a particular type of

I/O action as specified by the user. Especially, it uses a fvirtual block (vblk)

interface to access the Open-Channel SSD and it is able to set which thread

will perform I/O to which physical address (i.e., channel, die, block, etc.). That

is, oc bench can adjust the arrangement of parallel units (LUNs) by changing

the mapping between the physical blocks and the virtual block (vblk) of the

SSD. Figure 2.1 shows an example that how the oc bench works when a vblk is

constructed by taking a block from each of 64 LUNs. Under the configuration

that read and write requests share the same region (2.1a), a NAND flash chip

belonging to a specific LUN serves both read and write requests, thus causing

I/O interference. However, in the isolated design as shown in Figure 2.1b, the

interference does not occur because only reads or writes occur in each LUN.

In addition, we run oc bench which issues interleaved read and write re-

quests to the Open-Channel SSD The dataset size for the experiment is 40

GB, and oc bench generates read and write requests at the ratio of 50%. We

evaluated the raw device performance under the workload and varying 42 con-

figurations depending on the presence of isolation, the number of threads, and

the size of vblk. Figure 2.2a/2.2c, Figure 2.2d/2.2f, and Figure 2.2g/2.2i repre-

sent the results of evaluation under the varying vblk size, 8 LUNs, 16 LUNs and

32 LUNs, respectively. As shown in figures, the isolation scheme improve the

read performance on all vblk sizes, except for the configuration where the num-

ber of read and write threads are 64 each. This is due to overall performance

degradation due to excessive I/O contention, rather than the cause associated

with the isolation scheme. As shown in Figure 2.2b, Figure 2.2e and Figure 2.2h,

11

the write performance was also improved by the reduced interference. However,

the write performance is degraded when multiple write threads try to access

the same virtual block at the same time. For example, when 32 LUNs con-

sist of a single vblk and more than two write threads exist in the isolation

scheme, a contention occurs in vblk and performance degrades. The reason

is that in the current Open-Channel SSD implementation, I/O threads use a

coarse-grained locking mechanism resulting in lock contention when they access

to vblks. Therefore, if the smaller number of LUNs configuring a vblk is used,

each thread may access to the isolated LUN so that the result shows better

scalability and performance. Figure 2.2c, Figure 2.2f and Figure 2.2i illustrate

that overall performance was improved in most configurations. In particular,

there was a performance improvement of up to 220% in configurations where

there is no excessive contention of write threads in vblk. This performance gain

is attributed to the significant performance improvement in reads due to the

reduced I/O interference.

12

0
1000
2000
3000
4000
5000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64

Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

ISOLATION X ISOLATION O

(a) Read throughput, 8 LUNs construct a

vblk

0
200
400
600
800

1000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

(b) Write throughput, 8 LUNs construct a

vblk

0
1000
2000
3000
4000
5000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

(c) Overall throughput, 8 LUNs construct a

vblk

0
1000
2000
3000
4000
5000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64

Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

(d) Read throughput, 16 LUNs construct a

vblk

0
200
400
600
800

1000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

(e) Write throughput, 16 LUNs construct a

vblk

0
1000
2000
3000
4000
5000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

(f) Overall throughput, 16 LUNs construct a

vblk

0
1000
2000
3000
4000
5000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

(g) Read throughput, 32 LUNs construct a

vblk

0
200
400
600
800

1000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

(h) Write throughput, 32 LUNs construct a

vblk

0
1000
2000
3000
4000
5000

1, 1 2, 2 4, 4 8, 8 16, 16 32, 32 64, 64Th
ro

ug
hp

ut
 (

M
B/

s)

of read, write thread

(i) Overall throughput, 32 LUNs construct a

vblk

Figure 2.2: oc bench - Read, Write, Overall throughtput performance compar-

ison
13

Chapter 3

Design and Implementation

3.1 Overview of IsoKV

In this section, we describe IsoKV, three key design approaches, and implemen-

tation details to eliminate interference between reads and writes for achiev-

ing higher performance. IsoKV is an LSM-tree based KV store which has

application-driven flash management scheme using Open-Channel SSDs as it’s

underlying storage device. It achieves both high throughput performance and re-

duced latency. At first, we propose a GC-free flash storage management scheme,

in which flash blocks which store data with the same life cycle are managed to-

gether and have a life cycle that is synchronized with the application’s data life

cycle. Second, we design a new data placement policy which isolates and stores

different type of application data into separate physical flash storage units (i.e.,

Parallel Units(LUNs)). Finally, we propose a dynamic arrangement scheme for

data placement to adaptively cope with various workloads.

14

3.2 GC-free flash storage management synchronized

with LSM-tree logic

Many previous studies have shown that the internal operations of SSD degrade

the predictability of foreground I/O performance. In particular, GC blocks in-

coming I/O and degrades overall storage performance [35, 36, 37]. In this sec-

tion, we introduce the GC-free flash storage management scheme of IsoKV,

which considers LSM-tree logic and I/O components. IsoKV synchronizes the

life cycle of NAND flash blocks of SSD with the life cycle of data according to

the LSM-tee logic In IsoKV, all files created during the operation of the KV

store are stored using liblightnvm, the user space I/O library for OCSSD. The

vblk interface of liblightnvm groups the physical blocks of the Open-Channel

SSD to form a vblk using vblk interface, I/O requests bypasse the existing file

system or block layer to read and write data. Figure 3.1a and Figure 3.1b show

an example of a life cycle synchronized with each I/O component and storage in

IsoKV. When initilalizing IsoKV, different types of vblks are created according

to a predetermined degree of parallelism.

The life cycle of the WAL file starts with erasing the released vblk. vblk

which completes the erase start append data for recovery. Once the member

table is full, and then it is flushed to the SST file, the WAL file is no longer

needed. Therefore, the corresponding vblk is released.

On the other hand, the life cycle of an SST file starts when memtable begins

the flush operation. IsoKV determines which vblk should be allocated according

to whether the new SST table is Level 0 SST (flush) or Level 1 SST (compaction

output) or more. This is covered in more detail in the next section. When IsoKV

flushes memtable and creates an immutable SST file, the corresponding vblk

becomes reserved. If an SST file is selected as a compaction target due to the

15

released free

openreserved
(WAL file)

erase

start
WAL append

memtable is full

memtable
is flushed bad

erase: fail

init

(a) WAL log file

released free

openreserved
(SST file)

erase

start
flush

flush is done

after compaction
(merged) bad

erase: fail

init

(b) SST file

Figure 3.1: life cycle of a virtual block (vblk). This figure shows the state of vblk

and the transition between the states. Depending on the behavior of the LSM-

tree logic, the state of the application layer data (eg, WAL, SST) is synchronized

with the physical blocks of NAND flash. Therefore, it is guaranteed that the

physical blocks that have stored the outdated data which is deleted in the

application are free.

insertion of subsequent data, valid key-value data of the SST file is copied to

memory and merged into the source of the new SST file. Then the vblk, which

stores the outdated SST file, is released.

16

3.3 I/O type Isolation through Application-Driven

Flash Management

Through preliminary experiment results, we found that utilizing an SSD de-

vice’s entire parallelism does not always lead to the best performance. Hence,

we implemented IsoKV based on RockDB, to apply this characteristic to real-

world applications. Unlike benchmark tools, database applications have a lot

of limitations in isolating read requests from write requests physically because

database applications must read data from the physical location of the NAND-

flash where the data is written.

However, as shown in Figure 3.2a and Figure 3.2b, LSM-tree based database

including RocksDB has different I/O scheme compared with ordinary Database

Management Systems (DBMS) or storage systems. In RocksDB, three types

of files are written to the persistent storage device by key-value insertions and

periodical compaction algorithm. First of all, Write Ahead Log (WAL) files

are stored by main I/O thread when key-value pairs are inserted in in-memory

buffer, a memtable. The WAL file is only read during recovery, so it behaves

as write-only in normal operation. Second, the L0 SST file is written by the

background flush thread and read by the main I/O thread and compaction

thread. At last, SST files with a level greater than L0 are read and written

by the compaction thread, and read by the main I/O thread. Because of these

different types of files and the threads that read and write the files, it becomes

possible to isolate reads and writes partially considering the behavior of LSM-

tree algorithm. For the simplest, since WAL is write-only, IsoKV can allocate

a completely isolated LUNs for WAL files so that other threads are free from

interference due to the WAL. Also, due to the hotness of the data, high-level

SST files are likely to have cold (rarely updated) characteristics. Consequently,

17

they are easy to operate with a read-only manner.

Figure 3.2a shows a baseline, a Striping-Arrangement scheme of IsoKV, to

compare with our isolated design. In this architecture, all different types of

IsoKV shares huge virtual blocks (vblks) spanned to all parallel units (LUNs),

as in the FTL of existing legacy SSD, to achieve high parallelism. On the

other hand, Figure 3.2b represents the IsoKV architecture with our optimiza-

tion applied, an Isolation-Arrangement scheme. Isolation-Arrangement makes

each different I/O type is written to its dedicated LUNs. Under the Isolation-

Arrangement scheme, vblks are constructed using only LUNs which do not

overlap each other depending on the type of vblk (alpha, beta, theta). As a

result, all write requests of different I/O types can be isolated from each other

completely without interference. Although main I/O threads and compaction

threads still can read SST files from all level theoretically, reads can be handled

separately from writes as compared to the Striping-Arrangement because of the

hotness of data and LSM-tree behavior.

A vblk is a set of physical blocks in Open-Channel SSD, each vblk has a

predefined bandwidth. This bandwidth depends on how many LUNs the blocks

that make up the vblk exist. For example, if a vblk is configured with physical

blocks from all LUNs, this vblk has the maximum bandwidth. In our imple-

mentation, IsoKV stores each WAL file, L0 SST file, and L* (* > 0) SST file to

alpha vblk, beta vblk and theta vblk, respectively. We divided the entire LUNs

into 3:3:2 ratios and assigned each of the divided LUNs to each type of vblk

to have them an independent writing target. To determine the ratios for the

isolated bandwidth (i.e., the number of LUNs) assigned to the each vblk(alpha

for WAL files, beta for L0 SST files and theta for L* (* > 0) SST files), we

used a heuristic method. We set the initial ratios, taking into account the total

amount of data read and written to each I/O type. Then, we adjusted the detail

18

ratios through various experiments. These experimental procedures and details

will not be discussed because they are beyond the scope of the main points of

the paper.

As a result, isolated LUNs divided by a 3:3:2 ratio has improved overall

throughput performance over a wide range of workloads with read percentages

ranging from 10 percent to 80 percent and dramatically reduced read latency

under the workloads with 10%-90% read percentages.

3.4 Dynamic Arrangement of NAND-Flash

Parallelism

We divide an entire of parallelism (i.e., 128) into 3 portions and assigned each of

them to the vblks depending on different needs of parallelism for corresponding

their I/O types. As a result, IsoKV with Isolation-Arrangement scheme reduces

the delay in read requests due to the long turnaround time of the write request

under the mixed reads and writes workload. However, the statically isolated

arrangement of LUNs can lead to performance degradation if the nature of

the workload changes to extreme write-intensive which read and write do not

mix frequently because of the reduced degree of parallelism. To address this

kind of problem, we put a simple workload profiler in the IsoKV storage back

end to monitor the pattern of workloads. It is a simple and traditional profiler

based on the temporal locality of the workload pattern. The profiler counts 2

basic operations of key-value store, the Put and Get, for a certain period of

an interval to determine whether the workload is read intensive or write in-

tensive. If the workload is determined to be write-intensive, the profiler stores

the data using gamma vblk rather than alpha, beta, and theta vblk for isola-

tion. This uncomplicated profiler has almost no overhead because there are no

19

blk
from

LUN #0

Storage Backend

liblightnvm

W

LEVEL 0
SST

LEVEL 0
SST

…LEVEL * SST
(* > 0)

LEVEL * SST
(* > 0)

…

WRW R R
R

I/O threadsFlush threads Compaction threads

vblk (spanned to all LUNs)

OCSSD
…blk

from
LUN #1

blk
from

LUN #2

blk
from

LUN #127

blk
from

LUN #3

blk
from

LUN #126

WAL …

IsoKV

(a) Striping-Arrangement

theta vblkBeta vblkAlpha vblk

blk
from

LUN #0

Storage Backend

liblightnvm

W

WAL LEVEL 0
SST

LEVEL 0
SST

…LEVEL * SST
(* > 0)

LEVEL * SST
(* > 0)

…

WRW R R
R

I/O threadsFlush threads Compaction threads

OCSSD
…

…

blk
from

LUN #47

blk
from

LUN #127

blk
from

LUN #48

blk
from

LUN #96
… blk

from
LUN #95

…

IsoKV

(b) Isolation-Arrangement

Gamma vblk (spanned to all LUNs)

Storage Backend

liblightnvm
𝛼

vblk

OCSSDblk
from
LUN
#0

blk
from
LUN
#1

blk
from
LUN
#2

blk
from
LUN
#127

……

𝛽
vblk

𝜃
vblk

dynamic

Workload Profiler
Is write intensive ?no yes

WAL LEVEL 0
SST

LEVEL 0
SST

…LEVEL * SST
(* > 0)

LEVEL * SST
(* > 0)

……
Get(){

get_cnt++;
...

Put(){
put_cnt++;
...

(c) Workload profiler

Figure 3.2: IsoKV storage backend scheme using Open-Channel SSD and lib-

lightnvm

20

additional calculations. Figure 3.2c shows how the profiler works, and IsoKV

decides which arrangement parallelism to use to store the data by this profiler.

We evaluated the performance of the Dynamic-Arrangement scheme of IsoKV

under changing workload of read: write ratio on the runtime comparing with

Striping-Arrangement scheme and Isolation-Arrangement scheme.

In summary, we implemented IsoKV that features an application-driven

flash management scheme considering the behavior and data structure of LSM-

tree based key-value store. In IsoKV, the internal parallelism of the SSD is

used according to the context of the application in a way that considers the

interference rather than the traditional greedy scheme. Furthermore, it works

in an optimal arrangement depending on the characteristics of the workloads.

The main benefits of IsoKV include: 1) each type of write requests has their

own region, thereby alleviating the delay of read comes from the expensive

turnaround time of write requests; 2) It shows predictable performance due to

reduced interference between I/O types and garbage collection (GC); 3) It uses

the optimal device parallelism according to the I/O pattern of the workload.

3.5 Implementation

To verify the efficiency of IsoKV’s design strategies, we implement IsoKV based

on RocksDB [13], an LSM-tree based KV store for fast storage. We use the lib-

lightnvm [7] interface to access a 2TB Open-Channel SSD from CNEX. liblight-

nvm allows user space applications to implement direct access to Open-Channel

SSD via C API such as nvm dev open, nvm vblk pread, nvm vblk write, etc. [14],

facilitating application development.

As shown in Figure 3.2, IsoKV maintains virtual blocks (vblks) on the stor-

age back end. I/O generated according to the LSM-tree logic are handled by

21

using the vblk. We Implemented the storage back end of IsoKV based on [26].

Specifically, we implement IsoKV’s storage back end to: 1) set maps between

vblks to physical blocks with configured bandwidth(e.g., 48 out of 128 LUNs);

2) read/write each file through corresponding vblks considering I/O types and

level of SST files; 3) erase vblk(corresponding physical blocks) and release files

when they are outdated according to the LSM-tree logic; 4) manage file meta-

data for recovery because IsoKV’s I/O bypass existing filesystem; 5) manage

weariness of NAND Flash blocks; 6) manage bad blocks in the granularity of

vblk; 7) profile temporal tendency of reads and writes to determine the arrange-

ment of parallel units.

22

Chapter 4

Evaluation

4.1 Experimental Setup

we conducted extensive experiments to evaluate IsoKV by focusing on cutting

latency as well as the overall throughput of LSM-tree based key-value store sys-

tem. We used CNEX’s Open-Channel SSD to implement an application-driven

flash management scheme. The CNEX LABs Westlake SDK is equipped with

2TB NAND MLC Flash with 16 channels and 8 parallel units (LUNs) per chan-

nel that make possible 128-concurrent I/O execution. For experimental evalua-

tions, we used a 72-core Intel Xeon E7-8870 processor server machine equipped

with 384 GB DRAM, PCI 3.0 interface connected with the Open-Channel SSD.

Ubuntu 17.04 server and Linux kernel 4.15.0 version for Open-Channel SSD [11]

supported IsoKV. We implemented IsoKV based on RocksDB’s modified ver-

sion using Open-Channel SSD and liblightnvm [12].

23

0

1000

2000

3000

4000

5000

6000

(90:10) (80:20) (70:30) (60:40) (50:50) (40:60) (30:70) (20:80) (10:90)

O
pe

ra
tio

ns
 /

se
c

(read % : write %)

Isolation

Striping

(a) Overall Throughput (ops/s)

0

200

400

600

800

1000

1200

(90:10) (80:20) (70:30) (60:40) (50:50) (40:60) (30:70) (20:80) (10:90)

A
ve

ra
ge

 L
at

en
cy

 (
m

ic
ro

s)

(read % : write %)

Isolation

Striping

(b) Average Read Latency (micros)

Figure 4.1: Striping-Arrangement VS Isolation-Arrangement.

24

4.2 Performance Evaluation

In this section, we evaluate the throughput and latency performance of IsoKV

using db bench micro-benchmark released with RocksDB [9]. We evaluated ran-

dom read and write performance by inserting and extracting 600,000 key-value

items (i.e., 10GB) in a uniformly distributed random order. In all experiments,

we started with 100,000 keys inserted in advance to prevent read miss. Be-

cause our target workload is a mixed workload of reads and writes requests, we

evaluated the performance of IsoKV under various workloads by changing the

read-percentage parameter of db bench from 10 percent to 90 percent.

Figure 4.1a plots the IsoKV’s overall throughput performance under 9 dif-

ferent workloads which have different percentages of read operation comparing

Striping-Arrangement scheme and Isolation-Arrangement scheme of IsoKV. Ex-

cept for a workload with a read percentage of 10 percent, our work, Isolation-

Arrangement scheme, shows improved overall throughput performance results.

Also, It shows that as the ratio of read operation decreases, the degree of per-

formance improvement of the Isolation-Arrangement scheme decreases. Espe-

cially, when the read operation occupies 10 percent of the workload, the greedy

Striping-Arrangement scheme results in better throughput performance because

the read requests and write requests are not mixed enough in the SSD. The aver-

age throughput improvement on all workloads is around 20% and the workloads

with a read percentage of 90 achieved performance improvements of up to 47%

over Striping-Arrangement scheme.

Similarly, we evaluated average read response time which is critical for Qual-

ity of Service(QoS). In the experiment, read operations request data in SST files

from level 0 to level 3. Figure 4.1b represents the average response time results

for all read operations. In the Striping-Arrangement scheme, the latency in-

25

creases proportionally as the ratio of write requests to workload increases. On

the other hand, the Isolation-Arrangement scheme always shows predictable

performance regardless of the percentage of write requests in the workload. It

also achieves 43%-reduced average latency performance result and 67% reduced

latency under the most write-intensive workload. The reason for this is that the

read delay can be improved the most under the write-intensive workload which

has long-latency write requests.

We measured the read latency of each level separately for a detailed analysis

of read latency under the 9 workload. In this experiment, read requests reached

over 4-levels of SST files from level 0 to level 3. Figure 4.2 and Figure 4.3

illustrate the result of average latency and P99th tail latency. For all workloads

with a read percentage of 10 percent to 90 percent, the Isolation-Arrangement

scheme reduces average read latency and tail latency at all levels versus the

Striping-Arrangement scheme by up to 72% and 96% respectively. Also, In all

experiments, the Isolation-Arrangement scheme shows predictable read latency.

In order to verify the behavior of the dynamic LUNs arrangement scheme, we

evaluated IsoKV under workload which changes its characteristics during run-

time. The entire run-time of the experiment is divided into 50 intervals, and the

interval throughput performance is plotted for each interval. During the first 30

intervals, the workload is read-intensive which has 10% of read-percentage, and

the remaining 20 intervals, IsoKV process write-intensive workloads with 90%

of read operations. the experimental result shows that the performance of the

Isolation scheme represents the same performance with the dynamic approach

during the first 30 intervals. On the other hand, the Striping-Arrangement

scheme shows relatively deteriorated performance results due to I/O interfer-

ence. The static Isolation scheme under a write-intensive workload after the

30th interval shows performance degradation due to degraded parallelism rather

26

0

200

400

600

800

1000
1200

1400

(90
:10)

(80
:20)

(70
:30)

(60
:40)

(50
:50)

(40
:60)

(30
:70)

(20
:80)

(10
:90)

A
ve

ra
ge

 L
at

en
cy

 (
m

ic
ro

s)

(read % : write %)

Isolation

Striping

(a) Level-0 SST file

0

200
400

600

800

1000

1200

1400

(90
:10)

(80
:20)

(70
:30)

(60
:40)

(50
:50)

(40
:60)

(30
:70)

(20
:80)

(10
:90)

A
ve

ra
ge

 L
at

en
cy

 (
m

ic
ro

s)

(read % : write %)

Isolation

Striping

(b) Level-1 SST file

0

200
400

600

800

1000

1200

1400

(90
:10)

(80
:20)

(70
:30)

(60
:40)

(50
:50)

(40
:60)

(30
:70)

(20
:80)

(10
:90)

A
ve

ra
ge

 L
at

en
cy

 (
m

ic
ro

s)

(read % : write %)

Isolation

Striping

(c) Level-2 SST file

0

200
400

600

800

1000

1200

1400

(90
:10)

(80
:20)

(70
:30)

(60
:40)

(50
:50)

(40
:60)

(30
:70)

(20
:80)

(10
:90)

A
ve

ra
ge

 L
at

en
cy

 (
m

ic
ro

s)

(read % : write %)

Isolation

Striping

(d) Level-3 SST file

Figure 4.2: Average Read Latency of key-value pair from Level-0 to Level-3

SST files

than performance improvement due to eliminated interference. However, the

Dynamic-Arrangement scheme shows the best performance in all intervals be-

cause the workload profiler dynamically changes the arrangement of parallelism

by monitoring the characteristics of the changing workload.

To evaluate IsoKV’s performance with more realistic workloads, we run the

YCSB benchmark [40] on the Isolation scheme and Striping scheme respec-

tively. The YCSB benchmark is an industry-standard macro-benchmark which

has multiple workloads with parameters shown in Table 4.1. Figure 4.5 illus-

trates the result of four representative workloads(i.e., A, B, D, F). As shown in

Figure 4.5 and Figure 4.5b, overall throughput performances and latency are

improved compared to the Striping-Arrangement scheme under all workloads.

27

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

(90
:10)

(80
:20)

(70
:30)

(60
:40)

(50
:50)

(40
:60)

(30
:70)

(20
:80)

(10
:90)

P9
9

La
te

nc
y

(m
ic

ro
s)

(read % : write %)

Isolation

Striping

(a) Level-0 SST file

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

(90
:10)

(80
:20)

(70
:30)

(60
:40)

(50
:50)

(40
:60)

(30
:70)

(20
:80)

(10
:90)

P9
9

La
te

nc
y

(m
ic

ro
s)

(read % : write %)

Isolation

Striping

(b) Level-1 SST file

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

(90
:10)

(80
:20)

(70
:30)

(60
:40)

(50
:50)

(40
:60)

(30
:70)

(20
:80)

(10
:90)

P9
9

La
te

nc
y

(m
ic

ro
s)

(read % : write %)

Isolation

Striping

(c) Level-2 SST file

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

(90
:10)

(80
:20)

(70
:30)

(60
:40)

(50
:50)

(40
:60)

(30
:70)

(20
:80)

(10
:90)

P9
9

La
te

nc
y

(m
ic

ro
s)

(read % : write %)

Isolation

Striping

(d) Level-3 SST file

Figure 4.3: P99th Tail Latency of key-value pair from Level-0 to Level-3

Especially under the YCSB-A, an update heavy workload, average latency re-

duced by 60%. There were also 57% and 53% throughput improvements respec-

tively in YCSB-D and YCSB-F which insert additional records. This is because

the I/O interference reduction effect of the Isolation-Arrangement scheme is

more pronounced in these insert worklosds

28

In
te

rv
al

 T
hr

ou
gh

pu
t

(o
ps

/s
)

!"#$%$&' !"#$%&'#(!"#$%&'

!"""

!"""

!"""

!"""

!"""

!"""

!"""

!"""

!
" # $ % & ' () * "! "" "# "$ "% "& "' "(") "* #! #" ## #$ #% #& #' #(#) #* $! $" $# $$ $% $& $' $($) $* %! %" %# %$ %% %& %' %(%) %* &! &"

!"#$%&'(

!"#$%$&'

!"#$%&'#(

!"#$%&'

Figure 4.4: Interval throughput comparison under changing workload - Striping

VS Isolation VS Dynamic

Workloads Descriptions Parameters

YCSB-A Update heavy workload readproportion=0.5, updateproportion=0.5

YCSB-B Read mostly workload readproportion=0.95, updateproportion=0.05

YCSB-D New records are inserted readproportion=0.95, insertproportion=0.05

YCSB-F Short ranges of key readproportion=0.5, readmodifywriteproportion=0.5

Table 4.1: Workload descriptions and parameters

29

0

500

1000

1500

2000

2500

Workload A Workload B Workload D Workload F

op
s/

s

Striping

Isolation

(a) Overall Throughput (ops/s)

0

200

400

600

800

1000

1200

1400

Workload A Workload B Workload D Workload F

Av
er

ag
e

re
ad

 la
te

nc
y

(u
s)

Striping

Isolation

(b) Average Read Latency (micros)

0

500

1000

1500

2000

2500

3000

3500

4000

Workload A Workload B Workload D Workload F

P9
9

re
ad

 l
at

en
cy

 (u
s)

Striping

Isolation

(c) P99 Read Latency (micros)

Figure 4.5: YCSB Macro-benchmarks result

30

Chapter 5

Related Work

Characteristics of NAND flash based storage device. The previous

studies have studied the performance and characteristics of SSDs. The work

in [22] presents a set of experiments on the effect of reads/writes and ac-

cess patterns on performance, while uFlip [20] [21] represents benchmark re-

sults and illustrate performance pattern of SSDs and Open-Channel SSDs.

In addition, authors in [19] study the effect of parallelism on performance.

The work in [33], [34] shows that the randomness of the workload increases

garbage collection overhead of the SSD and internal fragmentation, resulting in

performance degradation. Even though internal FTL optimizations can mit-

igate the overhead of random write requests, performance improvement as

much as sequential performance is difficult to achieve due to the limited ca-

pacity of write buffer inside SSDs [32, 20, 31]. Our works inspired by these

works [22, 20, 21, 19, 33, 32, 34, 31]. In contrast, we focus on performance

degradation resulting from the interference between reads and writes.

Providing QoS through isolated I/O operations. Rail [24] proposes an

31

approach based on redundancy to resolve read latency performance degradation

of DBMS under read/write workloads. Rail achieves predictable read response

time by using additional storage devices that periodically synchronizing each

other and having a copy of original data. Under a read/write mixed workload,

Rail physically handles either read or write requests per SSD. Also, Woong et

al. [38] designed and implemented host side storage engine which schedules I/O

and SSD internal operations to data blocks replicated among multiple SSDs.

Under the storage engine, latency heavy operations such as garbage collection

are detained in a group of SSDs, while foreground I/O requests are delivered

to other SSDs. These approaches eliminate the interference between read and

write requests by physically isolating the requests. Our study is inspired by

these works [24, 38] in terms of providing QoS through isolated requests on

each processing unit (SSD, Channel, die, etc.). In contrast, our work fully uses

the storage device’s capacity, while previous schemes based on redundancy do

not fully utilize the capacity.

Cross-layer optimization. In the multi-stream [25], the host gives stream

information to place data having a similar access pattern through the same

stream internally in the SSD, and the storage device utilizes it for data stor-

age. Especially, PCStream [23] extracts program contexts during runtime and

automates data-to-stream mapping considering the lifetime of data. Experimen-

tal result shows that PCStream reduces the average Write Amplication Factor

(WAF) by 35% over existing scheme. FlashShare [28] satisfies different levels

of I/O service latency requirements for different co-running applications. It re-

duces I/O interference among co-running applications bypassing attributes of

applications through all the layers of underlying storage stack spanning from

Linux kernel to storage devices. For given attributes, each layer of storage stack

manages I/O depending on the application type(latency-critical and not). Our

32

study is in line with these works [25, 23, 28] in terms of that multiple layers of

storage stack were co-designed and optimized. In contrast, we focus not on de-

livering the hints of the host software to the hardware, but on the host software

directly managing the flash-based storage devices.

Managing storage devices at the host layer. [30] aims to solve the dou-

ble logging problem in both FTL and append-only application. Also, GearDB [29]

shares the consideration of separating data with similar lifetimes. Javier et

al. [26] present application-driven FTL that eliminates redundant logic between

application and SSD’s internal FTL. Likewise, SDF [39] exposes SSD’s inter-

nal flash channels to the host software and eliminates space over-provisioning.

The host software, given direct access to the raw flash channels of the SSD,

effectively organize its data and schedule its data access. Our study is in line

with these works [30, 29, 26, 39] in terms of managing storage devicese at the

host layer. Especially, our work is inspired by [26, 29] in terms of that they

eliminate on-storage garbage collections by synchronizing application logic and

behavior of storage devices. In contrast, we enable flash management such as

data placement, garbage collection (GC) considering the interference between

I/O components in an application.

33

Chapter 6

Conclusion

In this paper, we present IsoKV, an LSM-tree based key-value store tailored for

Open-Channel SSDs.IsoKV achieves both enhanced performance of through-

put and latency with three main design approaches: GC-free flash manage-

ment, isolated data placement policy, and dynamic arrangement of parallelism.

We implement IsoKV on RocksDB and evaluate it with a real Open-Channel

SSD. Experimental results show that IsoKV improves the overall performance

by about 1.20× under various micro-benchmark workloads compared with the

existing scheme. Also, most importantly, IsoKV reduces average and tail read

latency by up to 67% and 96%, respectively. Furthermore, under the realistic

workloads, IsoKV achieves improves the overall throughput by 1.36× and re-

duces the average read latency by 60% compared with the existing scheme. The

performance gain mainly comes from eliminated interference between I/O types

and dynamic arrangement of parallelism based on workload characteristics.

34

Bibliography

[1] FIO: Flexible I/O tester, https://linux.die.net/man/1/fio

[2] RocksdB, https://rocksdb.org

[3] Apache Cassandra, http://cassandra.apache.org

[4] Apache HBase, https://hbase.apache.org

[5] Google LevelDB, https://github.com/google/leveldb

[6] Open-Channel Solid State Drive Interface Specification,

https://openchannelssd.readthedocs.io/en/latest/specification

[7] liblightnvm: user space I/O library for Open-Channel SSDs,

http://lightnvm.io/liblightnvm

[8] oc bench: benchmark tool for Open-Channel SSDs,

https://github.com/RockyLim92/ocssd bench

[9] rocksdb db bench tool,

https://github.com/facebook/rocksdb/wiki/Benchmarking-tools

[10] SAMSUNG 960 PRO SSD Specification,

https://www.samsung.com/semiconductor/minisite/ssd/product/

35

[11] OpenChannelSSD/linux repository,

https://github.com/OpenChannelSSD/linux/tree/pblk.cnex

[12] RockyLim92/rocksdb repository,

https://github.com/RockyLim92/rocksdb

[13] OpenChannelSSD/rocksdb repository,

https://github.com/OpenChannelSSD/rocksdb

[14] liblightnvm C API,

http://lightnvm.io/liblightnvm/capi/index.html

[15] Chen, Feng, Rubao Lee, and Xiaodong Zhang. ”Essential roles of exploiting

internal parallelism of flash memory based solid state drives in high-speed

data processing.” 2011 IEEE 17th International Symposium on High Per-

formance Computer Architecture. IEEE, 2011.

[16] Kang, Woon-Hak, et al. ”Durable write cache in flash memory SSD for

relational and NoSQL databases.” Proceedings of the 2014 ACM SIGMOD

international conference on Management of data. ACM, 2014.

[17] Heerak Lim. ”Application-Driven Flash Management: LSM-tree based

Database Optimization through Read/Write Isolation.” Proceedings of the

Doctoral Symposium of the 19th International Middleware Conference.

ACM, 2018.

[18] Matias Bjørling. ”From Open-Channel SSDs to Zoned Namespaces”

USENIX Association 2019.

[19] Chen, Feng, Rubao Lee, and Xiaodong Zhang. ”Essential roles of exploiting

internal parallelism of flash memory based solid state drives in high-speed

36

data processing.” 2011 IEEE 17th International Symposium on High Per-

formance Computer Architecture. IEEE, 2011.

[20] Bouganim, Luc, Björn Jónsson, and Philippe Bonnet. ”uFLIP: Under-

standing flash IO patterns.” arXiv preprint arXiv:0909.1780 (2009).

[21] Picoli, Ivan Luiz, et al. ”uFLIP-OC: Understanding flash I/O patterns

on open-channel solid-state drives.” Proceedings of the 8th Asia-Pacific

Workshop on Systems. ACM, 2017.

[22] Chen, Feng, David A. Koufaty, and Xiaodong Zhang. ”Understanding in-

trinsic characteristics and system implications of flash memory based solid

state drives.” ACM SIGMETRICS Performance Evaluation Review. Vol.

37. No. 1. ACM, 2009.

[23] Kim, Taejin, et al. ”PCStream: automatic stream allocation using program

contexts.” 10th USENIX Workshop on Hot Topics in Storage and File

Systems (HotStorage 18). 2018.

[24] Skourtis, Dimitris, et al. ”Flash on rails: Consistent flash perfor-

mance through redundancy.” 2014 USENIX Annual Technical Conference

(USENIXATC 14). 2014.

[25] Kang, Jeong-Uk, et al. ”The multi-streamed solid-state drive.” 6th

USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-

age 14). 2014.

[26] González, Javier, et al. ”Application-driven flash translation layers on

open-channel SSDs.” Proceedings of the 7th Non Volatile Memory Work-

shop (NVMW). 2016.

37

[27] O’Neil, Patrick, et al. ”The log-structured merge-tree (LSM-tree).” Acta

Informatica 33.4 (1996): 351-385.

[28] Zhang, Jie, et al. ”Flashshare: punching through server storage stack from

kernel to firmware for ultra-low latency SSDs.” 13th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 18). 2018.

[29] Yao, Ting, et al. ”GearDB: A GC-free Key-Value Store on HM-SMR Drives

with Gear Compaction.” 17th USENIX Conference on File and Storage

Technologies (FAST 19). 2019.

[30] Lee, Sungjin, et al. ”Application-managed flash.” 14th USENIX Confer-

ence on File and Storage Technologies (FAST 16). 2016.

[31] Zhou, You, et al. ”An efficient page-level FTL to optimize address transla-

tion in flash memory.” Proceedings of the Tenth European Conference on

Computer Systems. ACM, 2015.

[32] Chen, Feng, David A. Koufaty, and Xiaodong Zhang. ”Understanding in-

trinsic characteristics and system implications of flash memory based solid

state drives.” ACM SIGMETRICS Performance Evaluation Review. Vol.

37. No. 1. ACM, 2009.

[33] Min, Changwoo, et al. ”SFS: random write considered harmful in solid

state drives.” FAST. Vol. 12. 2012.

[34] Mittal, Sparsh, and Jeffrey S. Vetter. ”A survey of software techniques for

using non-volatile memories for storage and main memory systems.” IEEE

Transactions on Parallel and Distributed Systems 27.5 (2015): 1537-1550.

38

[35] Hu, Xiao-Yu, et al. ”Write amplification analysis in flash-based solid state

drives.” Proceedings of SYSTOR 2009: The Israeli Experimental Systems

Conference. ACM, 2009.

[36] Lee, Sang-Won, et al. ”A log buffer-based flash translation layer using fully-

associative sector translation.” ACM Transactions on Embedded Comput-

ing Systems (TECS) 6.3 (2007): 18.

[37] Lee, Sungjin, et al. ”LAST: locality-aware sector translation for NAND

flash memory-based storage systems.” ACM SIGOPS Operating Systems

Review 42.6 (2008): 36-42.

[38] Shin, Woong, et al. ”Providing QoS through host controlled flash SSD

garbage collection and multiple SSDs.” 2015 International Conference on

Big Data and Smart Computing (BIGCOMP). IEEE, 2015.

[39] Ouyang, Jian, et al. ”SDF: software-defined flash for web-scale internet

storage systems.” ACM SIGPLAN Notices. Vol. 49. No. 4. ACM, 2014.

[40] Cooper, Brian F., et al. ”Benchmarking cloud serving systems with YCSB.”

Proceedings of the 1st ACM symposium on Cloud computing. ACM, 2010.

[41] Bjørling, Matias, Javier González, and Philippe Bonnet. ”LightNVM: The

Linux Open-Channel SSD Subsystem.” 15th USENIX Conference on File

and Storage Technologies (FAST 17). 2017.

[42] Bjørling, Matias, et al. ”Linux kernel abstractions for open-channel solid

state drives.” Non-Volatile Memories Workshop. 2015.

39

초록

최신 데이터 센터는 스토리지 서버, 캐시 시스템 및 Key-Value stores와 같은 I/O

집약적인 애플리케이션을 위한 스토리지 장치의 높은 병렬성을 활용하는 것을

목표로 한다. Key-value stores는 고성능의 고신뢰 서비스를 제공해야 하는 가장

대표적인 응용프로그램이다. Key-value stores의 I/O 성능을 높이기 위해 많은 데

이터센터가비휘발성메모리익스프레스(NVMe)기반 SSD(Solid State Devices)

와 같은 차세대 스토리지 장치를 적극적으로 채택하고 있다. NVMe SSD와 그 프

로토콜은 높은 수준의 병렬성을 제공하는 것이 특징이다. 그러나 NVMe SSD가

병렬성을 제공하면서도 예측 가능한 성능을 보장하지는 못할 수 있다. 예를 들어

읽기 및 쓰기 요청이 많이 혼합되면 요청과 내부 작업(예: GC) 사이의 간섭으로

인해 처리량 및 응답 시간의 성능 저하가 발생할 수 있다.

간섭을최소화하고성능을향상시키기위해본연구에서는 Key-value stores를

위한 격리 방식인 IsoKV를 제시한다. IsoKV는 애플리케이션 중심 플래시 저장장

치관리방식을통해 SSD의병렬화수준을직접관리한다. IsoKV는 SSD의각전용

내부 병렬 장치에 서로 다른 특성을 가진 데이터를 저장함으로써 I/O 요청 간의

간섭을 줄인다. 또한 IsoKV는 SSD의 LSM 트리 로직과 데이터 관리를 동기화하

여 GC를 제거한다. 본 연구에서는 RocksDB를 기반으로 IsoKV를 구현하였으며,

Open-Channel SSD를 사용하여 성능평가하였다.. 본 연구의 실험 결과에 따르면

IsoKV는 기존의 데이터 저장 방식과 비교하여 평균 1.20× 빠르고 및 43% 감소된

처리량과 응답시간 성능 개선 결과를 얻었다. 관점에서 43% 감소하였다.

주요어: Storage, NAND-flash, Open-Channel-SSD, FTL, NVMe, LSM-tree

학번: 2017-21118

40

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Log-Structured Merge tree based Database
	2.2 Open-Channel SSDs .
	2.3 Preliminary Experimental Evaluation using oc bench

	Chapter 3 Design and Implementation
	3.1 Overview of IsoKV .
	3.2 GC-free ash storage management synchronized with LSM-tree logic
	3.3 I/O type Isolation through Application-Driven Flash Management
	3.4 Dynamic Arrangement of NAND-Flash Parallelism
	3.5 Implementation

	Chapter 4 Evaluation
	4.1 Experimental Setup .
	4.2 Performance Evaluation .

	Chapter 5 Related Work
	Chapter 6 Conclusion
	Bibliography
	초록

<startpage>11
Chapter 1 Introduction 1
Chapter 2 Background 8
 2.1 Log-Structured Merge tree based Database 8
 2.2 Open-Channel SSDs . 9
 2.3 Preliminary Experimental Evaluation using oc bench 10
Chapter 3 Design and Implementation 14
 3.1 Overview of IsoKV . 14
 3.2 GC-free ash storage management synchronized with LSM-tree logic 15
 3.3 I/O type Isolation through Application-Driven Flash Management 17
 3.4 Dynamic Arrangement of NAND-Flash Parallelism 19
 3.5 Implementation 21
Chapter 4 Evaluation 23
 4.1 Experimental Setup . 23
 4.2 Performance Evaluation . 25
Chapter 5 Related Work 31
Chapter 6 Conclusion 34
Bibliography 35
초록 40
</body>

