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Abstract

The development of ultra-large NAND flash storage devices (SSDs)

is recently made possible by NAND flash memory semiconductor pro-

cess scaling and multi-leveling techniques, and NAND package tech-

nology, which enables continuous increasing of storage capacity by

mounting many NAND flash memory dies in an SSD. As the capacity

of an SSD increases, the total cost of ownership of the storage system

can be reduced very effectively, however due to limitations of ultra-

large SSDs in reliability and performance, there exists some obstacles

for ultra-large SSDs to be widely adopted. In order to take advantage

of an ultra-large SSD, it is necessary to develop new techniques to

improve these reliability and performance issues.

In this dissertation, we propose various optimization techniques

to solve the reliability and performance issues of ultra-large SSDs.

In order to overcome the optimization limitations of the existing ap-

proaches, our techniques were designed based on various characteristic

evaluation results of NAND flash devices and field failure character-

istics analysis results of real SSDs.

We first propose a low-stress erase technique for the purpose of

reducing the characteristic deviation between wordlines (WLs) in a

NAND flash block. By reducing the erase stress on weak WLs, it

effectively slows down NAND degradation and improves NAND en-

durance. From the NAND evaluation results, the conditions that can
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most effectively guard the weak WLs are defined as the gerase mode.

In addition, considering the user workload characteristics, we propose

a technique to dynamically select the optimal gerase mode that can

maximize the lifetime of the SSD.

Secondly, we propose an integrated approach that maximizes the

efficiency of copyback operations to improve performance while not

compromising data reliability. Based on characterization using real

3D TLC flash chips, we propose a novel per-block error propagation

model under consecutive copyback operations. Our model significantly

increases the number of successive copybacks by exploiting the aging

characteristics of NAND blocks. Furthermore, we devise a resource-

efficient error management scheme that can handle successive copy-

backs where pages move around multiple blocks with different reli-

ability. By utilizing proposed copyback operation for internal data

movement, SSD performance can be effectively improved without any

reliability issues.

Finally, we propose a new recovery scheme, called reparo, for

a RAID storage system with ultra-large SSDs. Unlike the existing

RAID recovery schemes, reparo repairs a failed SSD at the NAND die

granularity without replacing it with a new SSD, thus avoiding most

of the inter-SSD data copies during a RAID recovery step. When a

NAND die of an SSD fails, reparo exploits a multi-core processor of

the SSD controller to identify failed LBAs from the failed NAND die

and to recover data from the failed LBAs. Furthermore, reparo ensures

no negative post-recovery impact on the performance and lifetime of
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the repaired SSD.

In order to evaluate the effectiveness of the proposed techniques,

we implemented them in a storage device prototype, an open NAND

flash storage device development environment, and a real SSD envi-

ronment. And their usefulness was verified using various benchmarks

and I/O traces collected the from real-world applications. The exper-

iment results show that the reliability and performance of the ultra-

large SSD can be effectively improved through the proposed tech-

niques.

Keywords: NAND Flash Memory, Flash Translation Layer, NAND

Flash-Based Storage Systems, Embedded Systems, Performance Op-

timization, Lifetime Optimization

Student Number: 2017-36900
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Chapter 1

Introduction

1.1 Motivation

Ultra-large (UL) SSDs (e.g., 32-TB SSDs in a 2.5-inch form fac-

tor [3]) are becoming popular these days in enterprise storage markets

because of their advantages in reducing the total cost of ownership. As

the capacity of a single SSD increases, fewer SSDs are needed to build

a storage system. A smaller number of SSDs directly reduce various

operating costs of storage systems, such as rack space, power, cooling,

and storage-area networking costs.

The development of UL SSDs is made possible for two main rea-

sons. The first is the continuous increase in the capacity of each NAND

flash die, and the second is the development of NAND flash packaging

technology and SSD controller design technology that can increase the

number of NAND flash die in an SSD. Due to these technologies, the

capacity of an SSD is continuously increasing, and it has the advan-

tage of developing a cost-effective storage system. However, on the

one hand, these capacity-enhancing technologies have introduced new

drawbacks to the wider adoption of UL SSDs in practice.

New problems related to the capacity increase of UL-SSDs can

be divided into three main categories. First, there is an issue in life-
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time of 3D NAND used in UL-SSDs. As the 3D NAND continues to

increase in capacity, the number of wordlines (WLs) in a block also

increases, and the variation in characteristics between WLs increases.

This characteristic deviation is a weakness that shortens the lifetime

of UL SSDs as the lifetime of a block is limited by the weakest WL in

the block. Another issue of UL SSDs is performance degradation. As

the number of flash channels and ways of UL SSDs increases, the prob-

lem of performance bottlenecks increases when performing an internal

data migration. As the number of UL SSDs in the storage system de-

creases to provide the same storage capacity, the performance required

for a single UL SSD increases. However, if the internal bandwidth bot-

tleneck becomes severe during the internal data migration, the host

I/O processing performance will be degraded, resulting a performance

bottleneck of an SSD. Finally, the increased number of NAND dies

in an UL SSD increases the RAID recovery overhead in the storage

system due to die failure and weakens the reliability of the storage

system. Since the probability of NAND die failure is proportional to

the number of dies in an SSD, and the recovery time of RAID is pro-

portional to the capacity of the SSD, UL SSDs not only increase the

probability of RAID rebuild process but also increase the probability

of causing reliability problems such as secondary failure [2,4]) or read

failure during the recovery process.
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1.2 Dissertation Goals

Because the reliability and performance issues of an UL SSD are

due to various reasons while increasing the capacity of the SSD, it is

hard to improve them all with a single solution. Therefore, in order to

satisfy various requirements for UL SSDs at the same time, multiple

techniques that properly address each problem need to be developed

and effectively integrated. Through this, the proposed technique to

improve a specific problem should not cause problems in other aspects.

In this dissertation, we propose system-level approaches that im-

prove the reliability and performance of UL SSDs, which overcomes

the limitations of the existing techniques. In particular, our primary

goal is to find new optimization hints which have not been exploited

by the existing techniques, from the low-level NAND characterization

to I/O characteristic of input workloads and SSD field failure char-

acteristics. Then, we develop system-level optimization techniques to

take advantage of these hints and improve the characteristics of UL

SSDs in various ways.

First, we present an effective stress-relief solution for 3D NAND

flash memory. Since erase operations are the main source of NAND

flash wear-out [5], our solution is targeted to reduce the stress on

weak WLs when performing erase operations. Because the large char-

acteristic deviation between pages plays a negative role in limiting the

lifetime of the block, by reducing the erase stress for the weak WLs,

the deviation between pages in a block is reduced and the endurance of
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the block is improved. From the evaluation using 3D NAND flash, we

identify a relative erase stress reduction, and build a stress model that

can maximize NAND endurance. Furthermore, in order to minimize

the side effect of reducing the physical space due to the application

of erase stress relief, we present a technique for selecting an optimal

relief mode considering the workload characteristics.

Second, we present efficient internal data migration (e.g. GC or

wear leveling) using a copyback operation. Since internal data copy

operations directly interfere with I/O requests from user applications,

how to efficiently handle internal data migrations is a key challenge

for designing a high-performance SSD. Even though NAND copyback

operation can effectively optimize the data migration overhead, the

copyback is rarely used in modern SSDs due to reliability problem. In

order to utilize copyback without reliability problem, we identify the

error accumulation level of copyback according to the characteristics

of each block and define the maximum number of consecutive copy-

backs. In addition, we present a resource-efficient error management

scheme to fully utilize the copyback operation to increase performance

without any side effect.

Third, we present a novel RAID recovery scheme that UL SSD

failures are handled at the SSD level first before taking place a data

recovery process at the RAID level. In contrast to small-sized SSDs

whose capacity is few GB, it is feasible to repair failed NAND dies in

UL SSDs. Since UL SSDs are composed of many NAND dies (e.g., 512

dies for a 32-TB UL SSD), failures of a few NAND dies do not badly
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affect the reliability of an entire SSD and can be normally operated.

Moreover, by leveraging data redundancy in RAID, UL SSDs are able

to recover data of failed dies, while providing promised capacity to

end-users. This self-recovery at a UL SSD level makes it possible to

avoid the costly RAID reconstruction process as well as the hardware

replacement. According to SSD field study [2], most SSDs fail not

because their flash cells were worn over their endurance limit but

because they experience unexpected component failures. Being the

most dominant component of a UL SSD, NAND dies significantly

contribute to such sudden failures in the UL SSD. Therefore, there is

a strong incentive to devise a die-level SSD recovery scheme for UL

SSDs.

1.3 Contributions

In this dissertation, we introduce three optimization techniques

to improve the reliability and/or performance for Ultra-large capacity

SSDs. The contributions of our work can be summarized as follows:

• We propose a new block erasing scheme called GuardedErase (or

gErase) that can prolong the life of blocks by delaying weak WLs

from reaching its maximum endurance level as an effective stress

relief solution for 3D NAND flash memory. In order to extend

the lifetime of weak WLs, GuardedErase employs two erase modes,

normal erase mode and low-stress erase mode, at an individual

WL level. When a WL is erased by the low-stress erase mode,
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the WL experiences reduced wear stress from a block erase op-

eration, thus effectively increasing its maximum number of P/E

cycles. Using the low-stress erase mode, we performed an exten-

sive characterization study for understanding the reliability im-

pact of the low-stress erase mode and built a NAND endurance

model for gErase-enabled NAND blocks based on the evaluation

results. Based on our NAND endurance model, we have imple-

mented the gErase-aware FTL, called longFTL, which dynamically

changes the number of WLs erased by the low-stress erase mode

while I/O performance is not affected. We evaluated the effective-

ness of longFTL using various I/O traces. The evaluation results

show that longFTL can improve the SSD lifetime by 21% over an

existing gErase-unaware FTL with less than 3.1% decrease in the

overall I/O performance.

• We propose an integrated approach that maximizes the efficiency

of copyback operations to optimize the performance but does not

sacrifice data reliability. Although our approach is based on the

same motivation as FastGC [6], we improve the existing technique

in two major aspects. First, we propose a novel perblock error

propagation model under consecutive copyback operations. Our

model aggressively exploits the aging characteristics of NAND

flash memory in deciding the copyback threshold of a NAND

block. (We call the maximum number of consecutive copyback

operations allowed for a NAND block as the copyback thresh-
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old of the NAND block.) By exploiting per-block differences dur-

ing the run time, our model significantly increases the copyback

threshold of most NAND blocks over FastGC. Second, we devise

an efficient error management scheme that can handle successive

copyback operations where pages move around multiple blocks

with different reliability. When a page is migrated through blocks

with different copyback thresholds, our scheme accurately main-

tains the remaining copyback balance of the page regardless of

different copyback thresholds of migrated blocks. In managing

the remaining copyback balance of a page, our scheme employs

a perblock scheme instead of a more direct per-page scheme as

used in FastGC. Unlike the common perception, the perblock

management scheme, which can significantly reduce the memory

and flash requirement over the per-page management scheme, im-

proves both the performance and lifetime of SSDs.

• We propose a novel RAID recovery scheme, called reparo1, which

repairs UL SSDs from a die failure through efficient on-line die

rebuild techniques. To the best of our knowledge, reparo is the

first technique that repairs a failed SSD at the die level. In or-

der to minimize the time to recovery from a die failure, reparo

minimizes both a die failure detection time and a rebuild time.

Whenever a bad block is detected, reparo checks its neighboring

blocks to detect a die failure early. Once a failed die is detected,

1Reparo is a charm used to repair a broken object from Harry Potter.
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multiple flash cores work in parallel to recover data in the failed

die. Since a repaired SSD continues to be used, it is important for

reparo to provide high performance and longer lifetime after the

recovery. To this end, when rebuilding a failed die, reparo modi-

fies a logical address-to-die mapping scheme in the way that mini-

mizes space utilization imbalance among flash cores. This prevents

performance degradation and lifetime drops which are caused by

per-core space and workload variations. In order to verify the

proposed technique, we implement reparo schemes on Samsung

PM1643 SSD [3], and it showed that that the RAID recovery time

is effectively reduced while minimizing the performance degrada-

tion and lifetime reduction after die failure recovery.

1.4 Dissertation Structure

This dissertation is composed of six chapters including the intro-

duction and conclusions which are at the first and the last, respec-

tively. The four intermediate chapters are organized as follows:

Chapter 2 briefly explains the background of our work, including

basics of NAND flash memory and the overall architecture of SSDs.

We also summaries the existing techniques to improve reliability or

performance of an SSD which are highly related to our proposed tech-

niques.

Chapter 3 presents an effective erase stress relief mechanism,

called GuardedErase scheme, which reduces the characteristic variation
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between WLs. We explain key reliability characteristics of 3D NAND

flash blocks and show that low-stress mechanisms should be focused

on erase operations. From the evaluation using the state-of-the-art

3D NAND flash, we figure out the effectiveness of low-stress erase

by reducing erase voltage on specific WLs and describe the Guarded-

Erase scheme. In addition, we propose a new system level technique,

longFTL, which chooses optimal relief mode based on user workload

characteristics. Evaluation results show that proposed scheme can

improve the SSD lifetime without decreasing the overall I/O perfor-

mance.

Chapter 4 presents effective data migration optimization scheme

to increase the SSD performance using copyback operation. We pro-

pose an integrated approach that maximizes the efficiency of copy-

back operations while not compromising data reliability. From the

error propagation characteristics of 3D NAND flash, we propose a

novel per-block error propagation model under consecutive copyback

operations. Furthermore, we devise a resource-efficient error manage-

ment scheme that can handle successive copybacks where pages move

around multiple blocks with different reliability.

Chapter 5 presents a new recovery scheme, called reparo, for a

RAID storage system with ultra-large SSDs. Proposed reparo scheme

repairs a failed SSD at the NAND die granularity without replacing

it with a new SSD, thus avoiding most of the inter-SSD data copies

during a RAID recovery step. By exploiting a multi-core processor of

the SSD controller in identifying failed LBAs from the failed NAND

9



die and recovering data from the failed LBAs, the die failure recovery

overhead is minimized.
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Chapter 2

Background

2.1 Overview of 3D NAND Flash Mem-
ory

3D NAND flash memory [7] enables continuous growth in the

flash capacity by vertically stacking the memory cell to overcome var-

ious technical challenges in scaling 2D NAND flash memory. For exam-

ple, 2D flash memory technologies had encountered the fundamental

limits to scaling below the 10-nm process technology [8] because of the

low device reliability (due to severe cell-to-cell interference) and high

manufacturing complexity (e.g., high-resolution patterning). However,

since 3D flash memory can integrate more memory cells by exploiting

the vertical dimension even with less-resolution patterning technol-

ogy, the flash capacity can be successfully increased by 50% annually

while avoiding the reliability degradation [9].

3D NAND flash memory [7] enables continuous growth in the

flash capacity by vertically stacking the memory cell to overcome var-

ious technical challenges in scaling 2D NAND flash memory. For exam-

ple, 2D flash memory technologies had encountered the fundamental

limits to scaling below the 10-nm process technology [8] because of the

low device reliability (due to severe cell-to-cell interference) and high

11



(a) NAND organization.

(b) Cell structures.

Figure 1: Illustrations of differences between 2D NAND and 3D NAND
[1].

manufacturing complexity (e.g., high-resolution patterning). However,

since 3D flash memory can integrate more memory cells by exploiting

the vertical dimension even with less-resolution patterning technol-

ogy, the flash capacity can be successfully increased by 50% annually

while avoiding the reliability degradation [9].

Compared to the conventional 2D NAND flash memory, there are

two significant innovations in 3D NAND flash memory: architectural

innovation and material innovation. Figure 1(a) shows the organiza-

12



tional difference in a NAND block1 between 2D and 3D NAND flash

memory. In this example, the 2D NAND flash memory has a matrix

structure in which five WLs and three bitlines (BLs) intersect at 90

degrees. On the contrary, the 3D NAND flash memory has a cube-

like structure. The 3D NAND block consists of four vertical layers

(v-layers) in the y axis where each v-layer has four vertically stacked

WLs that are separated by select-line (SSL) transistors. As shown in

Figure 1(a), when the 2D NAND block is rotated by 90 ◦ in a counter-

clockwise direction using the x axis as an axis of rotation (i.e., if the

WLs are set vertically), it corresponds to a single v-layer. Similarly,

the 3D NAND block can be described to have four horizontal lay-

ers (h-layers) which are stacked along the z axis, and each horizontal

layer consists of four WLs. By increasing the number of v-layer of 3D

NAND flash memory (i.e., stacking more h-layers along the z axis),

the total number of WLs in a NAND block is effectively increased.

This advantage of scalability enables 3D NAND flash memory to con-

tinuously increase its capacity by breaking through the manufacturing

limit (e.g., lithography and patterning).

Another key innovation in 3D flash memory is a change in the

type of NAND cells where charge is stored. Most 3D NAND devices

(e.g., TCAT [10], p-BICs [11] and SMArT [12]) adopt cylindrical

charge trap (CT)-type cell structures, also known as gate-all-around

(GAA) [13]. This CT-type cell uses a non-conductive layer of silicon

1NAND flash memory consists of multiple blocks. Each block has multiple WLs
(e.g., 128 - 256 WLs) and each WL consists of a group of flash cells (e.g., 8K - 16K
cells).
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nitride (SiN) that traps electrical charges to store bit information,

while 2D NAND devices use floating gate cell structures which store

bits in a conductor (e.g., poly-Si). As shown in Figure 1(b), each layer

constituting CT-type cell (tunnel oxide, SiN, blocking oxide, and con-

trol gate) wraps a vertical channel made of poly-silicon, thus forming

a three dimensional structure. These differences between 2D and 3D

NAND flash memory require new optimization techniques for efficient

flash-based storage systems.

2.2 Reliability Management in NAND Flash
Memory

In order to reliably store data in flash cells, various reliability

requirements should be satisfied. For example, NAND blocks should

be used up to their limited maximum P/E cycles only. This is be-

cause the NAND cell characteristics in the NAND block deteriorate

as the P/E cycle increases. The main cause of wear-out of a NAND

block is electrical stress on the tunnel oxide during the execution of

the program and erase operations. As program/erase operations are

repeatedly performed on the block, the amount of charges trapped in

the tunnel oxide layer increases. The trapped charges adversely af-

fect the data retention characteristic of NAND cells in the block and

make it difficult for the threshold voltage level (i.e., state) of the erased

NAND cells to be located within their intended voltage interval [14].

Therefore, as the P/E cycle increases, the BER characteristics of data
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stored in the NAND block deteriorate. In order to prevent the number

of error bits from surpassing the correction capacity of an error cor-

rection code (ECC) engine, NAND manufacturers set the maximum

number of P/E cycles allowed for a block, which is often called as

NAND endurance. If the block continues to be used over the max-

imum number of P/E cycles, the BER of the block will exceed the

correction capability of the ECC engine, which results in data loss

(i.e. a read error). In addition to errors due to NAND wear-out, vari-

ous errors (such as program errors and erase errors) can occur due to

process defects during a NAND flash manufacturing procedure [15].

Although NAND operations can fail for different reasons, failed

operations are managed in the block granularity within an FTL. For

example, if a read operation to a page in a block B fails, the FTL

identifies the block B as a bad block and replaces B with a reserved

block. After the BBM module of the FTL moves all the valid data

from the bad block B to the reserved block, the bad block B is no

longer used.

2.3 UL SSD architecture

Since a UL SSD needs to support high performance for its huge

storage space, a high performance multi-core processor is used for its

SSD controller. Figure 2 shows an organizational overview of a typical

UL SSD architecture. The SSD architecture consists of an (N +1)-core

multi-processor, DRAM/SRAM memory, a host interface logic, and a
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large number of NAND dies (which are grouped into different chan-

nels). For example, in Samsung enterprise SSD with 32-TB capacity, a

quad-core ARM based processor is used to manage 512 512-Gib dies,

which are organized into 16 channels. In order to exploit the paral-

lelism supported by the multi-core processor without a high manage-

ment complexity, each core is often dedicated to handling a specific set

of tasks. As shown in Figure 2, the master core is responsible for inter-

facing with the host system while the flash cores, core0, ..., coreN−1,

are assigned to flash management tasks. When the host system sends

I/O requests to the UL SSD, the master core distributes the I/O re-

quests across flash cores. To make flash management simpler, each

flash core is dedicated to specific NAND dies. For example, when N

flash cores are used, 1
N of the NAND dies are equally assigned to

each flash core. Given a logical block address (LBA), a simple address

stripping method is used to decide a target flash core, coretarget (i.e.,
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Figure 2: An overall organization of an SSD architecture.
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coretarget = LBAmodN). Since all the LBAs assigned to the same flash

core have the same last ⌊logn
2 ⌋ bits, each flash core ignores the common

last bits internally for resource optimizations (e.g., the L2P mapping

table reduction). The main advantage of the static stripping method,

which works well for most I/O workloads, is that it is straightforward

to manage because each flash core works in an independent fashion.

2.4 Related Work

2.4.1 NAND endurance optimization by utiliz-
ing page characteristics difference

There have been several studies to improve the NAND endurance

that has been reduced due to the NAND process scaling or multi-

leveling technologies [5, 16, 17]. Jeong et al. conducted a study to im-

prove the NAND endurance by adjusting the erase voltage and erase

time [5]. It is similar to our study in that it improves lifetime through

the reduction of stress caused by erase operation. However, their re-

search aims to perform a stress reduction on the entire block, which

is not related to a reduction in the variance of page characteristics

within the block. Jimenez et al. focused on the variation between

pages within a block and conducted a study to improve NAND en-

durance through a program stress relief technique [16]. However, its

effect is limited in that the main cause of NAND wear-out is erase

operation, not program operation. Our approach differs from their

study in that we suggested a stress relief effect through a more effec-
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tive erasing operation, and also achieved an optimal relief level at the

system perspective, taking into account the effects of WAF increasing

as a side effect of relief. Debao et al. proposed a bad page management

(BPM) technique that improves the lifetime by continuously using the

remaining pages instead of performing BBM of the entire block when

a read error occurs on the specific page [17]. Considering the page vari-

ation within block, BPM is a valid approach in that the rest of the

pages can still be utilized. However, there is a limitation in that the

performance degradation and lifetime reduction were not considered

as a side effect of increased utilization when applying BPM.

2.4.2 Performance optimizations using copyback
operation

There have been several studies to improve the performance of

flash-based storage systems with the copyback operation. However,

many existing techniques [18–20] are not applicable for modern NAND

flash memory because they assumed an ideal SLC NAND flash mem-

ory where no error propagation occurs from successive copyback op-

erations. Other studies such as Jang et al. [21] considered the error

propagation problem in their techniques. However, their solutions was

to bring data out to the ECC module to check the validity of data, thus

minimizing the potential benefit of using copyback. In recent study of

Wu et al. [6], they proposed a technique that can use copyback with-

out error propagation based on NAND characterization for the first

time. However, there is a lot of room for improvement because their
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method is a naive approach and there is overhead for error propaga-

tion management. Our technique differs from the existing technique

in that it maximizes the potential benefits of copyback by taking both

block characteristics and host workload characteristics into account,

and has full control over error propagation issues with minimal over-

head.

2.4.3 Optimizations for RAID Rebuild

Fast RAID recovery techniques have been extensively investi-

gated in enterprise storage systems [22–27]. For example, several groups

have focused on devising efficient data layout methods that can re-

duce the impact of a RAID rebuild process on normal I/O requests

from a host. The parity declustering layout was proposed by Muntz

and Lui [22] to shorten rebuild time and improve user response by

minimizing the number of disks required for reconstructing a failed

disk so that the rest of disks can continue to handle host requests.

It was implemented and evaluated in an accurate simulator environ-

ment by Holland and Gibson [23], and improved/extended by further

researches [24,25].

Wan et al. [26] proposed a skewed sub-array organization in a

RAID structure, which splits large disks into small logical disks to

form sub-arrays but are configured to be skewed among physical disks.

This enables a RAID rebuild process to be performed on multiple

physical disks in parallel without access conflicts.

Although these schemes can reduce the total rebuild time by intel-
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ligently overlapping rebuild operations with host request processing,

they do not reduce the total amount of data that need to be read

for a RAID reconstruction task. Rebuild Assist [28] takes a different

approach to expedite the RAID rebuild process. When an SSD fails,

Rebuild Assist distinguishes the failed LBAs from the readable LBAs

in the failed SSD. For the latter, Rebuild assist simply copies their

data from the failed SSD to a replacement SSD without rebuilding

them using a RAID scheme, thus reducing data reads from the rest of

RAID storage. Reparo, which is based on a subset of new commands

proposed by Rebuild Assist, is fundamentally different from Rebuild

Assist in that reparo does not build a replacement SSD but repairs

failed dies.

2.4.4 Reliability improvement using internal RAID

Reparo is similar to RAIN (Redundant Array of Independent

NAND) techniques [29–35] in that they can recover a failed die in-

side a failed SSD. However, the existing RAIN techniques work at

the individual SSD level rather than the RAID storage level, making

them very difficult to use efficiently in a RAID storage system. For

example, when a storage system is consist of RAIN-enabled SSDs, if

an SSD fails (although such an SSD failure is much less likely because

of an internal RAID configuration in a RAIN-enabled SSD config-

uration), its RAID recovery procedure will be as slow as that of a

RAID storage system with normal SSDs. Since RAID should be sup-

ported in an individual SSD, the existing RAIN techniques incur a
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significant resource overhead (e.g., OP space reduction) as well as a

flash lifetime degradation [36]. Therefore, the performance/lifetime of

RAIN-enabled SSDs is poorer than SSDs without RAIN support. Fur-

thermore, when a RAIN-enabled SSD is recovered after a die failure

using a RAIN scheme, the OP space of the RAIN-enabled SSD will be

further reduced, thus quickly degrading the performance/lifetime of

the SSD. Since we are interested in continuing a normal operation of a

RAID storage system after a failed die is recovered without replacing

a failed SSD, we did not consider the RAIN techniques as a viable al-

ternative solution for repairing failed dies. On the other hand, reparo,

which was proposed for a RAID recovery purpose, imposes little over-

head on an individual SSD level while it can minimize the impact of

the die-level recovery on the performance and lifetime of the repaired

SSD.
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Chapter 3

GuardedErase: Extending SSD
Lifetimes by Protecting Weak
Wordlines

3.1 Reliability Characterization of a 3D
NAND Flash Block

In this section, we explain two key observations on 3D NAND

flash characteristics which motivated the proposed GuardedErase scheme.

3.1.1 Large Reliability Variations Among WLs

Ideally, we would expect all flash cells in a block (or chip) to

have identical characteristics. However, in practice, significant electri-

cal/physical characteristic variations between flash cells are unavoid-

able due to many unexpected process effects during NAND flash man-

ufacturing. Even in 2D NAND flash memory, the reliability has been

known to vary depending on the physical location of WLs within a

flash block, but this variation is much severe in 3D NAND flash mem-

ory. To quantify the reliability variations between WLs, we examined

the inter-WL BER (Bit Error Rate) variations using 160 state-of-the-
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Figure 3: BER variations of 3D NAND flash.

art (48-layer) 3D TLC flash chips1. To minimize the potential dis-

tortions in the evaluation results, we evenly selected 120 test blocks

from each chip at different physical block locations, and tested all the

WLs in each selected block. We tested more than 106 WLs (a total of

3,686,400 WLs) to obtain statistically significant experimental results.

Figure 3(a) shows significant inter-WL BER variations exist within

a tested block even when the blocks experience no program/erase cy-

cles. All BER values were normalized over that of the most reliable

WL. The BER of the worst WL (near the top layer) is about 60%

higher than that of the best WL (near the middle layer). When flash

blocks wear-out (i.e., they experience a large number of program/erase

cycles), the BER variations between WLs get larger, so that the BER

difference between the best and worst WL exceeds two times, as shown

in Figure 3(b). We also examined the inter-WL reliability variations of

1Our flash chips are fabricated by 3D VNAND CT (Charge trap) technology
which is known as SMArT [37] or TCAT [38].
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Figure 4: BER variations of 2D NAND flash.

1x-nm 2D TLC NAND flash memory. Unlike 3D NAND flash memory,

BER increases toward edge WLs (e.g., WL0 or WL64), and the BER

difference between WLs does not change much even if flash blocks

wear out (shown in Figures 4(a), 4(b)).

The root cause of large reliability variations is related to a unique

manufacturing process to form the vertical architecture of 3D NAND

flash memory. Figure 5(a) shows a detailed organization of a vertical

layer in 3D NAND flash memory using a cross-sectional view along

the y-z plane and a top-down view (of three cross sections along the

x-y plane). The stacked cells are vertically connected through cylin-

drical channel holes, called as pillar. The channel holes are formed

at the early stage of 3D NAND flash manufacturing by an etching

process [10]. After forming channel holes, each layer constituting a

3D flash cell (e.g., tunnel oxide, SiN layer, and blocking oxide in Fig-

ure 1(b)) is deposited around a channel hole in order. So, the shape
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of the channel holes is the key factor to determine the structure of 3D

flash cells.

Ideally, we expect that each channel hole has the same geomet-

rical structure regardless of its physical location to achieve the ho-

mogeneous reliability characteristics among flash cells. However, due

to a high aspect ratio2, the cylindrical channel hole cannot avoid suf-

fering from severe structural variations depending on its vertical (z-

directional) location. For example, as shown in Figure 5(b), the di-

ameter of the channel holes varies significantly over the height of an

h-layer. During etching process, the deeper the depth of the channel

hole, the fewer etchant ions it reaches and the less chance of reaction

for etching. Therefore, the channel hole diameter in the topmost h-

layer is wider than that in the bottom h-layer (i.e., the flash cell in the

topmost h-layer has larger cell size than that in the bottom h-layer.).

2The aspect ratio of a channel hole can be defined as the ratio of the width to
height. In 64-layer 3D NAND flash memory, the aspect ratio of channel holes can
be more than 60:1.
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Furthermore, the shape of channel holes in some h-layers is an ellipse

or a rugged shape unlike the circle in upper h-layers mainly due to

the variance of etchant fluid dynamics over vertical positions.

Different channel hole diameters as well as their shapes can cause

large variations in the characteristics of flash cells. Therefore, even

when the same program/erase voltage is applied to flash cells, they ex-

perience different electrical stress depending on the diameter or shape

of a channel hole, resulting in different reliability characteristics along

vertical locations.

3.1.2 Erase Stress on Flash Reliability

Before we design a WL-level stress mitigation technique for 3D

NAND flash memory, in order to quantitatively understand the main

source of flash stress, we performed a comprehensive characterization

study using real 160 3D TLC flash chips with 48 horizontal layers

where each layer consists of 4 WLs. Since both a program operation

and an erase operation incur a significant amount of wear-out stress

on flash cells, the main goal of our study was to measure the rela-

tive impact of these operations on the reliability characteristics of 3D

flash cells. In order to minimize potential distortions in the evaluation

results, we evenly selected 120 test blocks from each chip at differ-

ent physical block locations and tested all the WLs in each selected

block. We tested a total of 3,686,400 WLs (11,059,200 pages) to ob-

tain statistically significant experimental results. Following a standard

evaluation metric commonly used in NAND flash reliability studies,
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Table 1: A summary of three operation sequences.

Sequence type Operations order
Modified Base Sequence P → dummy P → E → dummy E
Erase-only Sequence dummy P → E → dummy E
Program-only Sequence dummy E → P → dummy P

P : program, E : erase

we measured changes in RBER (Raw Bit-Error Rate) after each mea-

surement scenario.

To quantify the impact of the program and erase operations on

the flash endurance stress, we designed three measurement scenarios.

In each scenario, one of three operation sequences is repeated until

the lifetime limit of the block. Table 1 summarizes three operation

sequences with their member operations.

Note that all three sequences include dummy operations so that

unexpected factors do not affect the accuracy of measurement results.
3 As expected, the endurance impact of an erase operation was sig-

nificantly larger than that of a program operation in 3D NAND flash

memory. The endurance stress of erase operations was responsible for

almost 80% of the total stress of flash cells in 3D NAND flash mem-

ory. The relative stress impact of erase operations was almost equal

3As explained in Section 2.2, the flash cell’s wear-out is mainly caused by
trapped charges in the tunnel oxide layer during program and erase operations.
If the flash cell is sufficiently erased, there is little charge remaining that can be
transferred from the SiN layer to the substrate. Therefore, for example, repeating
only erase operations in Erase-only Sequence cannot accurately measure the
endurance effect of the erase operation. As shown in Table 1, dummy program
operations are performed before erase operations. Dummy erase operations were
added to the sequence because they were included in Modified Base Sequence
so that the effect of erase operation can be effectively measured by comparing BER
values of two sequences.
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regardless of WLs. Our measurement study clearly indicates that a

low-stress mechanism should be focused on erase operations, not pro-

gram operations.

3.2 GuardedErase: Design Overview and
its Endurance Model

3.2.1 Basic Idea

Since an erase operation is a major source of the flash wear-out,

it is important to reduce the erase stress on flash cells when they are

erased if the flash cells can be used for more P/E cycles. In order

to reduce the erase stress when necessary, GuardedErase supports the

low-stress erase mode as well as the normal erase mode. In order to

extend the lifetime of a flash block, we apply the low-stress erase mode

to weak WLs that may reach their endurance limit in a near future.

Consider an example 3D flash block with 10 WLs of Figure 6.

Reflecting strong process variability among WLs, there are significant

variations on BER values for the same number of P/E cycles. For

example, when the normal block erase operation is used, WL 0, which

is the weakest WL, reaches its maximum BER value (i.e., the BER

threshold value of the block) after 10 P/E cycles. On the other hand,

after 10 P/E cycles, WL 5, which is the strongest WL, barely reached

50% of its maximum BER value. However, since WL 0 reached its

maximum BER value, the block is no more usable, thus becoming

a bad block. If we employ a fine-grained BPM policy, the block can
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Figure 6: Per-WL BER changes under the normal block erase.

continue to be used with nine WLs after 10 P/E cycles. However, since

the effective block capacity is reduced by 10% (which, in turn, may

introduce a severe WAF increase), the BPM policy is rather limited

in increasing the total amount of written data to the block while

incurring no I/O performance degradation. In the example block in

Figure 6, even if an SSD can tolerate up to 20% of the average block

capacity reduction (thanks to its OP space), only 9 more WLs can be

written to the block before WL 1 becomes unusable after one more

block erasure.

Figure 7 illustrates how the lifetime of the example block can be

extended using the proposed GuardedErase scheme. When BER values

of weak WLs (such as WL 0, WL 1 and WL 9) are higher than those

of other WLs, weak WLs are erased using the low-stress erase mode

whose stress on flash cells is assumed to be 1/3 of that of the normal
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Figure 7: Per-WL BER changes under the gErase block erase.

erase mode. For example, after the 1st erase cycle, the BER value

of WL 0 is more than double that of WL 5. In order to protect WL

0, the low-stress erase mode, which is indicated by a white box in

Figure 7, is used for WL 0 in the 2nd erase cycle. WL 0 is erased six

more times using the low-stress erase mode under similar conditions.

Figure 7 shows that the lifetime of WL 1 and WL 9 is extended to the

14-th erase cycle with five applications of the low-stress erase mode

while that of WL 2 and WL 8 is extended to the 14-th erase cycle

with two applications of the low-stress erase mode. When weak WLs

are erased using the low-stress erase mode, they cannot store data for

the following program cycle. For example, the effective total capacity

of the block after the 2nd erase cycle is reduced to 7 WLs from the

original 10 WLs. Similarly, the effective total capacity of the block

after the even-numbered P/E cycles (e.g., the 4-th erase cycle and
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the 6-th erase cycle) is 7 WLs only because three of five WLs, WL

0, WL 1, WL 2, WL 8 and WL 9, cannot be properly programmed.

However, since the maximum number of P/E cycles for the block is

increased from 10 to 14, the total amount of written data to the block

effectively increases by 19% to 119 WLs.

Note that the GuardedErase scheme outperforms the BPM scheme

in the total number of WLs written to the block by writing 10 more

WLs. Furthermore, unlike the BPM scheme where the effective block

capacity is monotonically non-increasing over P/E cycles, the Guard-

edErase scheme can dynamically control the effective block capacity

up to the maximum block capacity depending on which erase mode

is used. If the low-stress erase mode can be adaptively applied by

exploiting the future write demand and intensity characteristics, the

GuardedErase scheme can efficiently extend the SSD lifetime without an

I/O performance degradation. In order to achieve the full potential

of the GuardedErase scheme, therefore, we need to design an efficient

mechanism for supporting the low-stress erase mode and devise an

intelligent management policy of applying the low-stress erase mode

to proper WLs at the right time.

3.2.2 Per-WL Low-Stress Erase Mode

Implementation

There are two implementation options for the low-stress erase

mode. One is to reduce the erase time (i.e., erase time scaling [39]) and
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Figure 8: An implementation of the low-stress erase mode.

the other is to reduce the erase voltage (i.e., erase voltage scaling [39]).

However, since it is not easy to control the erase time at the WL

granularity, we employed a scheme that lowers the erase voltage. In

order to reduce the erase voltage for a specific WL, we exploited a

test-mode command [40] for 3D NAND flash memory that allows to

vary the driving voltage setting at the WL granularity. Although we

cannot directly apply a lower erase voltage to a specific WL, this test-

mode command can be used to effectively lower the erase voltage for

the WL.

Figure 8(a) illustrates how to reduce the erase stress on WL 47

using the proposed method. Since the voltage difference between the

control gate voltage and the voltage applied to the substrate acts as

the effective erase voltage, when a higher voltage is applied to the
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control gate of a WL, its erase voltage is effectively reduced, thus re-

ducing the erase stress on the WL. In Figure 8(a), 3V, not the usual

0V, is applied to the control gate of WL 47, thus reducing the effec-

tive erase voltage of WL 47 by 3V. Figure 8(b) shows how various

voltages are driven when the low-stress erase mode is used for WL

47 while the rest of WLs are erased using the normal erase mode.

When the nominal erase voltage Verase is applied to the bit line (or

substrate) from time t1 to t2, the NAND flash cells of WL 47 experi-

ence a smaller electrical potential difference by 3V over the flash cells

of the other WLs. Considering that Verase is approximately 17V and

the erase stress is exponentially proportional to an electrical poten-

tial difference, a significant amount of erase stress is reduced to the

NAND flash cells of WL 47 during an erase operation4.

Stress Mitigation Effect

In order to understand the endurance impact of the low-stress

erase mode on WLs, we performed a comprehensive process charac-

terization study using state-of-the-art 3D TLC NAND flash chips. For

endurance comparisons, we formed two block groups whose member

blocks were evenly selected from different physical locations using 30

NAND flash chips. Two block groups were erased using different erase

modes, one group using the normal erase mode only and the other

group using the normal erase mode and the low-stress erase mode

4When the low-stress erase mode is applied to a WL, we increase the verify
voltage setting for the WL so that the erase operation can take the same number
of erase loops as in the normal erase mode.
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Figure 9: Per-WL relative stress coefficients.

half and half, respectively. For each WL of a tested block, we col-

lected the maximum number of P/E cycles that keeps the BER value

of the WL below the BER threshold value.

Based on the measured maximum P/E cycles per WL, we com-

puted the relative stress coefficient Sk of WL k that indicates how

much the erase stress is mitigated when the low-stress erase mode is

used. Sk is a per-WL quantity that indicates how much WL k wears

out when it is erased using the low-stress erase mode over the normal

erase mode. For example, if the maximum number of P/E cycles of

WL p was 10K when the normal erase mode was used, but it was

increased to 20K when the low-stress erase mode is used, the relative

stress coefficient Sp is 0.5. Figure 9 summarizes our measured relative

stress coefficients for different WLs in a block. Although there are

significant differences in Sk values depending on WLs, we observed

that the relative stress coefficients of weak WLs (for which most of

the low-stress erase mode are applied) are quite similar: all the co-
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efficients belong to an interval [0.31, 0.34] with the mean of 0.33.

Although the low-stress erase mode may be applied to a few strong

WLs with larger relative stress coefficients in GuardedErase, when we

evaluate the stress mitigation effect of the low-stress erase mode, we

assume that all the WLs have the same relative stress coefficient, 0.35,

for a simple analysis5.

3.2.3 Per-Block Erase Modes

In order for an FTL to effectively exploit the endurance-capacity

trade-off of the low-stress erase mode, we support nine block erase

modes, gE(1), . . . , gE(9). Table 2 summarizes the proposed nine block

erase modes with varying numbers of protected WLs and different

erase relief ratios6. The higher n in gE(n), the more WLs are erased

using the low-stress erase mode with a higher erase relief ratio. There-

fore, when a block is erased with a higher gErase mode, the maximum

number of P/E cycles of the block is increased. For example, when a

block is erased with gE(9) only, the maximum number of P/E cycles of

the block is increased by 45% whereas when the block is erased with

gE(1), it is increased by 19% only. On the other hand, as shown in

Table 2, the higher the gErase mode, the more WLs become unusable

5In GuardedErase, a fixed number N of WLs are selected for applying the low-
stress erase mode. Although N is fixed, selected N WLs change over time because
N WLs with the worst BER values are protected when a block is erased. Since
the relative stress coefficient of selected WLs is mostly less than 0.35 with few
stronger WLs, our assumption of 0.35 is rather conservative in understanding real
stress mitigation levels.

6The erase relief ratio of gE(n) is defined as a ratio of applying the gE(n) block
erase mode over the normal block erase operation.
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Table 2: A summary of nine gErase modes.

gErase mode(n) == gE(n)
gE(1) gE(2) gE(3) gE(4) gE(5) gE(6) gE(7) gE(8) gE(9)

No. of protected WLs 8 12 16 20 24 24 24 28 32
Erase relief ratio 25% 33% 38% 40% 42% 50% 50% 50% 50%

Block capacity reduction 1.04% 2.08% 3.13% 4.17% 5.21% 6.25% 7.29% 8.33% 9.38%
Norm. Max P/E cycles 1.19 1.26 1.30 1.33 1.37% 1.39 1.41 1.43 1.45

for the next program cycle, thus increasing WAF values. As described

in Section 3.3, it is an important task for an FTL to choose a proper

gErase mode when it erases a block.

In Table 2, the percentage of block capacity reduction in gE(n)

is given by (1.04 × n)%. Since our NAND block has 192 WLs, when

a block is erased by gE(n), 2n WLs of the block become unusable for

the next program cycle7. When a target percentage of block capacity

reduction, say 1.04% in gE(1), is given, there can be multiple options to

achieve the target block capacity reduction ratio using the low-stress

erase mode. Let nW L and f denote the number of protected WLs and

the erase relief ratio. A combination (k×nW L, f/k) over any k achieves

the same block capacity reduction ratio as when (nW L × f/100) WLs

are always protected. For example, (4 WLs, 50%), (8 WLs, 25%) and

(12 WLs, 16.7%) can achieve the same 1.04% reduction percentage in

a 192-WL blocks. From multiple candidate combinations, we prefer

ones with a lower f because such a combination can achieve higher

I/O efficiency by allowing more flexible applications of gErase modes

by an FTL. For example, we prefer (8 WLs, 25%) and (12 WLs,

16.7%) over (4 WLs, 50%). On the other hand, if f is too low (i.e.,

7(2/192) × n ≃ 0.0104 × n.
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nW L is too large), weak WLs may not be fully protected, thus limiting

their endurance improvements. For example, (12 WLs, 16.7%) cannot

maximally extend the lifetime of the weakest WL, WL 0, because f

should be larger than 18.3% if WL 0 could fully achieve its maximum

expected endurance. Therefore, as shown in Table 2, (8 WLs, 25%)

was selected for gE(1).

When gErase modes are supported, a NAND endurance model

based on the number of P/E cycles should account for the low-stress

erase mode as well as the normal erase mode. Since we know the

relative P/E stress when performing the normal erase mode and low-

stress erase mode for each WL, the expected number of maximum

P/E cycles for a specific WL can be easily calculated when the number

of low-stress erase mode and the number of normal erase mode are

known. For example, consider a WL with the maximum number of

P/E cycles of 10K when the normal erase mode is used only. When

the low-stress erase mode for the WL is used 20% of erase operations

and the relative stress coefficient of the WL is 0.35, the maximum

number of P/E cycles of the WL is computed to be 11.49K (i.e.,
10K

1×0.8+0.35×0.2)

The (nW L, f) combination used for each gErase modes of Table 2

is derived using the above NAND endurance model using a two-step

process. In the first step, we compute the per-WL low-stress erase

mode application ratio for each WL that can maximize the endurance

of the NAND block under the allowed block capacity reduction. Ta-

ble 3 illustrates how we derive low-stress erase ratios for different WLs
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Table 3: An illustrative example of deriving optimal low-stress erase
ratios for gE(1).

WL Group Endurance
P/E Stress (Coefficient : 0.35) Low-stress 

erase ratio

Average 

P/E stress

Expected 

enduranceNormal mode Low-stress mode

0 10K 1.00 0.35 18.3% 0.88 11.35

1 11K 0.91 0.32 4.7% 0.88 11.35

2 12K 0.83 0.29 0.0% 0.83 12.00

3 12.8K 0.78 0.27 0.0% 0.78 12.80

…

44 12.3K 0.81 0.28 0.0% 0.81 12.30

45 11.5K 0.87 0.30 0.0% 0.87 11.50 

46 10.7K 0.93 0.33 8.8% 0.88 11.35 

47 10K 1.00 0.35 18.3% 0.88 11.35 

for gE(1) with 1.04% reduction in the block capacity. In order to sim-

plify an analysis, we grouped four WLs with similar characteristics

as a WL group (WG). For example, WG 0 includes WL 0 to WL 3.

In Table 3, P/E stress values were normalized over the worst WL,

WL 0, of WG 0. For example, WLs in WG 2 have the P/E stress

of 0.83 under the normal erase mode, which means that WL 8 to

WL 11, which are stronger WLs than WL 0 experience 83% of P/E

stress over WL 0. From a WG with the lowest expected endurance,

the low-stress erase mode application ratio is gradually increased, and

this process is repeated until the amount of block capacity reduction

by the low-stress mode reaches the target block capacity reduction

ratio of a gErase mode. In Table 3, WG 0 can extend its P/E cycles

up to 11.35 K when 18.26% of erase operations employ the low-stress

erase mode. Furthermore, when the low-stress erase mode were used

for each WL as specified in Table 3, the block capacity reduction ratio
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meets 1.04%8.

In the second step, we determine the preferred conditions among

the possible candidate combinations of nW L and f . As explained

above, we prefer (8 WLs, 25%) and (12 WLs, 16.7%). However, since

WG 0 requires 18.3% of erase operations to be done with the low-stress

erase mode, (12 WLs, 16.7%) cannot be selected.

3.3 Design and Implementation of LongFTL

3.3.1 Overview

Based on the proposed gErase modes of Table 2, we implemented

a gErase-enabled FTL, called longFTL, which exploits the key tradeoff

relationship of gErase between the block endurance extension and the

block capacity reduction. The main goal of longFTL is to significantly

extend the block lifetime with a negligible performance degradation

by intelligently choosing a gErase mode under varying I/O workloads.

Figure 10 shows an overall organization of longFTL. LongFTL, which

is based on a typical page-level mapping FTL, employs three gErase-

specific modules, the weak WL detector, the WAF monitor, and the

gErase mode selector. The weak WL detector dynamically identifies

weak WLs in a block, the WAF monitor tracks WAF changes, and

the gErase mode selector determines the optimal gErase mode for the

current workload characteristics estimated by the WAF monitor.

8(18.26 + 4.7 + 8.78 + 18.26)% × 4/192
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Figure 10: An organizational overview of longFTL.

3.3.2 Weak WL Detector

In order to protect weak WLs to extend the endurance of a block,

it is required to identify which WLs are weak. The weak WL detector

(WLD) module is responsible for maintaining WLs according to their

BER values so that when N weakest WLs are requested by the gErase

mode selector, the WLs with the N largest BER values can be quickly

identified. The WLD module employs (Nmax
ecc − 9) linked lists where

Nmax
ecc represents the maximum number of bit errors that can be cor-

rected by an ECC module. A linked list Lk contains all the WLs with

k bit errors. Figure 11 shows an example of BER-sorted linked lists

used for detecting weak WLs. As shown in the last linked list, L<10,

we do not sort strong WLs because they are not likely to be used for

gErase. When 3 weakest WLs are needed, WL 148, WL 144, and WL

152 can be quickly identified. (We define the number of bit errors of

a WL as the maximum number of bit errors occurred while reading a
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Figure 11: BER-sorted linked lists for detecting weak WLs.

page from the WL. For example, in the TLC flash memory we used

for this work, the number of bit errors of a WL is set to the number

of bit errors from the worst page (with the worst BER value) out of

three pages encoded in the WL. In the TLC flash memory used for

this study, worst BER values were observed mostly from MLC pages

with a few cases from LSB/CSB page.)

In order to further reduce the time overhead of the WLD mod-

ule, we do not update BER-sorted linked lists frequently. works well

because the number of maximum P/E cycles is large (e.g., over 7K

P/E cycles) and the BER values of blocks tend to gradually degrade

thanks to wear leveling. In our current implementation, the WLD-

related overhead is less than 0.1% of the total I/O time.

In addition to selecting N weakest WLs from a block, the WLD

module ensures that gErase modes are evenly applied to all the blocks.

If a large number of gErase modes are used for a few blocks only, the

SSD lifetime may not be extended at all because the rest of blocks

are erased using the normal erase mode only. We maintain a separate
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linked list of free blocks by the number of gErase operations. When we

select a free block, we prefer blocks with fewer gErase counts9.

3.3.3 WAF Monitor

The WAF monitor is responsible for tracking a WAF value of an

SSD. Since a block capacity is reduced when the block is erased using a

gErase mode, it is important to understand if the current effective SSD

capacity is adequate to properly process the current I/O workload. If

the effective SSD capacity were reduced too much from aggressive

gErase mode applications by the gErase mode selector, the SSD may

suffer a significant I/O performance degradation. On the other hand,

if gErase modes were applied too conservatively, the effectiveness of

GuardedErase is quite limited.

The main function of the WAF monitor is to observe WAF fluc-

tuations and decide if the current WAF value is stable enough for the

gErase mode selector to make a proper mode decision. Although it is

difficult to precisely define what a stable WAF value means, in the

current implementation, we assume that a WAF value is stable if the

WAF value has been steady for the last 10 observation intervals. A

WAF value w is called steady for an observation interval (ts, te] if all

the WAF values observed in (ts, te] are within [0.98w, 1.02w]. Since

we are interested in knowing a long-term workload characteristics in-

stead of fast changing short-term workload characteristics, a single
9Since a free block may be selected under a different criterion (such as low P/E

cycles), leveling gErase counts among different blocks is supported in a combined
fashion with other selection criteria.
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observation interval is defined as the time it takes to perform a suf-

ficient number (e.g., 5% of total blocks) of garbage collections (GC).

The WAF monitor also tracks the change in WAF values (i.e., WAF

history) so that the recent WAF change trend can be considered by

the gErase mode selector.

3.3.4 GErase Mode Selector

The gErase mode selector decides that which erase mode would

be used for the next block erase. In selecting a right erase mode, the

gErase mode selector considers two outputs from the WAF monitor:

WAF stability and WAF history. Figure 12 describes the key steps

of the gErase mode selector in flow chart. Function of Figure 12 is

invoked each time the WAF monitor measures a WAF value (i.e., ev-

ery observation interval). Under the condition that the WAF value is
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stable, after calculating an expected TBW of each gErase mode, the

gErase mode selector chooses a gErase mode with the larger expected

TBW. The TBW comparison between gErase modes is conservatively

performed only between the current gErase mode gE(c) and the adja-

cent modes (i.e., gE(c+1) or gE(c-1)). Therefore, a current gErase mode

is only allowed to change only one step of gErase mode at a time. If the

expected TBW cannot be compared because the WAF value for the

adjacent gErase mode is not available (i.e., there is no WAF history

for adjacent gErase mode), the next gErase mode is determined to the

adjacent gErase mode and impact of WAF is evaluated later. If it is

revealed that the wrong choice was made through TBW comparison,

the gErase mode is changed to the previous mode.

Table 4 illustrates how the gErase mode selector works using func-

tion of Figure 12. MAXP/E according to each gErase mode is obtained

from the gErase mode table, and the WAF value of the current gErase

mode can be obtained from the WAF monitor. The gErase mode selec-

tor chooses gErase mode from gE(0) to obtain the baseline WAF value

and normalize the expected TBW to 1. Since there is no WAF his-

tory about the adjacent gErase mode, the gErase mode selector changes

Table 4: An example gErase mode selection.

gErase Mode Norm. Max P/E cycles WAF Norm. TBW
gE(0) 1.00 2.66 1.00
gE(1) 1.19 2.78 1.14
gE(2) 1.26 2.91 1.15
gE(3) 1.30 3.05 1.14

44



the mode to gE(1) and measures the WAF value, and calculates the

expected TBW. Because the expected TBW of gE(1) is larger than

baseline, the gErase mode selector increases the mode to gE(2) and

compares the expected TBW again. This comparison is performed up

to gE(3). From the obtained WAF values, gE(2) is selected as the opti-

mal gErase mode because it can maximize the expected TBW by 15%

over baseline.

According to the determined optimal gErase mode, the flash block

manager decides whether to apply gErase operation at the time of allo-

cating free blocks. Since the block relief ratio of each gErase mode was

chosen as low as possible, It can be used for the purpose of performing

gErase operation only when it is really necessary. The free block alloca-

tion by the flash block manager is divided into active block allocation

for host request and active block allocation for GC execution [41].

In order to reduce the side effects caused by the application of erase

stress-relief, gErase is selectively used for active block allocation for

host request so that the recovery of the reduced physical capacity can

be fast. That is, gErase was not used as much as possible when allo-

cating an active block for GC which is used to store cold data, while

gErase was actively used when allocating an active block for host re-

quest which is used for storing hot data.
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3.4 Experimental Results

3.4.1 Experimental Settings

In order to evaluate the effectiveness of the proposed techniques,

we implemented longFTL as an extension on a well-known FTL simu-

lator, MQSim [42]. For our evaluation, we configured the FTL simula-

tor to support 32/64-GB storage capacity for an efficient experiment.

Our simulated storage system was configured to have four channels

with one NAND flash chip per channel. Each NAND flash chip has a

2 plane configuration and each plane has 1822 blocks which are com-

posed of 576 8-KB pages. And NAND flash interface supports up to

333 MT/s. The average page program time and the block erase time

were set to 700us and 4000us, respectively. The overprovisioning ratio

was set at a level of 10% considering the actual SSD, and the GC

execution threshold was set to a very low value (0.002) to effectively

utilize overprovisioning area.

We evaluated longFTL using MSR trace workloads [43] and ad-

ditional I/O traces generated from Sysbench [44] and Filebench [45].

Among several MSR traces, the evaluation was performed on work-

loads with a total write amount of more than a certain level, but for

traces where the total amount of write is not sufficient, traces are

repeatedly replayed. The timestamp of the trace was accelerated at

an appropriate level in consideration of the SSD simulation processing

speed. Table 5 summarizes key I/O characteristics of these workloads.

As the table shows, each workload has a different read:write ratio and
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Table 5: I/O characteristics of traces used for evaluations.

proj0 prxy1 prxy0 src10 proj2 OLTP Fileserver Varmail
Read:Write 6:94 64:36 5:95 46:54 86:14 70:30 40:60 40:60

Total Write (GB) 144 725 54 302 169
WAF 1.08 1.16 1.24 2.66 3.55 1.89 2.49 2.98

different WAF characteristics. We evaluated the expected TBW and

performance of the longFTL using these workloads. All evaluations

were normalized based on the default page-level FTL, which does not

have any stress relief scheme. In addition, the BPM technique that

utilizes the page variation characteristics straightforwardly without

stress relief mechanism was also comparatively evaluated.

3.4.2 Lifetime Improvement

In order to evaluate the effect of lifetime improvement, we mea-

sured the expected TBW for each workload. Figure 13 shows the nor-

malized TBW for each workload. In the case of BPM, the block capac-

ity reduction was evaluated for 2.1% and 5.2% conditions, respectively,
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Figure 13: Lifetime improvement by GuardedErase.

47



in consideration of NAND specifications and performance degradation

characteristics. The proposed longFTL extends the lifetime of an SSD

for all workloads. Lifetime improvement varied by workload, and the

overall lifetime improvement is extended by 21% on average of eight

workloads. The biggest lifetime improvement is around 29% for proj0

and prxy1 workloads, but only 11% for proj2 workload. This differ-

ence is highly related to the WAF increase characteristics according

to the application of gErase mode. On the other hand, lifetime im-

provement of BPM does not have a large variation by workloads, and

the amount of lifetime improvement increases under the condition of

larger block capacity reduction, but the improvement is not as great

as the proposed longFTL.

Figure 14 shows the optimal gErase mode for maximizing the

lifetime of an SSD in each workload and the WAF changing when

operating under optimal condition. For proj0 and prxy1 workloads,

which show a lot of lifetime improvement, NAND endurance could
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Figure 14: Optimal gErase mode and its WAF changing characteristics.
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be effectively increased by using the higher gErase mode, because the

WAF changing due to the block capacity reduction is not greater than

11% even when the gE(8) is used. On the other hand, in the case of

proj2 workload, which shows the lowest lifetime improvement, optimal

gErase mode is only gE(1), so the effect of increasing NAND endurance

is not great. Even in the condition of gE(1), where the physical ca-

pacity reduction is very limited (i.e., 1.04%), the WAF changing is as

high as 7%, so there is no advantage obtained by applying a higher

gErase mode.

3.4.3 Performance Overhead

In order to evaluate the performance overhead of longFTL, we

measured the IOPS (Input/Output Operations Per Second) in each

workload. For comparison, performance evaluation was also performed

for two BPM conditions. Figure 15 shows the normalized IOPS based

on the baseline when operating in the optimal gErase mode for the
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Figure 15: Performance impact of the lifetime improvement.
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purpose of maximizing TBW. Overall, the performance of longFTL is

degraded by 3%, and the main cause of the drop in performance is the

increase in WAF due to the decrease in physical capacity by Guard-

edErase execution. Despite the similar level of increase in WAF, the

performance degradation is larger in src10, fileserver, and varmail with

high WAF values. On the other hand, in the case of proj2, although

the WAF value is high, the performance degradation is not large.

This is because the write ratio is relatively low, so the effect of the

write performance degradation affects less on the overall IOPS. Unlike

longFTL, where different levels of physical capacity reduction are ap-

plied because the optimal gErase mode is different for each workload,

BPM is affected by the same physical capacity reduction regardless of

workload, and overall it shows lower performance than longFTL even

under physical capacity reduction of 2.1%. In the case of 5.2% capac-

ity reduction, the performance decreases by more than 10%, which

acts as a limiting point of the scheme to improve the lifetime through

further reduction of physical capacity.

3.4.4 Effectiveness of Lowest Erase Relief Ratio

In order to evaluate the effectiveness of the preferred gErase mode

conditions and block stress relief policy of longFTL, we compared it

with the condition in which the block relief ratio is maximized. In

Section 3.2.3, when deciding the gErase mode conditions, the candi-

date with the lowest erase relief ratio was selected among possible

candidates, and GuardedErase operation was performed for the host
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Figure 16: Comparison between preferred gErase mode condition and
others.

active block only in longFTL. However, the condition for maximized

erase relief ratio is that erase relief is performed during the allocation

of all blocks regardless of host active block or GC active block. Fig-

ure 16 shows the expected TBW and IOPS, and the two values are

normalized based on that of longFTL. The evaluation result shows the

lifetime and performance degradation of about 1% on average com-

pared to the preferred condition, and TBW and IOPS degradation

occurs up to 3% in varmail workload. This shows that the approach

with the lowest erase relief ratio is effective.
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Chapter 4

Improving SSD Performance
Using Adaptive
Restricted-Copyback Operations

4.1 Motivations

4.1.1 Data Migration in Modern SSD

A typical data migration in SSDs is performed by an off-chip data

copy. An SSD firmware reads data from a source page and transfers

the data to a DRAM buffer through a channel bus. Before the data are

sent to the DRAM buffer, errors are corrected by the ECC module of

the flash memory controller (FMC). In the program phase„ the SSD

firmware takes a reverse data path from the DRAM buffer to the target

page. The data copy time tCOP Y can be expressed as follows: tCOP Y

= tR + tDMAout + tDMAin + tP ROG where tR, tDMAout and tDMAin

are a data transfer time from NAND cells to a per-plane register and

a DMA out/in time between the register and DRAM buffer, respec-

tively. However, a large number of data migrations may occur at the

same time in a modern SSD. A high degree of the parallelism in data

migrations may significantly increase tDMAin and tDMAout because of

contentions on the channel level as well as the serial bus to/from the
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DRAM buffer. This is because the bandwidth of the DRAM is limited

and the efficiency of the DRAM degrades when many masters request

DRAM at the same time.

On the other hand, when a copyback operation is used, a data

migration can be performed without requiring neither tDMAout nor

tDMAin . The FTL can read data from the source page to the per-

plane local register and directly write back to the destination page

from the per-plane local register. Since the copyback operation trans-

fers data within a given plane, even when multiple data migrations

occur at the same time, all data migrations can be completed by (tR

+ tP ROG). Thus, it can significantly reduce the overhead of data mi-

grations especially for modern SSD of multiple channels and multiple

ways.

4.1.2 Need for Block Aging-Aware Copyback

Generally, the number of P/E cycles has been mainly used as

the indicator of NAND aging. During NAND operations, the high

voltage used in the erase operation damages the tunnel oxide of the

NAND cells, thus increasing the Bit Error Rate (BER) observed in

subsequent reads. As the number of P/E cycles increases, the tunnel

oxide layer eventually reaches a state in which the cells can no longer

store information reliably. Since erase operations are responsible for

the wear of NAND cells, the number of P/E cycles has been regarded

as a good proxy indicating the wear of NAND cells.

However, the number of P/E cycles alone cannot accurately rep-
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Figure 17: Copyback threshold variations on different P/E cycles.

resent the exact wear status of NAND cells. For example, when two

NAND blocks experience the same number of P/E cycles, their BER

could be significantly different [46]. This difference is mainly caused by

process variations in the manufacturing and is accelerated by various

user environments such as operating temperature. From our charac-

terization study using 3D TLC NAND chips [47], we observed that the

copyback threshold of a block cannot be accurately estimated by only

using the P/E cycles as a wear indicator of NAND cells. Figure 17

shows that, even at the same P/E cycles, there is a large variation

on the copyback threshold count. In FastGC, since a single copyback

threshold value was used for all the blocks with the same P/E cy-

cles, the copyback threshold was conservatively selected, thus missing

many opportunities for additional copybacks on most blocks.

The rCPB scheme proposed in this thesis was mainly motivated

from how to exploit these missed copybacks. From our characteriza-

tion study, which will be described in Section 4.2, we observed that

the copyback threshold of a NAND block can be accurately predicted
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when the P/E cycles of the NAND block is augmented with the BER

value measured right after a program operation. Using this extended

NAND wear indicator, most of the missed copybacks in FastGC can

be successfully utilized under the rCPB scheme.

4.2 RCPB: Copyback with a Limit

4.2.1 Error-Propagation Characteristics

In order to manage the flash reliability problem caused by suc-

cessive copyback operations, it is important to understand the NAND

error propagation characteristics when the same page experiences con-

secutive copybacks without error correction by the ECC module. We

conducted a NAND reliability characterization study using 30 actual

3D TLC NAND chips [47] to better understand the error propagation

characteristics under successive copybacks. In order to take into ac-

count of block-to-block variations as well as page-to-page differences,

we selected 128 blocks from each chip where their physical locations

were evenly distributed within the chip. For a selected block, we tested

all the pages in the block. In our study, a total of 3,840 blocks and

2,211,840 pages were evaluated to obtain statistically significant ex-

perimental results.

In order to derive the proposed rCPB model, we first evaluated

the reliability differences within NAND blocks with the same P/E

cycles. As a measurement of the block reliability, we used the BER

value of a block immediately after a program operation. Since the
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BER value is computed right after the block is programmed, no BER

degradation is added from the retention errors or read disturb errors,

so that the measured BER represents the block reliability level more

accurately. Figure 18(a) shows how BERs fluctuate within blocks with

the same P/E cycles. As expected, large BER variations exist among

the same aged blocks by P/E cycles. For example, the BER of the

worst block is 1.8-times larger than that of the best block when the

number of P/E cycles is 6K. As shown in the box plot, BER values

of most blocks are clustered around the average BER of a given P/E

cycles. On the other hand, the worst BER values make BER distri-

bution long-tailed ones. This contributes many missed copybacks in

FastGC.

In order to characterize the effect of the block reliability level on

the copyback threshold, we observed how BERs change over succes-

sive copybacks when the block reliability level changes. We divided the

blocks according to the measured BER characteristics and evaluated

the difference of error accumulation characteristics by copyback oper-

ations for each group. Figure 18(b) illustrates our evaluation results on

the best BER blocks and the worst BER blocks under the initial (i.e.,

0K) P/E cycle condition and 3K P/E cycle condition, respectively.

(We used the 3-month retention requirement in this evaluation.) Un-

der all conditions, the worse BER characteristic of the blocks, the

larger the error accumulation due to the copyback operations. Con-

sidering the error accumulation level due to copyback operations for

each group and the correction capability of the ECC module, it is
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Figure 18: Key results of the NAND characterization study.

possible to make the copyback thresholds for each condition.

Figure 18(c) shows how the copyback threshold value changes

under each P/E cycle condition when considering the retention re-

quirement with block BER characteristic. The retention requirement

was assumed to be one year at 30°C. Even at the same P/E cycles, the

copyback threshold varies greatly depending on BER characteristic of

the NAND blocks. When P/E cycle is 3K, the best BER block can

use two more copyback operations than the worst BER block. There-
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fore, by distinguishing the block reliability level, the total number

of copybacks can increased over the block-unaware worst-case setting

of FastGC. In order to identify the copyback threshold accurately,

we considered the properties of P/E cycles, retention time require-

ment, all possible data migration cases between source and destination

pages, and the different characteristics between NAND blocks.

4.2.2 RCPB Operation Model

From our characterization study on the copyback error propaga-

tion, we constructed the copyback threshold table, CTT (x, e, t), which

indicates the maximum number of consecutive copyback operations

that does not cause any reliability problem for x P/E-cycled blocks of

BER value e under the condition of t-month retention requirement.

Table 6 summarizes our proposed rCPB operation model with the

different retention requirements. If 1-year retention is required at 2K

P/E cycles, the copyback threshold of NAND block is determined

from 2 to 4 based on the value of p. If the data migration is required

more than the copyback threshold, the page must be migrated using

an off-chip data copy, thus the accumulated bit errors can be corrected

Table 6: The proposed rCPB operation model.

Retention
requirement

Block BER
characteristic

P/E cycles
[0K∼0.4K] (0.4K∼1K] (1K∼2K] (2K∼3K] (3K∼4K] (4K∼5K]

1 year
Best block 5 4 4 3 3 2

Median block 5 4 3 3 2 1
Worst block 3 2 2 1 1 0

3 months
Best block 6 5 4 4 3 2

Median block 6 5 4 3 3 2
Worst block 4 3 2 2 1 1
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Figure 19: An organizational overview of rcFTL.

by the ECC module. As the table shows copyback threshold can be in-

creased on 3-month retention. In this thesis, we used 1-year retention

as a basic requirement in accordance with JEDEC standards.

4.3 Design and Implementation of rcFTL

Based on the proposed rCPB model presented in Section 4.2, we

implemented an rCPB-enabled flash translation layer (FTL), called

rcFTL, which is based on the existing page-level mapping FTL. Fig-

ure 19 shows an overall organization of rcFTL. RcFTL consists of two

additional modules, the error propagation management (EPM), and

the data migration mode selector (DMMS). The EPM module is in

charge of checking the rCPB availability for a data migration while

the DMMS module selects the most appropriate data migration mode
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for a given data copy request.

4.3.1 EPM module

Quota-Based Determination of RCPB Availability

The EPM module plays a key role to ensure the data reliabil-

ity while rcFTL maximally uses rCPB operations. When an rCPB

operation is desired in moving a page, the EPM module checks its

availability. A key challenge in determining the rCPB availability is

that pages are moved across various blocks that have different copy-

back thresholds. If a page migration is (somehow) managed to move

pages only within NAND blocks with the same threshold, determining

the rCPB availability is straightforward. All we need is to keep every

page’s rCPB count less than the threshold of those blocks. However,

such a page migration management is rather impractical because it

significantly obstructs a flexible page allocation of an FTL.

In order to effectively determine the rCPB availability of page

migrations across blocks with different thresholds, the EPM module

employs quota-based rCPB model which regards the copyback thresh-

old of a block as the quota spent upon the rCPB from the block. For

example, if the copyback threshold of a block is CT , the EPM module

considers that a copyback operation from the block deducts 1
CT of the

maximum quota which is initially given the same amount for every

block. This is based on our observation that the error-propagation

in successive rCPB operations at the same block is almost linear
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(even though the error increase per rCPB operation varies in different

blocks).

Figure 20 shows how rcFTL deals with the page migrations with

the quota-based rCPB model. The EPM module keeps track of the

copyback quota Q(pi) for every page where pi indicates a page whose

index is i in an SSD. When a page px is programmed by a host write,

Q(px) is initialized with Qinit (❶ in Figure 20). Once rcFTL moves

px using an rCPB operation from block bn to bm, the EPM module

decreases Q(px) by deducted quota, Qinit

CT (bn) (❷), where CT (bn) is the

copyback threshold of bn. We can obtain CT (bn) just by retrieving the

predefined CTT with PE(bn) and BER(bn)1. For a simple manage-

ment of Q(pi), we set Qinit to the least-common-multiple value of all

the present values in the CTT. As long as Q(px) ≥ 0, px can be moved

through successive rCPB operations (❸ and ❹). On the other hand,

if the deducted quota of the source block bj , Qinit

CT (bj) , is large enough

1P/E cycles of block bn, P E(bn), is maintained in typical SSDs, so rcFTL needs
to additionally keep track of BER(bn) as explained in Section 4.2.
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to make Q(px) less than 0, the EPM module only allows off-chip copy

so that Q(px) is initialized with Qinit (❺).

Per-block Quota Management

Although the quota-based approach is effective in determining

the rCPB availability, managing Q(pi)’s in a per-page fashion may in-

troduce non-trivial space overhead, considering the capacity increase

of the modern SSDs. For example, suppose that Qinit is 30 and rcFTL

manages 4-KB logical-to-physical mappings in a 16-TB SSD. In such

a case, at least more than 2.5-GB2 memory space is additionally re-

quired for the per-page quota management.

In order to avoid the overhead of per-page quota management,

EPM module employs a per-block quota management approach. That

is, the amount of copyback quota deducted by rCPB operations is

managed at the block level, not at the page level. Since the number

of entry for the per-block management is at least two orders of mag-

nitude smaller than that for the per-page management, the per-block

management technique significantly reduces the memory footprint for

the copyback quota and minimizes the computing overhead of book-

keeping operations to a negligible level. Since all the pages in a block

are assumed to have the same amount of the copyback quota in the

per-block quota management, when a source page p in a victim block

bv[Q(bv), dQ(bv)] with the copyback quota Q(bv) and the deducted

quota dQ(bv) is migrated by rCPB, the page p should be moved to

2(5[ bit
page

] × 16 × 1012[ byte
SSD

] × (4 × 109[ byte
page

])−1 = 2.5 × 109[ byte
SSD

])
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a page in a block bd where Q(bd) = Q(bv) − dQ(bv). In order to effi-

ciently support this additional constraint, the EPM module manages

multiple active blocks per plane at the same time. Figure 21 shows

an example of how data migrations are performed using rCPB oper-

ations in the per-block quota management. If the Qinit is given by 6,

the EPM module maintains five active blocks whose copyback quota

is divided into 0, 2, 3, 4, and 6. When a block bv2[6, 3] is selected as

a GC victim block, its valid pages, C and D, are moved to the active

block ba3 which has the quota of 3 by rCPB operations. On the other

hand, if the block bvn[0, x] is selected as a GC victim block, its valid

pages are moved using off-chip copies to the active block ba1 which

has the initial quota, 6.



4.3.2 Data Migration Mode Selection

In order to take full advantages of rCPB, the DMMS module in-

telligently chooses when to use rCPB over a normal off-chip copy de-

pending on the write buffer utilization ratio u. When u is low, which

indicates that the current host I/O workload is not intensive, the

DMMS module selects the off-chip copy mode so that more future

data migrations can be supported by rCPB. On the other hand, when

u is high, the DMMS module chooses the rCPB mode for higher per-

formance. In our current implementation, the utilization threshold

ratio for the mode selection was set to 50%. (That is, if u is higher

than 50%, the rCPB mode is used for data migrations.) Since rcFTL

employs the per-block quota management scheme and most data mi-

gration decisions are made in a block granularity, the DMMS module

makes its mode selection decisions in a per-block level as well. When

a data migration decision is made (e.g., by a foreground GC task), the

DMMS module selects a proper mode based on the current u value. In

order to filter out abrupt noise-like changes in u, the DMMS module

makes its mode selection based on a t-second moving average of u. In

the current implementation, t is set to an average block write time.

In rcFTL, both the GC and wear leveler operate in an rCPB-aware

fashion. For urgent management tasks (such as a foreground GC task),

the rCPB mode is actively used regardless of the current u ratio value.

On the other hand, when background management tasks (such as a

background GC task) are invoked, the DMMS module decides proper
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Table 7: I/O characteristics of traces used for evaluations.

OLTP NTRX Varmail Fileserver
Read:Write 7:3 0.5:9.5 4:6 4:6

WAF 2.0 2.3 2.7 5.4

modes as explained above.

4.4 Experimental Results

4.4.1 Experimental Setup

In order to evaluate the effectiveness of the proposed rcFTL tech-

nique, we implemented rcFTL as a host-level FTL on a custom flash

storage system [48]. For our evaluation, we configured our flash stor-

age system to support a 128-GB storage capacity only for efficient

experimental evaluations. Our emulated storage system was config-

ured to have eight channels with eight NAND flash chips per channel.

Each NAND flash chip has 1024 blocks which are composed of 128 16-

KB pages and NAND interface which supports up to 533 MT/s. The

average tP ROG was set to 660 us [47] and the size of the write buffer

was set to 10 MB. We evaluated rcFTL using four I/O traces generated

from Sysbench and Filebench. As shown in Table 7, each workload has

different ratios between read and write and different WAF values. Us-

ing these workloads, we evaluated the overall I/O throughput for six

different P/E cycle conditions where the copyback threshold counts

are distinguished and compared them with the existing techniques.
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All measurements were normalized over a page-level mapping FTL

which always migrates data using the off-chip copy.

4.4.2 Evaluation Results

Figure 22(a) shows the normalized I/O performance for each

workload under various P/E cycle conditions. The proposed rcFTL

has better performance compared to the existing FastGC method for

all workloads because it uses block-aware copyback threshold effec-

tively and the per-block management scheme for the copyback quota

improves the WAF value. The overall I/O throughput was improved

by 43% on average of four workloads in initial P/E cycle over the base-

line FTL. It also improved I/O throughput by 25% over the FastGC

method when P/E cycles is 5K. When blocks are young, most data

migrations can be supported by copybacks even in the worst blocks.

As the copyback threshold increases, the degree of performance im-

provement due to rCPB degrades, most of the improvements in young

blocks over FastGC comes from per-block management of rcFTL. On

the other hand, as shown in Figure 22(b), as blocks get older, the

impact of block-aware rCPB scheme grows. For example, the perfor-

mance improvement by block-aware rCPB is 14% when the P/E cycle

is 5K.

In order to analyze the effect of per-block management of rcFTL,

we compared the WAF value of rcFTL and existing per-page manage-

ment. Figure 23 shows normalized WAF value based on baseline FTL.

Overall, per-block management scheme of rcFTL showed lower WAF
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Figure 22: Performance comparison between FTLs.

than per-page management for all conditions. Although the overhead

of per-page management was amplified due to the small number of

pages per block by limited capacity, the WAF value was increased in

per-page management as the copyback threshold increases in OLTP
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and Varmail. On the other hand, the per-block management of rcFTL

decreased WAF value as the copyback threshold increases. This is the

result of separating data with different lifetimes into different blocks

through multiple active block management of per-block scheme with-

out consuming flash resources. However, there was no WAF reduction

effect of per-block management on FileServer. This is because the work-

load has a strong random update characteristic that does not have any

significant locality.

In order to understand how the mode selector proposed in rcFTL

performs, we compared the performance of rcFTL with rcFTL– (which

uses rCPB in a greedy fashion). Figure 24 shows normalized perfor-

mance gain of rcFTL over rcFTL– under varying I/O intensity. In or-

der to generate workload fluctuations, which are needed to properly

evaluate the DMMS module, we generated three synthetic workloads,
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High, Mid and Low, using Fio benchmark. In High, 70% of I/O re-

quests were issued without inter-request idle times while 30% were

issued with some idle times. For Mid and Low, the ratio between two

requests is 50:50 and 30:70, respectively. When the I/O intensity is

lower than the threshold, since the off-chip copy mode is more likely

to be used in rcFTL, rCPB-eligible blocks tend to increase over rcFTL–

because the copyback quota of more blocks are reset. The increased

number of rCPB-eligible blocks, in turn, improves the I/O throughput

when the I/O intensity is higher than the threshold. Figure 24 shows

that the performance gain is higher when the workload intensity is

Low. The performance is further improved, especially in small copy-

back threshold conditions, which shows that the mode selector works

effectively.
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Chapter 5

Reparo: A Fast RAID Recovery
Scheme for Ultra-Large SSDs

5.1 SSD Failures: Causes and Character-
istics

5.1.1 SSD Failure Types

SSD failures can be grouped into two categories depending on its

predictability [49]. The first category is the end-of-life (EoL) failure

which is caused by worn-out SSD components. On the other hand,

the second category is the sudden failure, and it is highly associated

with unexpected component failures which happen randomly.

Most SSD failures in the EoL failure category come from the

worn-out NAND flash memory. Although the NAND flash memory

is non-volatile, its reliable data retention is limited by the maximum

number of program/erase (P/E) cycles which is determined by flash

manufacturers. Recent 3D TLC flash memory can support up to 10K

P/E cycles. When flash cells in a block are worn out beyond their

reliability threshold, the block becomes a bad block because the pages

in the block cannot be reliably accessed anymore [50–53]. When the

number of bad blocks in an SSD reaches the pre-defined maximum
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number N ssd
bad , the SSD is considered to be failed. Since the number of

bad blocks tends to increase rapidly around the end of SSD’s useful

life period, manufacturers set N ssd
bad conservatively. For example, N ssd

bad

is typically set to 2.5% of the total (user-visible) blocks in an SSD [54].

The sudden failure happens abruptly at any point of time, so it

often occurs much earlier than the EoL failure. The representative

examples include NAND die failures and bugs in the flash translation

layer (FTL). A NAND die failure occurs when an excessive number of

bad blocks are found in the NAND die, but there are various reasons

that cause it. One example is when the peripheral circuitry (e.g, page

buffer, word line (WL) decoder and sense amplifier) of a NAND die

malfunctions because of some defects. In that case, all the blocks in the

NAND die become bad since they can no longer be reliably accessed.

As another example, if the flash cell is not functioning properly due

to a structural failure (eg, WL to WL bridge, WL to channel bridge,

and WL to common source line bridge), it is identified as a bad block

during the manufacturing process or the infant period [15, 55]. How-

ever, if the number of accumulated bad blocks per NAND die is below

a certain threshold, it is considered normal. The NAND specification

defines the maximum number of bad blocks, Ndie
bad, that can occur

on a NAND die within its lifetime and if a NAND die exceeds the

threshold, it is considered defective [54]. This is because the NAND

manufacturer does not guarantee normal operations on these NAND

dies. In fact, in the SSD field study, a large number of additional bad

blocks tend to be generated in a short period of time after a certain
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number of bad blocks occur in most SSDs [51]. This is due to defec-

tive NAND dies with poor cell characteristics or defective peripheral

circuits. Besides the excessive bad blocks, a defective NAND die can

cause firmware operation failure or command timeout.

Since an SSD is tolerant for some number of bad blocks, it is im-

portant to efficiently manage bad blocks when bad blocks are detected

during run time. The bad block management (BBM) module of the

FTL remaps a bad block to a reserved block that comes from an over-

provisioning (OP) space of the SSD. The OP space, which is a reserved

space in the SSD, is used for minimizing the performance/lifetime im-

pact of garbage collection and bad block management [56]. As the

number of bad blocks increases, more blocks from the OP space are

consumed to restore data of the bad blocks, which, in turn, negatively

affects the performance and lifetime of the SSD.

5.1.2 SSD Failure Characteristics

SSD failure characteristics are commonly modeled using a typ-

ical bathtub curve [4] with three distinct periods: the infant period

with high sudden failure rates, the useful life period with lower fail-

ure rates, and the wear-out period with high EoL failure rates. Since

early failures are known to be quickly decreasing in most SSDs, most

SSD reliability enhancement techniques have focused on extending

the useful life period by better managing the flash wear-out speed. In

particular, managing a NAND die failure was not the main focus of

such techniques.
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Figure 25: Distributions of SSD failures over the SSD age [2].

However, a recent field study on SSD failure characteristics in

enterprise storage systems indicates that a typical bathtub model does

not hold for SSD failures [2]. Redrawn from [2], Figure 25 summarizes

probability distributions of SSD failures throughout the SSD lifetime

for 3D-TLC SSDs and 2D-eMLC SSDs. Note that, as a reference case,

a bathtub curve is also shown in a gray dotted curve. As shown in

Figure 25, the SSD failure distribution is quite different from a typical

bathtub model. The infant period was much longer than that of the

bathtub model. Particularly, in 3D-TLC SSDs, the infant period with

high failure rates lasted almost two years. Furthermore, there were

no wear-out failures in most SSDs, because the number of P/E cycles

performed did not exceed its limit even when SSDs have been used

for several years. In fact, most SSD failures occurred within the useful

life period.

The SSD failure trend reported by [2] strongly suggests that we

should focus more on handling sudden SSD failures over EoL SSD
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failures. There are many reasons (e.g., firmware bugs) that result in

sudden SSD failures, but the SSD capacity is expected to be the most

significant factor that decides a sudden failure rate of UL SSDs. Since

the number of NAND die failures increases linearly as the SSD capac-

ity, it is more likely that the impact of NAND die failures becomes

significant in UL SSDs. Therefore, a new RAID recovery scheme that

focuses on die failures is strongly needed.

Another interesting observation in UL SSDs is that a NAND die

failure is decoupled from an SSD failure. For example, in a 512-GB

SSD with 8 NAND dies, 5460 blocks become bad when one NAND

die fails (assuming each die has 5460 blocks). Since 5460 bad blocks

outnumber N ssd
bad , a single die failure results in an SSD failure. On the

other hand, in a 32-TB UL SSD, 5460 bad blocks is only 0.2% of the

total (user-visible) blocks whose number is much less than N ssd
bad . If a

failed die can be recovered, UL SSD has a high potential to tolerate

a die failure, preventing an SSD failure.

5.2 Impact of UL SSDs on RAID Relia-
bility

In this section, we explain the key motivations behind reparo using

a hypothetical RAID-5 storage system, UL-RAID(n), which employs

n 32-TB UL SSDs [3]. Since the exact failure rate of a commercial

UL SSD is not available, we assume that SSDs in UL-RAID(n) follow

the SSD failure rates of 3D-TLC SSDs shown in Figure 25. Figure 26
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Figure 26: Probability distributions of rebuilding a RAID group over
the RAID group size.

shows the probability of RAID rebuilds in UL-RAID(n) with varying

n’s.1 As the number of SSDs increases in UL-RAID(n), more frequent

RAID rebuilds are required. Since RAID rebuilds can interfere with

normal host I/O requests, the increased number of RAID rebuilds

badly affect user-perceived performance.

Frequent RAID rebuilds also cause more critical reliability issues

in UL-RAID(n). First, the probability of deadly double disk failures [57]

increases greatly. When the second SSD failure occurs during a RAID

rebuild, the failed SSD cannot be recovered thus the user data loss is

inevitable. The probability P2 of a double SSD failure can be repre-

sented as follows:

P2 = MTTRssd × (n − 1)
MTTFssd

, (5.1)

1We model the number X of failed SSD in UL-RAID(n) as X ∼ B(n, p) where
p is the probability of an SSD failure. The probability of RAID rebuild, therefore,
is given by

∑n

k=1

(
n
k

)
pk(1 − p)n−k .
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where MTTRssd and MTTFssd indicate the mean time to repair and

the mean time to failure of an SSD, respectively. Since MTTRssd

increases linearly over the SSD capacity, P2 increases linearly as well.

For example, in UL-RAID(16), P2 increases 64 times over that in a

RAID array with 16 512-GB SSDs.

Second, the probability of a read failure, Prf , from a latent sector

error (LSE) during a rebuild can be increased. The probability of a

read failure can be expressed as follows:

Prf = 1 − (1 − UBER)Sread , (5.2)

where UBER (uncorrectable bit error rate) is a fixed value (e.g.,

10−16) by SSD manufacturers and Sread is the total number of reads

during a RAID rebuild. In UL-RAID(n), Prf is significantly increased

as well. For example, in UL-RAID(16), Prf increases 52 times over that

a RAID group with 16 512-GB SSDs.

Figure 27 shows how much the probability of data loss from dou-

ble failures and read failure amplifies as n increases in UL-RAID(n). All

the numbers are normalized over a RAID array with 4 512-GB SSDs.

Although we estimated the data loss probability conservatively by as-

suming that NAND die failures contribute only 3% of the sudden SSD

failures in a 512-GB SSD, the data loss probability in UL-RAID(n) sub-

stantially increases as n increases. For example, data loss is more than

1,000 times likely in UL-RAID(24) over the baseline RAID with 4 512-
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Figure 27: Normalized data loss amplification in UL-RAID(n).

GB SSDs. The results in Figure 27 strongly indicate that UL-RAID(n)

may not guarantee the same level of data reliability over when a RAID

storage system was built using small-sized SSDs. Unless the reliability

problem is resolved in an efficient fashion, employing UL-RAID(n) in

real-world applications may not be practical in a near future.

5.3 RAID Recovery using Reparo

5.3.1 Overview of Reparo

The proposed reparo scheme meets two requirements of a RAID

recovery scheme for UL SSDs. Unlike the existing techniques, reparo

repairs a failed die, not a failed SSD, by rebuilding the failed die

using a RAID logic. Figure 28 shows an organizational overview of

the reparo scheme. It consists of three new modules in a UL SSD:

die failure detector (Detector), failed LBAs identifier (Identifier), and

data recovery handler (Handler). When a die failure is detected by

Detector , reparo notifies a die failure to the host system ( 1 ). Then
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Figure 28: An organizational overview of the reparo scheme.

the host requests a list of LBAs that belong to the failed die ( 2 ).

Identifier finds the failed LBAs and sends them to the host, and the

host recovers the data of the failed LBAs using a RAID logic ( 3 ).

When the recovered data are written back to the SSD ( 4 ), Handler

distributes the data to proper flash cores. When the host queries failed

LBAs ( 2 ), it limits the LBA search range (e.g., 64 MB) to control

time/resource overheads. Therefore, a recovery sequence (i.e., 2 , 3 ,

and 4 ) is repeated until all the LBAs are covered.

In reparo, when a flash core corei’s die fails, we call corei as

the victim core and the rest of flash cores are called helper cores.

When only the victim core is used for Identifier and Handler , we call

it an isolated die recovery (IDR) scheme. (We denote this version of

reparo by reparoIDR.) If the helper cores, as well as the victim core,

participate for Identifier and Handler , it is called a cooperative die

recovery (CDR) scheme. (Similarly, we denote this version of reparo

by reparoCDR.) We present reparoIDR in this section, and reparoCDR is

described in Section 5.4.
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Die Failure Detector

In order to minimize the impact of a failed die on the SSD per-

formance, reparo detects a die failure as early as possible. When a

bad block B is found from a die D, Detector checks blocks physically

adjacent to B by reading the first page of the blocks. If the read op-

eration to the first page fails, Detector proceeds to the next block.

When the number of accumulated bad blocks in the die D exceeds

a pre-defined maximum number Ndie
bad, Detector labels the die D as a

failed die. When a failed die is detected, reparo notifies a die failure

to the host system using a well-known host-to-SSD interface (such

as SMART [58, 59] or Check condition [60]). In our current Detector

implementation, a die failure can be detected no later than dozens of

milliseconds after the first bad block of a defective die is identified.

Failed LBAs Identifier

Once the host system is notified of a die failure, its recovery

module asks reparo for the failed LBAs using the get lba status

command that returns a list of failed LBAs from a specified LBA

range [lstart, . . . , lend]2. If an FTL manages a separate physical-to-

logical (P2L) mapping table, Identifier can find failed LBAs of the

pages in a failed die directly from the P2L mapping table using a

physical address of a page in the failed die. Unfortunately, maintain-

ing a P2L mapping table, in addition to an logical-to-physical (L2P)

2This command is defined in the industry standard SCSI interface and has
been extended to support Rebuild Assist [28] for a fast RAID rebuild.
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Figure 29: An illustrative example of reparoIDR.

mapping table, is not feasible because of its large memory require-

ment. Typical FTLs manage only an L2P mapping table, which is

essential for an FTL operation. Therefore, in order to respond to a

failed LBA query, it is necessary to check the L2P mapping table for

all LBAs in a query range to validate if they are stored in the failed

die. For example, Figure 29 illustrates a case when a die failure occurs

in one of the four dies managed by core3. In reparoIDR, core3 becomes

the victim core which is responsible for Identifier and Handler . When

a query for failed LBAs in the LBA range of 0 to 15 is sent to the

SSD, core3 checks if any page in the requested LBA range is mapped

to the failed die. Since LBA 15 is stored to a failed die, LBA 15 is sent

to a host as a failed LBA. In order to identify all LBAs affected by a

failed die, core3 should check all the L2P mapping table entries of the

SSD. In a UL SSD, since the number of L2P mapping entries is quite

large, it is a key challenge to reduce the time overhead of Identifier in

reparo.
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Data Recovery Handler

After recovering the data of the failed LBAs through a RAID

logic, a host stores the recovered data. When the victim core receives

a write request, its Handler needs to store the recovered data to normal

blocks. Since all the blocks in the failed die are bad blocks, Handler

cannot use a conventional bad block management scheme that uses a

reserved block in the same die (i.e., the failed die) for replacing a bad

block. As a workaround, a reserved block of another die can be used

to store the recovered data. However, this type of block remapping

within the victim core complicates the LBA-to-die mapping because

multiple LBAs can be mapped to the same die. Instead of the remap-

ping approach, in reparoIDR, the victim core’s Handler adjusts all the

FTL steps so that they can work without the failed dies. For example,

the die-stripping algorithm of the victim core is modified to use one

less dies than before a die failure. In Figure 29, Handler of core3 skips

the failed die so that the recovered data of LBAs 15, 31, 47 are evenly

stripped and stored in the remaining dies.

Since only the victim core is used for Handler in reparoIDR, the

other cores work as if no die failure has occurred. For example, the

master core does not need to change its static core mapping scheme

while helper cores work for their allocated dies as usual. On the other

hand, the victim core should work with a reduced physical space after

the recovery, which can significantly impact the overall SSD perfor-

mance and lifetime.
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5.4 Cooperative Die Recovery

Although reparoIDR of the previous section is simple to imple-

ment, reparoIDR can be further improved by relaxing its design con-

straint that only the victim core is involved in the recovery process. In

this section, we describe reparoCDR, which improves reparoIDR in two

aspects by allowing all the flash cores to be utilized in parallel during

the recovery process.

5.4.1 Identifier: Parallel Search of Failed LBAs

Scanning an entire L2P mapping table to find out LBAs belonging

to failed dies is a time-consuming operation. Moreover, considering a

huge logical address space of UL SSDs, such a scanning operation

takes a significant amount of time. For example, it takes at least half

an hour for one flash core of a 32-TB Samsung PM1643 to scan the

whole L2P mapping table. Since the execution time of Identifier can be

a bottleneck in the overall recovery process, in reparoCDR, we modify

Identifier so that all flash cores can participate in searching the failed

LBAs.

In order to parallelize Identifier , we modified the data organiza-

tion of the L2P mapping table. Since each flash core manages its own

logical space, which is separated from the other flash cores, the exist-

ing L2P table is structured so that no mapping entry can be shared

among different flash cores. In reparoCDR, when get lba status

command is issued to the victim core, the L2P mapping entries in
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Table 8: Changes in space utilization of IDR scheme.

Number of dies per flash core
4 8 16 32 64 128

victim core (w/ die failure) 33.33% 14.29 % 6.67% 3.23 % 1.59% 0.79%
helper core 0% 0% 0% 0% 0% 0%

the requested search range are first moved to the shared memory area

that all the flash cores can access. The copied mapping entries are

divided into N distinct regions so that all N flash cores can work in

parallel.

5.4.2 Handler: Per-Core Space Utilization Ad-
justment

The main side effect of the simple reparoIDR scheme is that it

negatively affects the space utilization of a victim core. The space uti-

lization Ui of a flash core corei, which is defined as a capacity ratio

of the logical space to the physical space allocated to corei, is a key

SSD metric that is directly related to the performance and lifetime of

SSDs. In general, the smaller Ui’s, the higher (or the longer) the per-

formance (or lifetime) of an SSD. When each flash core was initially

allocated with equal, say x dies, if one of the dies allocated to the

victim core corev fails, Uv increases by [1/(x−1)×100]% over helper

cores. For example, when 16 dies are initially allocated to each flash

core, Uv increases by 6.7%. Table 8 summarizes the increase in space

utilization for a single die failure according to the number of dies per

flash core. An increase in Uv can reduce the same amount of the SSD
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lifetime where sequential write workloads are dominant (as in modern

data-intensive apps). A higher Uv also increases the WAF (Write Am-

plification Factor) value because the reduced OP space needs more

frequent GC invocations. For example, in our evaluation, we observed

that when Uv increases by 6.7%, the WAF value can be increased by

166%, which may degrade the SSD lifetime and the performance al-

most by 60%. In reparoCDR, we modify Handler so that the difference

in space utilization among flash cores can be minimized.

Per-Core Logical Space Adjustment

In order to reduce the difference between Uv of a victim core

corev and Uh of a helper core coreh, we reduce the capacity of logical

space of corev while increasing that of coreh.3 Assume that each flash

core corei with Di dies is allocated to the logical space LSi where

LSi ∩ LSj = ∅ if i ̸= j, and the capacity of LSi is |LSi|. We

further assume that before a die failure, for all 0 ≤ i ≤ (N − 1), 1)

|LSi| = |LS|/N and 2) Di = Dssd/N where Dssd represents the total

number of dies in an SSD4. In order to keep all Ui’s equal after die

3When no OP space becomes available for a helper core in reparoCDR, a failed
SSD cannot be repaired anymore. The failed SSD should be replaced by a new
SSD in this case.

4Our technique can be generalized to a more general setting without these
assumptions. However, because of a page limit, reparoCDR is presented under these
assumptions.
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Figure 30: An illustrative example for reparoCDR.

failure recovery, the following equation should hold:

|LSh| + α

Dssd/N
= |LSv| − (N − 1) × α

Dssd/N − 1 (5.3)

where α represents the capacity of the extra logical space that should

be added to each helper core. Solving Equation (5.3), α can be given

as:

α = |LSh|
Dssd − 1 . (5.4)

Consider an example scenario of a single die failure shown in

Figure 30 where an SSD has four flash cores and each flash core has

four dies (N = 4, Dssd = 16 and Di = 4). Assuming the capacity |LS|

of logical space of the SSD is 60, |LSi| = 15 for all cores. Since the

physical capacity of a NAND die is 6, initially, all Ui values are equal
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to 0.625 (i.e., 15/24). When a die fails from core3, α is computed as

|LSh|/15, thus increasing the logical capacity of each helper core by 1

while decreasing the logical capacity of the victim core by 3. After this

adjustment, all Ui values are still the same, but the space utilization

has increased by 6.67% from 0.625 to 0.67. If there were no logical

space adjustment, the victim core’s space utilization could increase

by 33.3% to 0.83. Table 9 summarizes how space utilization changes

after logical space adjustment for a single die failure under a varying

number of dies per flash core. As expected, in both a victim core and

a helper core, space utilization is increased by the same amount when

a die fails. Furthermore, the increased amount of space utilization of

the victim core is much lower compared to that of the IDR scheme

because of the shared space adjustment among all cores.

Note that in the above description of the logical space adjustment

technique, we assumed that all Ui values and Di values were equal

before a single die failure occurs. Since dies can fail more than once

in an SSD, these assumptions generally do not hold and Eqs. (3)

and (4) need to be modified. In case of multiple die failures, various

failure combinations are possible. For example, multiple failures may

be focused on a single flash core or they may be spread among multiple

flash cores. Although treating an individual failure case using a case-

specific equation will be the most accurate solution, we found that

its management overhead can be substantial. Instead, we empirically

evaluated the accuracy of space adjustment from Eq. (4) in multiple

die failures. Our evaluation results showed that the difference between
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Table 9: Changes in space utilization after the adjustment.

Number of dies per flash core
4 8 16 32 64 128

victim core (w/ die failure) 6.67% 3.23% 1.59% 0.79% 0.39% 0.20%
helper core 6.67% 3.23% 1.59% 0.79% 0.39% 0.20%

the ideal adjustment solution and one from Eq. (4) was negligible. For

example, in the case of four die failures, the worst case for Eq. (4) is

when all four die failures occur in the same flash core. Even in this

case, when each core has 64 or more dies (i.e., as in UL SSDs), α from

Eq. (4) was only 0.06% apart from the ideal adjustment value.

Selective LBA Redirections

In order to implement space utilization adjustment among flash

cores as described above, we need to redirect (N − 1) × ⌊α⌋ LBAs

from the victim core to (N − 1) helper cores while each helper core

receives ⌊α⌋ additional LBAs for a die failure. Since the master core

is responsible for distributing a host request to a proper flash core, all

the redirection decisions are made at the master core without modi-

fying how the flash cores work. The master core forms a unit of LBA

redirections by (Dssd − 1) consecutive LBAs that were originally

mapped to the victim core. From each redirection unit, the master

core selects (N − 1) LBAs and redirects the LBAs to helper cores

one by one. Therefore, (N − 1) LBAs out of (Dssd − 1) LBAs of

the victim core are redirected, effectively reducing its logical space by

(N − 1)/(Dssd − 1). For example, in Figure 30, 15 LBAs form one
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redirection unit. Out of 15 LBAs in one unit, 3 LBAs are redirected

to core0, core1 and core2.

In order to choose (N − 1) redirected LBAs from a redirection

unit of corev, the master core considers the first N LBAs from the

redirection unit. Except for the v-th LBA, the i-th LBA is redirected

to corei. Formally, assume that the master core tries to select (N −1)

LBAs from a redirection unit R = {l0, . . . , lDssd−1} of corev. Since

each li ∈ R can be expressed by li = j×N +v (where (Dssd−1)×p ≤

j < (Dssd − 1) × (p + 1) for p ≥ 0), [j % (Dssd − 1)] indicates

the redirected core if it is not v and less than N . For example, in

Figure 30, R = {3, 7, 11, 15, 19, . . . , 59}. First 3 LBAs, 3 (= 0×4+3),

7 (= 1 × 4 + 3), and 11 (= 2 × 4 + 3) are redirected to core0, core1

and core2, respectively.

When an LBA is redirected to a helper core, the redirected LBA

is stored in the extended LBA space LSredirect of the helper core which

is hidden from the host system. Each flash core internally maintains

its LSredirect area so that when the master core sends a request of

a redirected LBA to its LSredirect area, it can be properly handled.

In order to distinguish LSredirect from the host-visible logical space,

we denote an LBA in LSredirect with the preceding underscore such

as 60. In Figure 30, for example, three LBAs, 3, 7 and 11, of the

victim core are redirected to three LSredirect LBAs, 60, 61 and 62,

respectively.
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Data Migration with Fake Failures

Since the master core changes its LBA-to-core mapping algo-

rithm after a failed die is detected, if data are already written to

the redirected LBAs of the victim core, they should be moved to the

newly redirected cores as well. However, since flash cores operate in-

dependently, direct data transfers between flash cores are difficult to

implement. As an effective trick to this problem, we consider those

redirected LBAs as failed LBAs although they do not belong to the

failed die (i.e., the redirected LBAs are treated as fake failures.). In

addition to the real failed LBAs, Identifier additionally searches fake

failures and sends their LBAs to the host as well. When fake failures

are recovered by the host, they are sent to the master core which

then correctly redirects them to their new locations. Although this

method incurs an additional RAID recovery cost, it is simple to be

implemented as the existing recovery path is used. Furthermore, since

the number of LBAs reported as fake failures is limited by the number

of redirected LBAs (i.e., (N − 1) × α), its overhead is not significant.

For example, in Figure 30, three LBAs are reported as fake failures

(because α = 1 and N = 4).

5.5 Identifier Acceleration Using P2L Map-
ping Information

As mentioned in Section 5.3, SSDs do not generally manage P2L

mapping information that can be used in identifying LBAs from a
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failed die. In this section, we propose two P2L management methods

and Identifier acceleration techniques that can further reduce the key

performance bottleneck of reparo.

5.5.1 Page-level P2L Entrustment to Neighbor-
ing Die

A NAND page consists of two areas, one for storing data and the

other for storing an error-correction code and various FTL metadata.

The latter area, called as the spare area of the NAND page, stores key

information for operating an SSD reliably. One such information is

the LBA of the data stored in the NAND page. The LBA information

in the spare area is used when the mapping information of an SSD

is reconstructed from unexpected failures (such as sudden power-off

failures [61]) or when valid pages of the GC victim block are moved

to different blocks. Therefore, it is possible to find out which LBAs

are stored in a specific die by checking its spare area. However, when

a die failure occurs, LBA information stored in the spare area of the

failed die becomes inaccessible as well, thus making it impossible to

read stored LBAs of pages in the failed die.

In order for the FTL metadata on the spare area to be available

even when a die fails, the data page and its FTL metadata should

be stored in different dies. In general, it is quite inefficient to store a

page data and its metadata on two separate pages because doing so

requires two writes. However, in reparo, we propose a simple extension

to a superblock-based mapping scheme [62,63] so that a data page and
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Figure 31: Illustrative examples of Page-level P2L entrustment.

its metadata can be stored without an extra write overhead on differ-

ent pages in different dies. Unlike a page-level mapping scheme, the

superblock-based mapping technique, which is widely used in practice,

employs a superpage as a write unit. In order to support a superpage,

a superblock is formed from k different blocks in k different dies. For

example, Figure 31 shows that the superblock SB100 consists of N

blocks from N different dies. A superpage of a superblock consists of

k pages from k blocks (that are members of the superblock) where all

k pages have the same page offset within their blocks. For example,

in Figure 31, the superpage sp0 consists of N pages that have the

page offset of 0 within their blocks. In the superblock-based mapping

technique, since a write to a superpage requires k writes to k pages

(in different dies), we can easily separate data page and its metadata

to two neighboring pages within the same superpage.
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In the page-level P2L entrustment technique, we store data page

and its metadata in two pages that are immediate neighbors within a

given superpage. When a die fails, Identifier only needs to check the

spare area of a neighboring die, instead of checking all the entries in

the L2P mapping table. For example, as shown in Figure 31, when

Die 1 fails, the failed LBAs of Die 1 can be identified from the spare

area of the adjacent die, Die 0. The LBA information of the page 2

in the superpage sp0 can be obtained from the spare area of the page

1 in Die 0.

5.5.2 Block-level P2L Entrustment to Neigh-
boring Die

Although the page-level P2L entrustment technique can be ef-

ficiently implemented using the extended superblock-based mapping

scheme, it incurs a significant overhead for Identifier because all the

pages of a neighboring die should be read. In order to identify failed

LBAs more efficiently, we propose a block-level P2L entrustment tech-

nique that stores all the LBAs from a neighboring block in a single

reserved page of a block, thus reducing the number of page reads per

block by Identifier from the number of pages in a block to one. We use

the last page of each block for this purpose.5 Figure 32 illustrates how

the block-level P2L entrustment scheme works. For a given superblock

(e.g., SB101), as with the page-level P2L entrustment scheme, each
5In order to satisfy the sequential program constraint of the NAND flash mem-

ory, a superpage is sequentially written in a superblock. Therefore, it is logical to
store the LBA list of a superblock to its last superpage.
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block’s LBA information is stored in its neighboring block. However,

in the block-level P2L entrustment technique, we dedicate the last

page of each block for storing P2L mapping information of the neigh-

boring block. When Die 1 fails, the failed LBAs of the block B1 can be

identified by reading the page 3 of the block B0. Since all the failed

LBAs in a failed block can be found with a single page read, Identifier

can work very efficiently. We denote an extended reparoCDR with the

block-level P2L entrustment technique by reparoCDR*.

In the block-level P2L entrustment scheme, a single page should

be able to contain all the LBA information of a block. Although recent

NAND flash memory has a large number (e.g., 768) of pages in a

block, a single page can easily meet this requirement. For example,

consider a block with 768 pages where the page size is 16 KB. If
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we support a common 4 KB-based mapping scheme, there are 3072

mapping units in a block. When each mapping unit is referenced by

a 32-bit address, all the LBA lists of a block can be stored on a

single page (i.e., 12 KB ¡ 16 KB). Furthermore, whenever a program

operation is performed on a block, FTL needs to accumulate the list

of all LBAs stored in each block in the buffer memory until all the

pages in the block are programmed except for the last page. Since

most FTLs limits the number of active blocks (where a requested

page write is programmed) to 1 or 2 [64,65], the memory requirement

for buffering the LBAs of programmed pages is reasonable compared

to the SSD capacity. For example, assuming that 2 active blocks per

NAND die are maintained in a 32-TB SSD with 512 NAND dies, a

12-MB buffer memory is sufficient.

5.5.3 Additional Considerations for P2L Entrust-
ment

The proposed P2L entrustment schemes may not work when more

than one die fail at the same time. For example, if two neighboring

dies fail together, failed LBAs of one die cannot be identified. In this

thesis, we assume that multiple die failures are possible but they do

not occur at the same time. Since a die failure is a rare event and

each die is physically independent of the other die, it is a reasonable

assumption in practice.

When failed LBAs are identified by reparoCDR*, they are not prop-

erly sorted because when they were stored to the last page of a block,
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they were not sorted. However, when a host queries failed LBAs af-

ter a die failure is detected (as shown in 2 of Figure 28), the host

asks reparo of a list of failed LBAs within a specific LBA range. A

naive solution would be to sort identified failed LBAs before reparo

responds to the host query. However, sorting a large number of failed

LBAs can be time-consuming. In the current implementation, when

the failed LBAs are decided by reparoCDR*, their L2P mapping entries

are marked as failed LBAs. With a simple modification to the L2P

mapping table, when the host queries for failed LBAs from a specific

LBA range, reparoCDR* can quickly identify the failed LBAs without

a costly sorting step.

5.6 Experimental Results

5.6.1 Experimental Settings

In order to evaluate the effectiveness of the proposed reparo schemes,

we implemented the proposed schemes in Samsung PM1643 SSD [3]

which can be configured for a 4-TB SSD (with 64 dies) and a 32-TB

SSD (with 512 dies). The SSD controller of a PM1643 SSD consists

of four flash cores along with one master core (as described in Sec-

tion 2.3). Since there are four flash cores, each flash core handles one

quarter of the NAND dies in the SSD. We set the initial space uti-

lization of each core to 0.9. We assume a storage system with 8 SSDs

configured in RAID 5. In order to emulate die failures during run

time, we added a special command that imitates a real die failure to
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PM1643 firmware. The special command, which was implemented as

a vendor-specific command of SCSI [60], makes all NAND operations

fail to a selected NAND die.6 In order to simulate a die failure, this

special command was requested from a test software (e.g. DriveMas-

ter [66]).

We compared four techniques: baseline, reparoIDR, reparoCDR, and

reparoCDR*. The baseline scheme, which represents a state-of-the-art

RAID recovery technique, is based on Rebuild Assist [28] which was

proposed for a fast RAID recovery. In baseline, when a die failure oc-

curs, it is considered as an SSD failure, and it replaces the failed SSD

with a reserved SSD by copying all the valid pages in the failed SSD

to the reserved SSD. During an SSD rebuild, baseline directly copies

readable pages of the failed SSD using Rebuild Assist [28]. ReparoCDR*

works in the same way as reparoCDR except that its Identifier is opti-

mized using the block-level P2L entrustment technique.

In order to evaluate four techniques, we have used two bench-

mark suites: FIO benchmark [67] and Iometeter benchmark [68]. Us-

ing simple synthetic workloads (e.g., sequential read/write and ran-

dom read/write) from the FIO benchmark, we compare how key steps

of the recovery process work differently in the proposed schemes. In

order to understand the effect of the proposed schemes in real-world

settings, we used five enterprise application workloads [69] from the

Iometer benchmark. Table 10 summarizes key I/O characteristics of

6In the current implementation, we modified the NAND flash reliability pa-
rameters (e.g., reference voltages) so that normal operations cannot be performed.
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Table 10: I/O workload characteristics of five enterprise applications.

Application Transfer Size Read % Write % Random % Sequential %
Media Streaming 64K 98 2 0 100

File Servers 8K 90 10 75 25
Database OLTP 8K 70 30 100 0

Archive 2M 55 45 95 5
Medical Imaging 1M 5 95 5 95

these workloads.

5.6.2 Experimental Results

Recovery overhead

In order to compare the recovery overhead, we measured the re-

build time of each scheme in case of a die failure. Figure 33(a) com-

pares normalized rebuild times of four techniques under varying SSD

capacity. All the measurements were normalized over the result of

reparoIDR for a 32-TB SSD. ReparoIDR completes the recovery process

about 9.3 ∼ 14.7 times faster than baseline by minimizing data migra-

tion. ReparoCDR is about 3.1 times faster over reparoIDR because of its

parallel Identifier module while reparoCDR* is about 1.27 times faster

over reparoCDR with its P2L entrustment support. Overall, reparoCDR*

is 57 times faster than baseline in a 32-TB SSD, even when the full

I/O bandwidth of a host system is used for the RAID recovery. If the

I/O bandwidth of RAID recovery is limited (e.g., only 10% of the to-

tal I/O bandwidth for the host) to minimize the impact of the RAID

recovery on the performance of host request processing, reparoCDR* is

about 110 times faster than baseline which takes more than 3 days in
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Figure 33: Comparisons of rebuild overhead.

a 32-TB SSD. Note that the rebuild time of reparo techniques very

slowly increases over baseline when the SSD capacity increases. This

observation illustrates the advantage of the reparo schemes that repair

a single die instead of rebuilding an SSD as in baseline.

Figure 33(b) compares four techniques in terms of the total amount

of data movements during the rebuild time. Compared to baseline,

the reparo schemes require up to two orders of magnitude fewer data

movements during the recovery. Unlike baseline, the reparo schemes

generate the same amount of rebuild traffic during the recovery re-
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gardless of the capacity of SSDs because they rebuild a failed die only.

Although reparoCDR moves more data over reparoIDR because of logi-

cal space adjustment, the overall rebuild time of reparoCDR is smaller

than reparoIDR because reparoCDR significantly reduces time for finding

failed LBAs by parallel query processing. Figure 33(c) shows a detailed

breakdown of the total rebuild time during the rebuild process in a

32-TB SSD. As shown in reparoIDR, the time taken by Identifier is the

dominant factor of the total recovery time. The parallel Identifier of

reparoCDR reduces the Identifier execution time by 76% over reparoIDR.

ReparoCDR* further reduces the Identifier execution time by 31% over

reparoCDR by the P2L entrustment technique.

In order to better understand the effect of various Identifier opti-

mization techniques, we compared the performance of the failed LBA

identification step in detail under varying number of flash cores par-

ticipating in the parallel search and different P2L entrustment tech-

niques. Figure 34 shows the normalized performance of the failed

LBAs identification step for different SSD capacities. (The identifi-

cation performance represents the processing speed measured from a

host after a failed LBA query was sent to an SSD. The higher the

identification performance, the shorter Identifier takes.) All the val-

ues were normalized over the query processing speed on a 4-TB SSD

when a single core was used. As the capacity of the SSD increases,

the identification speed tends to increase. This tendency is related to

how often failed LBAs appear. For example, on a 4-TB SSD, on aver-

age, one of the 16 LBAs in the victim core is stored on the failed die,

99



0

1

2

3

4

5

6

4 8 16 32

SSD Capacity (TB)

1 Core 2 Core 3 Core 4 Core Page-level P2L Block-level P2L
N

o
r

m
a

li
z

e
d

 I
d

e
n

ti
fi

c
a

ti
o

n
 

P
e

r
fo

r
m

a
n

c
e

Figure 34: Comparisons of Identifier performance.

whereas on a 32-TB SSD, one of the 128 LBAs on the victim core is

stored on the failed die. Whenever a failed LBA is identified, an in-

ternal data structure update is required to transmit the information

to the host, and the mapping information related to the failed LBA

needs to be updated. This is why the higher the frequency of failed

LBAs, the slower the query processing speed. The high frequency of

failed LBAs also gives a negative effect on the efficiency of parallel

processing. Therefore, on a 4-TB SSD, the performance of the 4-core

parallel search is about twice that of the single-core search. On the

other hand, on a 32-TB SSD, the performance of the 4-core parallel

search is 3.1 times higher than that of the single-core search.

As shown in Figure 34 the page-level P2L entrustment technique

is quite slow because it needs to read a large number of pages to iden-

tify failed LBAs from neighboring pages. For example, it takes longer

than the 4-core parallel search case in all four SSDs. On the other

hand, the block-level P2L entrustment technique can identify failed

LBAs much faster than the 4-core parallel search on all SSD capaci-
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ties. For example, on a 16-TB SSD and a 32-TB SSD, the block-level

P2L entrustment technique outperforms the 4-core parallel search by

48% and 44%, respectively.

Post-recovery performance/WAF impact

In order to understand how a reparo-repaired SSD behaves in

performance and lifetime aspects, we measured IOPS and WAF values

after a single die failure was repaired by the reparo schemes. All the

measurements are normalized over those of a new SSD without any

die failure. We used four representative synthetic workloads generated

through FIO.

Figure 35 compares IOPS values between the reparo schemes un-

der four workloads. For the sequential read and random read work-

loads shown in Figure 35(a) different reparo schemes show almost the

same performance as the new SSD. ReparoIDR has a performance drop

up to 3.4% for random read under low-capacity conditions when the

SSD capacity is relatively low (i.e., 4 TB), but the performance degra-

dation is marginal in the other conditions. This is because the read

bandwidth of the NAND flash is sufficient to satisfy the host interface

speed even if the number of dies is reduced.

On the other hand, for write workloads, there is a little more per-

formance differentiation among the proposed schemes although their

difference is not significant. As shown in Figure 35(b), in the case of

sequential write workload, small performance differences are largely

from the reduced NAND parallelism. For example, reparoIDR is 1.1%
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(a) Sequential read and random read performance.
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(b) Sequential write and random write performance.

Figure 35: Performance comparisons after die failure recovery.

worse than reparoCDR in a 4-TB SSD because its NAND parallelism

is affected by the isolated die recovery scheme. In the random write

workload, the performance difference between reparoIDR and reparoCDR

is substantial because the efficiency of GC is combined with the pro-

posed schemes. ReparoCDR outperforms reparoIDR from 3% to 102%.

This is mainly because reparoCDR better manages the performance-

critical space utilization of flash cores over reparoIDR. Imbalanced space

utilization in reparoIDR directly affects the efficiency of GC, which, in
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Figure 36: Impact of die repairs on WAF.

turn, significantly degrades the overall IOPS. ReparoCDR* shows al-

most the same performance as reparoCDR, with only a performance

drop of less than 1.5% because reparoCDR* uses the last page of each

block for storing a list of LBAs, which reduces the capacity of the OP

space slightly.

Figure 36 compares WAF values between the reparo schemes un-

der two different write workloads. WAF values are normalized over

the baseline case where no die failure occurs in a given SSD capacity.

For the sequential write workload, as shown in Figure 36(a), WAF

values do not increase significantly. Except for reparoIDR whose WAF

value increased up to 7% at a 4-TB SSD, all the other schemes in-

creased their WAF values by less than 2% over four different SSDs

with different capacities.

On the other hand, as shown in Figure 36(b), in the random write

workload, there are larger variations in WAF values among different
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schemes in different SSDs. For example, the WAF value increases by

47% in reparoIDR for an 8-TB SSD while the WAF value increases

less than 9% in reparoCDR for the same SSD. Large differences in Fig-

ure 36(b) come from the efficiency of GC in each scheme because

each scheme affects differently on the available OP space. As shown

in Figure 36(b), reparoCDR is the most efficient in maintaining the

available OP space evenly among flash cores. ReparoCDR*, which has

a smaller effective OP space than reparoCDR, results in an additional

1.5% increased WAF value.

Figure 37 compares the performance of each scheme after a die

failure is recovered using enterprise workloads from the Iometer bench-

mark. All the measurements were normalized over the SSD perfor-

mance of the same capacity with no die failure. As expected, there are

large differences among reparoIDR and reparoCDR on a small SSD when

workloads are write-intensive. For example, in Archives and Medical

Imaging workloads with high write request ratios, reparoCDR outper-
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Figure 37: Performance comparisons after die failure recovery with
enterprise workloads.
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formed reparoIDR by 96.4% and 99.5%, respectively on a 4-TB SSD.

Even for write-intensive workloads, if the access pattern is sequential,

the influence of the OP space can be low. However, when the random

and sequential patterns are mixed, the influence of the OP space is

large, similar to the 100% random pattern even if the random ratio

is low. On the other hand, in read-intensive workloads, there is not

much difference in performance for each scheme, which is in line with

the evaluation results of Figure 35(a).

Note that we did not directly compare the lifetime impact of each

scheme. However, since the total amount of written data to an SSD can

be a useful indicator of the SSD lifetime, we can estimate the lifetime

impact of each scheme using its WAF value w. Given a fixed amount

Whost of host writes, the total amount Tdata of written data to the SSD

can be computed by Tdata × w. Using WAF values of Figure 36, for

example, we can estimate that reparoIDR can decrease the SSD lifetime

over when no die fails, by 2.9% and 31.9%, respectively, for sequential

workload and random workload, on an 8-TB SSD after a single die

is repaired. For the same conditions, reparoCDR shows a longer SSD

lifetime, reducing the SSD lifetime by 0.8% and 7.8% only.

Post-recovery impact of multi-die failures

Unlike when a single die failure is repaired, reparoIDR and reparoCDR

shows significant differences in the post-recovery performance/WAF

when multiple die failures are repaired. Figures 38 and 39 show how

performance and WAF changes under the random write workload as
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Figure 38: Impact of multi-die failures in reparoIDR.
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Figure 39: Impact of multi-die failures in reparoCDR.

the number of failed dies increases assuming that all die failures oc-

cur in the same flash core, considering the worst case. As shown in

Figures 38(a) and 38(b), when an SSD is repaired by reparoIDR, its

performance is quickly degraded while its WAF is rapidly increased.

On the other hand, as shown in Figures 39(a) and 39(b), when an SSD

is repaired by reparoCDR, its performance is much slowly degraded as

with the WAF increase.

Slow performance degradation of reparoCDR can be an important
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Figure 40: Impact of the space utilization on performance.

advantage in enterprise storage systems. In such systems, in order to

support the sustained RAID performance [70], each SSD has a strict

requirement on the performance degradation (such as the maximum

10% performance drop) [71]. For example, when the maximum perfor-

mance drop is set to 10%, reparoCDR can survive up to 4 die failures in

a 32-TB SSD. On the other hand, reparoIDR can only handle a single

die failure under the same condition.

Sensitivity for the space utilization

Since die failure recovery is performed by utilizing the OP space,

the available size of the OP space affects the performance and WAF

after die failure recovery process. If the space utilization of an SSD

is low, more OP space is available and the performance impact by

using reparo is reduced. To validate this observation, we measured

performance and WAF while varying the space utilization from 0.9 to

0.87.
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Figure 41: Impact of the space utilization on WAF.

Figure 40 shows how performance changes for successive die fail-

ures under different space utilization ratios. When space utilization

is low, the performance degradation is also slowed accordingly. For

example, in a 32-TB SSD, when the space utilization ratio is 0.87,

reparoCDR can repair up to five die failures with a less than 10% per-

formance degradation over four die repairs when the space utilization

ratio is 0.90. Similarly, Figure 41 shows how WAF changes for succes-

sive die failures under different space utilization ratios.
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Chapter 6

Conclusions

6.1 Summary

UL SSDs are becoming popular these days in enterprise stor-

age markets because of their advantages in reducing the total cost

of ownership. However, the capacity-enhancing technologies that have

made UL SSDs possible introduced new drawbacks to the wider adop-

tion of UL SSDs in practice.. In order for UL SSDs to satisfy the

high-performance and high-reliability requirements of modern com-

puting systems as well as the large-capacity requirement, this relia-

bility/performance problems should be properly addressed.

In this dissertation, we have proposed several system-level tech-

niques which aim at alleviating the reliability and performance degra-

dation originated from capacity-oriented design decisions.

First, We have presented GuardedErase scheme to reduce WL char-

acteristic variation by reducing an erase voltage applied to weak WLs.

From a 3D NAND flash characterization study, we built nine gE(n)

modes that can maximize NAND endurance in a condition of dif-

ferent physical capacity reduction. Based on gE(n) modes, we have

implemented a gErase-aware FTL, longFTL, which apply the optimal

gErase mode considering user workload characteristic. Our experimen-
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tal results show that longFTL can improve expected the SSD lifetime

by 21% on average while insignificant degradation on the SSD perfor-

mance.

Second, we have presented effective data migration optimization

to increase the SSD performance by using the copyback operation.

We proposed an integrated approach that maximizes the efficiency

of copyback operations while not compromising data reliability. From

the error propagation characteristics of 3D NAND flash, we proposed

a novel per-block error propagation model under consecutive copyback

operations. Furthermore, we devised a resource-efficient error manage-

ment scheme that can handle successive copybacks where pages move

around multiple blocks with different reliability.

Finally, we have presented a new recovery scheme, called reparo,

for a RAID storage system with ultra-large SSDs. Proposed reparo

scheme repairs a failed SSD at the NAND die granularity without

replacing it with a new SSD, thus avoiding most of the inter-SSD

data copies during a RAID recovery step. By exploiting a multi-core

processor of the SSD controller in identifying failed LBAs from the

failed NAND die and recovering data from the failed LBAs, the die

failure recovery overhead is minimized.
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6.2 Future Work

6.2.1 Optimization with Accurate WAF Pre-
diction

The current version of longFTL can be further improved in several

directions. For example, if the impact of gE(n) mode on WAF can be

predicted with high precision, optimal gE(n) mode can be selected

more effectively. In addition, it could also effectively respond even in

unusual situations where user workload characteristics are constantly

changing. Building such a predictor would be an interesting future

direction if it can be possibly combined with a data-driven machine

learning approach.

6.2.2 Maximizing Copyback Threshold

The current version of rcFTL can be extended in several direc-

tions. For example, if rcFTL can better estimate the data retention

requirement, a higher copyback threshold could be used for the same

block characteristics. As shown in Table 6, if a group of pages re-

quire less than 3-month retention time, all data migrations can be

supported by rCPB up to 6 times. Furthermore, if we can manage the

page characteristics difference , the copyback threshold can be further

increased. In the current version, only the deviation between blocks

is considered, but since the deviation of the characteristics between

pages within a block is also very large, a more accurate copyback

threshold can be predicted if both factors are considered. However,
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since it requires more complex management techniques and resources

in FTL, additional techniques are needed to effectively manage them.

6.2.3 Pre-failure Detection

The current version of reparo can be further improved in several

directions. For example, if a die failure can be predicted with a high

probability before they actually occur, the die failure can be handled

more effectively. In addition, if data migration between flash cores

can be performed inside the SSD, unnecessary data transfers could be

reduced during the recovery process.
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초 록

반도체공정의미세화,다치화기술에의해서지속적으로용량이증가하고

있는 단위 낸드 플래쉬 메모리와 하나의 낸드 플래쉬 기반 스토리지 시스템 내

에 수 많은 낸드 플래쉬 메모리 다이를 실장할 수 있게하는 낸드 패키지 기술로

인해 하드디스크보다 훨씬 더 큰 초고용량의 낸드 플래쉬 저장장치의 개발을

가능하게 했다. 플래쉬 저장장치의 용량이 증가할 수록 스토리지 시스템의 총

소유비용을 줄이는데 매우 효과적인 장점을 가지고 있으나, 신뢰성 및 성능의

측면에서의 한계로 인해서 초고용량 낸드 플래쉬 저장장치가 널리 사용되는데

있어서 장애물로 작용하고 있다. 초고용량 저장장치의 장점을 활용하기 위해서

는 이러한 신뢰성 및 성능을 개선하기 위한 새로운 기법의 개발이 필요하다.

본 논문에서는 초고용량 낸드기반 저장장치(SSD)의 문제점인 성능 및 신

뢰성을 개선하기 위한 다양한 최적화 기술을 제안한다. 기존 기법들의 최적화

한계를 극복하기 위해서, 우리의 기술은 실제 낸드 플래쉬 소자에 대한 다양

한 특성 평가 결과와 SSD의 현장 불량 특성 분석결과를 기반으로 고안되었다.

이를 통해서 낸드의 플래쉬 특성과 SSD, 그리고 호스트 시스템의 동작 특성을

고려한 성능 및 신뢰성을 향상시키는 최적화 방법론을 제시한다.

첫째로, 본 논문에서는 낸드 플래쉬 불록내의 페이지들간의 특성편차를

줄이기 위해서 동적인 소거 스트레스 경감 기법을 제안한다. 제안된 기법은

낸드 블록의 내구성을 늘리기 위해서 특성이 약한 페이지들에 대해서 더 적은

소거 스트레스가 인가할 수 있도록 낸드 평가 결과로 부터 소거 스트레스 경감

모델을 구축한다. 또한 사용자 워크로드 특성을 고려하여, 소거 스트레스 경

감 기법의 효과가 최대화 될 수 있는 최적의 경감 수준을 동적으로 판단할 수

있도록 한다. 이를 통해서 낸드 블록을 열화시키는 주요 원인인 소거 동작을

효율적으로 제어함으로써 저장장치의 수명을 효과적으로 향상시킨다.

둘째로,본논문에서는고용량 SSD에서의내부데이터이동으로인한성능

저하문제를 개선하기 위해서 낸드 플래쉬의 제한된 카피백(copyback) 명령을

활용하는 적응형 기법인 rCPB을 제안한다. rCPB은 Copyback 명령의 효율성
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을 극대화 하면서도 데이터 신뢰성에 문제가 없도록 낸드의 블럭의 노화특성을

반영한 새로운 copyback 오류 전파 모델을 기반으로한다. 이에더해, 신뢰성이

다른 블럭간의 copyback 명령을 활용한 데이터 이동을 문제없이 관리하기 위

해서 자원 효율적인 오류 관리 체계를 제안한다. 이를 통해서 신뢰성에 문제를

주지 않는 수준에서 copyback을 최대한 활용하여 내부 데이터 이동을 최적화

함으로써 SSD의 성능향상을 달성할 수 있다.

마지막으로, 본 논문에서는 초고용량 SSD에서 낸드 플래쉬의 다이(die)

불량으로 인한 레이드(redundant array of independent disks, RAID) 리빌드

오버헤드를 최소화 하기위한 새로운 RAID 복구 기법인 reparo를 제안한다.

Reparo는 SSD에 대한 교체없이 SSD의 불량 die에 대해서만 복구를 수행함으

로써 복구 오버헤드를 최소화한다. 불량이 발생한 die의 데이터만 선별적으로

복구함으로써 복구 과정의 리빌드 트래픽을 최소화하며, SSD 내부의 병렬구

조를 활용하여 불량 die 복구 시간을 효과적으로 단축한다. 또한 die 불량으로

인한 물리적 공간감소의 부작용을 최소화 함으로써 복구 이후의 성능 저하 및

수명의 감소 문제가 없도록 한다.

본 논문에서 제안한 기법들은 저장장치 프로토타입 및 공개 낸드 플래쉬

저장장치 개발환경, 그리고 실장 SSD환경에 구현되었으며, 실제 응용 프로그

램을 모사한 다양한 벤트마크 및 실제 I/O 트레이스들을 이용하여 그 유용성을

검증하였다. 실험 결과, 제안된 기법들을 통해서 초고용량 SSD의 신뢰성 및

성능을 효과적으로 개선할 수 있음을 확인하였다.

키워드: 낸드 플래시 메모리, 플래시 변환 계층, 낸드 플래시 기반 저장장치,

내장형 시스템, 성능 최적화, 수명 최적화

학번: 2017-36900
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