104 research outputs found

    Full Duplex Emulation via Spatial Separation of Half Duplex Nodes in a Planar Cellular Network

    Get PDF
    A Full Duplex Base Station (FD-BS) can be used to serve simultaneously two Half-Duplex (HD) Mobile Stations (MSs), one working in the uplink and one in the downlink, respectively. The same functionality can be realized by having two interconnected and spatially separated Half Duplex Base Stations (HD-BSs), which is a scheme termed \emph{CoMPflex} (CoMP for In-Band Wireless Full Duplex). A FD-BS can be seen as a special case of CoMPflex with separation distance zero. In this paper we study the performance of CoMPflex in a two-dimensional cellular scenario using stochastic geometry and compare it to the one achieved by FD-BSs. By deriving the Cumulative Distribution Functions, we show that CoMPflex brings BSs closer to the MSs they are serving, while increasing the distance between a MS and interfering MSs. Furthermore, the results show that CoMPflex brings benefits over FD-BS in terms of communication reliability. Following the trend of wireless network densification, CoMPflex can be regarded as a method with a great potential to effectively use the dense HD deployments.Comment: to appear in IEEE SPAWC 201

    Wireless Transmission Methods for Ultra-dense Cellular Networks and Machine-type Communications

    Get PDF

    On a User-Centric Base Station Cooperation Scheme for Reliable Communications

    Get PDF
    In this paper, we describe CoMP2flex, a user-centric base station (BS) cooperation scheme that provides improvements in reliability of both uplink (UL) and downlink (DL) communications of wireless cellular networks. CoMP2flex supports not only cooperation of two BSs with same direction of traffic but also cooperation of two BSs serving bidirectional traffic. The reliability performance of CoMP2flex is shown with numerical simulations and analytical expressions. We quantify and numerically validate the performance of the greedy BS pairing algorithm by comparing maximum weight matching methods, implemented as the Edmonds matching algorithm for weighted graphs.Comment: to be presented in IEEE VTC 2017 Sprin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Study, Measurements and Characterisation of a 5G system using a Mobile Network Operator Testbed

    Get PDF
    The goals for 5G are aggressive. It promises to deliver enhanced end-user experience by offering new applications and services through gigabit speeds, and significantly improved performance and reliability. The enhanced mobile broadband (eMBB) 5G use case, for instance, targets peak data rates as high as 20 Gbps in the downlink (DL) and 10 Gbps in the uplink (UL). While there are different ways to improve data rates, spectrum is at the core of enabling higher mobile broadband data rates. 5G New Radio (NR) specifies new frequency bands below 6 GHz and also extends into mmWave frequencies where more contiguous bandwidth is available for sending lots of data. However, at mmWave frequencies, signals are more susceptible to impairments. Hence, extra consideration is needed to determine test approaches that provide the precision required to accurately evaluate 5G components and devices. Therefore, the aim of the thesis is to provide a deep dive into 5G technology, explore its testing and validation, and thereafter present the OTE (Hellenic Telecommunications Organisation) 5G testbed, including measurement results obtained and its characterisation based on key performance indicators (KPIs)
    • …
    corecore