4 research outputs found

    Autonomous Trajectory Planning and Guidance Control for Launch Vehicles

    Get PDF
    This open access book highlights the autonomous and intelligent flight control of future launch vehicles for improving flight autonomy to plan ascent and descent trajectories onboard, and autonomously handle unexpected events or failures during the flight. Since the beginning of the twenty-first century, space launch activities worldwide have grown vigorously. Meanwhile, commercial launches also account for the booming trend. Unfortunately, the risk of space launches still exists and is gradually increasing in line with the rapidly rising launch activities and commercial rockets. In the history of space launches, propulsion and control systems are the two main contributors to launch failures. With the development of information technologies, the increase of the functional density of hardware products, the application of redundant or fault-tolerant solutions, and the improvement of the testability of avionics, the launch losses caused by control systems exhibit a downward trend, and the failures induced by propulsion systems become the focus of attention. Under these failures, the autonomous planning and guidance control may save the missions. This book focuses on the latest progress of relevant projects and academic studies of autonomous guidance, especially on some advanced methods which can be potentially real-time implemented in the future control system of launch vehicles. In Chapter 1, the prospect and technical challenges are summarized by reviewing the development of launch vehicles. Chapters 2 to 4 mainly focus on the flight in the ascent phase, in which the autonomous guidance is mainly reflected in the online planning. Chapters 5 and 6 mainly discuss the powered descent guidance technologies. Finally, since aerodynamic uncertainties exert a significant impact on the performance of the ascent / landing guidance control systems, the estimation of aerodynamic parameters, which are helpful to improve flight autonomy, is discussed in Chapter 7. The book serves as a valuable reference for researchers and engineers working on launch vehicles. It is also a timely source of information for graduate students interested in the subject

    Robust Bang-Off-Bang Low-Thrust Guidance Using Model Predictive Static Programming

    Get PDF
    Model Predictive Static Programming (MPSP) was always used under the assumption of continuous control, which impedes it for applications with bang-off-bang control directly. In this paper, MPSP is employed for the first time as a guidance scheme for low-thrust transfers with bang-off-bang control where the fuel-optimal trajectory is used as the nominal solution. In our method, dynamical equations in Cartesian coordinates are augmented by the mass costate equation, while the unconstrained velocity costate vector is used as control variable, and is expressed as a combination of Fourier basis functions with corresponding weights. A two-loop MPSP algorithm is designed where the weights and the initial mass costate are updated in the inner loop and continuation is conducted on the outer loop in case of large perturbations. The sensitivity matrix (SM) is recursively calculated using analytical derivatives and SM at switching points is compensated based on calculus of variations. An sample interplanetary CubeSat mission to an asteroid is used as study case to illustrate the effectiveness of the method developed

    Review of advanced guidance and control algorithms for space/aerospace vehicles

    Get PDF
    The design of advanced guidance and control (G&C) systems for space/aerospace vehicles has received a large amount of attention worldwide during the last few decades and will continue to be a main focus of the aerospace industry. Not surprisingly, due to the existence of various model uncertainties and environmental disturbances, robust and stochastic control-based methods have played a key role in G&C system design, and numerous effective algorithms have been successfully constructed to guide and steer the motion of space/aerospace vehicles. Apart from these stability theory-oriented techniques, in recent years, we have witnessed a growing trend of designing optimisation theory-based and artificial intelligence (AI)-based controllers for space/aerospace vehicles to meet the growing demand for better system performance. Related studies have shown that these newly developed strategies can bring many benefits from an application point of view, and they may be considered to drive the onboard decision-making system. In this paper, we provide a systematic survey of state-of-the-art algorithms that are capable of generating reliable guidance and control commands for space/aerospace vehicles. The paper first provides a brief overview of space/aerospace vehicle guidance and control problems. Following that, a broad collection of academic works concerning stability theory-based G&C methods is discussed. Some potential issues and challenges inherent in these methods are reviewed and discussed. Then, an overview is given of various recently developed optimisation theory-based methods that have the ability to produce optimal guidance and control commands, including dynamic programming-based methods, model predictive control-based methods, and other enhanced versions. The key aspects of applying these approaches, such as their main advantages and inherent challenges, are also discussed. Subsequently, a particular focus is given to recent attempts to explore the possible uses of AI techniques in connection with the optimal control of the vehicle systems. The highlights of the discussion illustrate how space/aerospace vehicle control problems may benefit from these AI models. Finally, some practical implementation considerations, together with a number of future research topics, are summarised

    Fuel-optimal G-MPSP Guidance for Powered Descent Phase of Soft Lunar Landing

    No full text
    A fuel optimal nonlinear sub-optimal guidance scheme is presented in this paper for soft landing of a lunar craft during the powered descent phase. The recently developed Generalized Model Predictive Static Programming (G-MPSP) is used to compute the required magnitude and angle of the thrust vector. Both terminal position and velocity vector are imposed as hard constraints, which ensures high position accuracy and facilitates initiation of vertical descent at the end of the powered descent phase. A key feature of the G-MPSP algorithm is that it converts the nonlinear dynamic programming problem into a low-dimensional static optimization problem (of the same dimension as the output vector). The control history update is done in closed form after computing a time-varying weighting matrix through a backward integration process. This feature makes the algorithm computationally efficient, which makes it suitable for on-board applications. The effectiveness of the proposed guidance algorithm is demonstrated through promising simulation results
    corecore