214 research outputs found

    Decomposition of bounded degree graphs into C4C_4-free subgraphs

    Get PDF
    We prove that every graph with maximum degree Δ\Delta admits a partition of its edges into O(Δ)O(\sqrt{\Delta}) parts (as Δ→∞\Delta\to\infty) none of which contains C4C_4 as a subgraph. This bound is sharp up to a constant factor. Our proof uses an iterated random colouring procedure.Comment: 8 pages; to appear in European Journal of Combinatoric

    Linear and 2-Frugal Choosability of Graphs of Small Maximum Average Degree

    Get PDF
    International audienceA proper vertex colouring of a graph G is 2-frugal (resp. linear) if the graph induced by the vertices of any two colour classes is of maximum degree 2 (resp. is a forest of paths). A graph G is 2-frugally (resp. linearly) L-colourable if for a given list assignment L : V(G) → N, there exists a 2-frugal (resp. linear) colouring c of G such that c(v) ∈ L(v) for all v ∈ V (G). If G is 2-frugally (resp. linearly) L-list colourable for any list assignment such that |L(v)| ≄ k for all v ∈ V (G), then G is 2-frugally (resp. linearly) k-choosable. In this paper, we improve some bounds on the 2-frugal choosability and linear choosability of graphs with small maximum average degree

    Improved bounds on coloring of graphs

    Full text link
    Given a graph GG with maximum degree Δ≄3\Delta\ge 3, we prove that the acyclic edge chromatic number aâ€Č(G)a'(G) of GG is such that aâ€Č(G)≀⌈9.62(Δ−1)⌉a'(G)\le\lceil 9.62 (\Delta-1)\rceil. Moreover we prove that: aâ€Č(G)≀⌈6.42(Δ−1)⌉a'(G)\le \lceil 6.42(\Delta-1)\rceil if GG has girth g≄5 g\ge 5\,; a'(G)\le \lceil5.77 (\Delta-1)\rc if GG has girth g≄7g\ge 7; a'(G)\le \lc4.52(\D-1)\rc if g≄53g\ge 53; a'(G)\le \D+2\, if g\ge \lceil25.84\D\log\D(1+ 4.1/\log\D)\rceil. We further prove that the acyclic (vertex) chromatic number a(G)a(G) of GG is such that a(G)\le \lc 6.59 \Delta^{4/3}+3.3\D\rc. We also prove that the star-chromatic number χs(G)\chi_s(G) of GG is such that \chi_s(G)\le \lc4.34\Delta^{3/2}+ 1.5\D\rc. We finally prove that the \b-frugal chromatic number \chi^\b(G) of GG is such that \chi^\b(G)\le \lc\max\{k_1(\b)\D,\; k_2(\b){\D^{1+1/\b}/ (\b!)^{1/\b}}\}\rc, where k_1(\b) and k_2(\b) are decreasing functions of \b such that k_1(\b)\in[4, 6] and k_2(\b)\in[2,5]. To obtain these results we use an improved version of the Lov\'asz Local Lemma due to Bissacot, Fern\'andez, Procacci and Scoppola \cite{BFPS}.Comment: Introduction revised. Added references. Corrected typos. Proof of Theorem 2 (items c-f) written in more detail

    Acyclic and frugal colourings of graphs

    Get PDF
    Given a graph G = (V, E), a proper vertex colouring of V is t-frugal if no colour appears more than t times in any neighbourhood and is acyclic if each of the bipartite graphs consisting of the edges between any two colour classes is acyclic. For graphs of bounded maximum degree, Hind, Molloy and Reed [14] studied proper t-frugal colourings and Yuster [19] studied acyclic proper 2-frugal colourings. In this paper, we expand and generalise this study. In particular, we consider vertex colourings that are not necessarily proper, and in this case, we find qualitative connections with colourings that are t-improper -colourings in which the colour classes induce subgraphs of maximum degree at most t -for choices of t near to d

    Distributed (Δ+1)(\Delta+1)-Coloring in Sublogarithmic Rounds

    Full text link
    We give a new randomized distributed algorithm for (Δ+1)(\Delta+1)-coloring in the LOCAL model, running in O(log⁡Δ)+2O(log⁥log⁥n)O(\sqrt{\log \Delta})+ 2^{O(\sqrt{\log \log n})} rounds in a graph of maximum degree~Δ\Delta. This implies that the (Δ+1)(\Delta+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min⁥(log⁥nlog⁥log⁥n,log⁡Δlog⁥log⁡Δ))\Omega \left( \min \left( \sqrt{\frac{\log n}{\log \log n}}, \frac{\log \Delta}{\log \log \Delta} \right) \right) by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ+1\Delta+1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts
    • 

    corecore