247 research outputs found

    From rewrite rules to bisimulation congruences

    Get PDF
    AbstractThe dynamics of many calculi can be most clearly defined by a reduction semantics. To work with a calculus, however, an understanding of operational congruences is fundamental; these can often be given tractable definitions or characterisations using a labelled transition semantics. This paper considers calculi with arbitrary reduction semantics of three simple classes, firstly ground term rewriting, then left-linear term rewriting, and then a class which is essentially the action calculi lacking substantive name binding. General definitions of labelled transitions are given in each case, uniformly in the set of rewrite rules, and without requiring the prescription of additional notions of observation. They give rise to bisimulation congruences. As a test of the theory it is shown that bisimulation for a fragment of CCS is recovered. The transitions generated for a fragment of the Ambient Calculus of Cardelli and Gordon, and for SKI combinators, are also discussed briefly

    Deriving Bisimulation Congruences using 2-Categories

    No full text
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Deriving Bisimulation Congruences: A 2-Categorical Approach

    Get PDF
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Reactive Systems over Cospans

    No full text
    The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of well-behaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimits (or, more usually and generally, bicolimits) which need to be constructed separately within each model. In this paper, we offer a general construction of such bicolimits in a class of bicategories of cospans. The construction sheds light on as well as extends Ehrig and Konig’s rewriting via borrowed contexts and opens the way to a unified treatment of several applications

    Axiomatizing Flat Iteration

    Full text link
    Flat iteration is a variation on the original binary version of the Kleene star operation P*Q, obtained by restricting the first argument to be a sum of atomic actions. It generalizes prefix iteration, in which the first argument is a single action. Complete finite equational axiomatizations are given for five notions of bisimulation congruence over basic CCS with flat iteration, viz. strong congruence, branching congruence, eta-congruence, delay congruence and weak congruence. Such axiomatizations were already known for prefix iteration and are known not to exist for general iteration. The use of flat iteration has two main advantages over prefix iteration: 1.The current axiomatizations generalize to full CCS, whereas the prefix iteration approach does not allow an elimination theorem for an asynchronous parallel composition operator. 2.The greater expressiveness of flat iteration allows for much shorter completeness proofs. In the setting of prefix iteration, the most convenient way to obtain the completeness theorems for eta-, delay, and weak congruence was by reduction to the completeness theorem for branching congruence. In the case of weak congruence this turned out to be much simpler than the only direct proof found. In the setting of flat iteration on the other hand, the completeness theorems for delay and weak (but not eta-) congruence can equally well be obtained by reduction to the one for strong congruence, without using branching congruence as an intermediate step. Moreover, the completeness results for prefix iteration can be retrieved from those for flat iteration, thus obtaining a second indirect approach for proving completeness for delay and weak congruence in the setting of prefix iteration.Comment: 15 pages. LaTeX 2.09. Filename: flat.tex.gz. On A4 paper print with: dvips -t a4 -O -2.15cm,-2.22cm -x 1225 flat. For US letter with: dvips -t letter -O -0.73in,-1.27in -x 1225 flat. More info at http://theory.stanford.edu/~rvg/abstracts.html#3

    A Distribution Law for CCS and a New Congruence Result for the pi-calculus

    Get PDF
    We give an axiomatisation of strong bisimilarity on a small fragment of CCS that does not feature the sum operator. This axiomatisation is then used to derive congruence of strong bisimilarity in the finite pi-calculus in absence of sum. To our knowledge, this is the only nontrivial subcalculus of the pi-calculus that includes the full output prefix and for which strong bisimilarity is a congruence.Comment: 20 page

    Split-2 Bisimilarity has a Finite Axiomatization over CCS with<br> Hennessy&#39;s Merge

    Get PDF
    This note shows that split-2 bisimulation equivalence (also known as timed equivalence) affords a finite equational axiomatization over the process algebra obtained by adding an auxiliary operation proposed by Hennessy in 1981 to the recursion, relabelling and restriction free fragment of Milner's Calculus of Communicating Systems. Thus the addition of a single binary operation, viz. Hennessy's merge, is sufficient for the finite equational axiomatization of parallel composition modulo this non-interleaving equivalence. This result is in sharp contrast to a theorem previously obtained by the same authors to the effect that the same language is not finitely based modulo bisimulation equivalence

    A Calculus of Mobile Resources

    No full text
    We introduce a calculus of Mobile Resources (MR) tailored for the design and analysis of systems containing mobile, possibly nested, computing devices that may have resource and access constraints, and which are not copyable nor modifiable per se. We provide a reduction as well as a labelled transition semantics and prove a correspondence be- tween barbed bisimulation congruence and a higher-order bisimulation. We provide examples of the expressiveness of the calculus, and apply the theory to prove one of its characteristic properties
    corecore