
HAL Id: hal-00089219
https://hal.archives-ouvertes.fr/hal-00089219v4

Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distribution Law for CCS and a New Congruence
Result for the pi-calculus

Daniel Hirschkoff, Damien Pous

To cite this version:
Daniel Hirschkoff, Damien Pous. A Distribution Law for CCS and a New Congruence Result for the
pi-calculus. FoSSaCS, 2007, Braga, Portugal. �10.1007/978-3-540-71389-0_17�. �hal-00089219v4�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50437154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00089219v4
https://hal.archives-ouvertes.fr

A Distribution Law for CCS and
a New Congruence Result for the π-calculus ?

Daniel Hirschkoff and Damien Pous

LIP – ENS Lyon, CNRS, INRIA, UCBL, France

Abstract. We give an axiomatisation of strong bisimilarity on a small
fragment of CCS that does not feature the sum operator. This axiomati-
sation is then used to derive congruence of strong bisimilarity in the finite
π-calculus in absence of sum. To our knowledge, this is the only nontriv-
ial subcalculus of the π-calculus that includes the full output prefix and
for which strong bisimilarity is a congruence.

Introduction

In this paper, we study strong bisimilarity on two process calculi. We first focus
on microCCS (µCCS), the very restricted fragment of CCS that only features
prefix and parallel composition. Our main result on µCCS is that adding the
following distribution law

η.(P | η.P | . . . | η.P) = η.P | η.P | . . . | η.P

to the laws of an abelian monoid for parallel composition yields a complete
axiomatisation of strong bisimilarity (in the law above, η is a CCS prefix, of the
form a or a, and P is any CCS process – the same number of copies of P appear
on both sides of the equation).

The distribution law is not new: it is mentioned – among other ‘mixed equa-
tions’ relating prefixed terms and parallel compositions – in a study of bisimilar-
ity on normed PA processes [8]. In our setting, this equality can be oriented from
left to right to rewrite processes into normal forms, which intuitively exhibit as
much concurrency as possible. Strong bisimilarity (∼) between processes is then
equivalent to equality of their normal forms. This rewriting phase allows us to
actually compute unique decompositions of processes into prime processes, in the
sense of [10]: a process P is prime if P is not bisimilar to the inactive process 0
and if P ∼ Q |R implies Q ∼ 0 or R ∼ 0.

The distribution law is an equational schema, corresponding to an infinite
family of axioms, of the form η.(P | (η.P)k) = (η.P)k+1, for k ≥ 1 (where Qk

denotes the k-fold parallel composition of process Q). We show that although
our setting is rather simple, there exists no finite axiomatisation of ∼ on µCCS.

? Author’s version of the paper published by Springer in Proc. FoSSaCS’07, available
at http://dx.doi.org/10.1007/978-3-540-71389-0 17.

We then move to the study of strong bisimilarity in the π-calculus. Because of
the presence of the input prefix, and of the related phenomenon of name-passing,
bisimilarity is more complex in the π-calculus than in CCS. In particular, both
early and late bisimilarity, that differ in their treatment of name substitution,
fail to be congruences in the full π-calculus.

There exist subcalculi of the π-calculus for which strong bisimilarity is a con-
gruence (we discuss these in Section 5). When this is the case, this equivalence
coincides with ground bisimilarity (∼g), which allows one to consider only one
fresh name when inspecting an input transition, instead of the usual quantifi-
cation involving all free names of the process. Congruence of strong bisimilarity
is hence an important property: not only is it necessary in order to reason in
a compositional way, but it also helps making bisimulation proofs simpler, by
reducing the size of case analyses.

In the full π-calculus, in order to get congruence, one has to work with
Sangiorgi’s open bisimilarity [12], which has a more involved definition than the
early and late variants. Tools like the Mobility Workbench [14], for instance,
have adopted this equivalence on processes.

It is known [13] that bisimilarity in the π-calculus fails to be a congruence as
soon as we have prefix, parallel composition, restriction and replication. In this
work, we focus on the finite, sum-free π-calculus, that we call π0. We rely on the
axiomatisation of strong bisimilarity on µCCS to prove that ground bisimilar-
ity (∼g) is closed under substitutions in π0, i.e., that whenever P ∼g Q, then
Pσ ∼g Qσ for any substitution σ. Closure under substitution of ground bisim-
ilarity entails that on π0, ground, early, late and open bisimilarities coincide,
and are congruences. The problem of congruence of ∼g on π0 is mentioned as
an open question in [13, Chapter 5], and is known since at least 1998 [2]. To our
knowledge, this is the first congruence result for a subcalculus of the π-calculus
that includes the full output prefix (see Section 5 for a discussion on this).

At the heart of our proof of congruence is a notion that we call mutual desyn-
chronisation, and that corresponds to the existence of processes T, T12, T21 such

that T
η1−→ η2−→ T12 and T

η2−→ η1−→ T21, for two distinct actions η1 and η2, and with
T12 ∼ T21. We additionally require in the two sequences of transitions from T to
T12 and T21 respectively that the second prefix being fired should occur under
the first prefix in T . In other words, in such a situation, the process T behaves
as if the two actions η1, η2 were offered concurrently, but the simultaneous firing
of these actions can only be emulated by triggering consecutive prefixes.

Using our analysis of strong bisimilarity on µCCS, we show that mutual
desynchronisations do not exist in µCCS. This is essentially due to the fact
that our axiomatisation of ∼ on µCCS does not allow one to relate two distinct
prefixes when performed concurrently and sequentially. When moving to the
π-calculus, it turns out that substitution closure of ∼g amounts to observing
absence of mutual desynchronisations in π0. We exploit a transfer property, that
extracts a bisimilarity proof in µCCS from a bisimilarity proof in π0, to relate
the two calculi and to show that mutual desynchronisations do not exist in π0,
yielding congruence of ∼g.

2

Paper outline. We introduce µCCS and the distribution law in Section 1. Sec-
tion 2 is devoted to the characterisation of ∼ on µCCS using normal forms.
In Section 3, we prove that no finite axiomatisation of ∼ on µCCS exists. Sec-
tion 4 presents the proof of our congruence result in the π-calculus, and we give
concluding remarks in Section 5.

1 MicroCCS Processes and Normal Forms

We consider an infinite set N of names, ranged over with a, b We define on
top of N the set of processes of µCCS, the finite, public, sum-free CCS calculus,
ranged over using P,Q,R . . . , as follows:

η ::= a
∣∣ a , P ::= 0

∣∣ η.P ∣∣ P1 |P2 .

0 is the nil process. η ranges over visible actions and co-actions, called inter-
actions, and we let η stand for the co-action associated to η (we have η = η).
For k > 0, we write P k for the parallel composition of k copies of P , and we
write

∏
i∈I Pi for the parallel composition of all processes Pi for i ∈ I. It can

be noted that our syntax does not include a construction of the form τ.P — see
Remark 2.3 below.

Structural congruence, written ≡, is defined as the smallest congruence sat-
isfying the following laws:

(C1) P |Q ≡ Q |P (C2) P | (Q |R) ≡ (P |Q) |R (C3) P |0 ≡ P

We introduce a labelled transition system (LTS) for µCCS. Actions labelling
transitions, ranged over with µ, are either interactions, or a special silent action,
written τ .

Definition 1.1 (Operational semantics and behavioural equivalence).
The LTS for µCCS is given by the following rules:

η.P
η−→ P

P
η−→ P ′ Q

η−→ Q′

P |Q τ−→ P ′ |Q′
P

µ−→ P ′

P |Q µ−→ P ′ |Q
P

µ−→ P ′

Q |P µ−→ Q |P ′

A bisimulation is a symmetrical relation R between processes such that whenever

P R Q and P
µ−→ P ′, there exists Q′ such that Q

µ−→ Q′ and P ′ R Q′.

Bisimilarity, written ∼, is the union of all bisimulations.

Definition 1.2 (Size). Given P , #(P) (called the size of P) is defined by:

#(0)
def
= 0 #(P1 |P2)

def
= #(P1) + #(P2) #(η.P)

def
= 1 + #(P) .

Lemma 1.3. P ≡ Q implies P ∼ Q which in turn implies #(P) = #(Q).

3

Proof. The first implication follows by proving that ≡ is a bisimulation.

Suppose then by contradiction that there exist P,Q such that P ∼ Q and
#(P) < #(Q); and choose such P with minimal size. Q has at least one prefix:

Q
η−→ Q′ and we get P

η−→ P ′ with P ′ ∼ Q′. Necessarily, we must have #(P ′) <
#(Q′) and #(P ′) < #(P) which contradicts the minimality hypothesis. ut

Definition 1.4 (Distribution law). The distribution law is given by the fol-
lowing equation, where the same number of copies of P appears on both sides:

η.(P | η.P | . . . | η.P) = η.P | η.P | . . . | η.P .

We shall use this equality, oriented from left to right, to rewrite processes. We
write P P ′ when there exist P1, P2 such that P ≡ P1, P2 ≡ P ′ and P2

is obtained from P1 by replacing a sub-term of the form of the left-hand side
process with the right-hand side process.

Remark 1.1 (On the distribution law and PA). Among the studies about prop-
erties of ∼ in process algebras that include parallel composition (see [1] for a
recent survey on axiomatisations), some works focus on calculi where parallel
composition is treated as a primitive operator (as opposed to being expressible
using sum or other constructs like the left merge operator). As mentioned above,
particularly relevant to this work is [8], where Hirshfeld and Jerrum “develop a
structure theory for PA that completely classifies the situations in which a se-
quential composition of two processes can be bisimilar to a parallel composition”.
[8] establishes decidability of ∼ for normed PA processes: in that setting, the
formal analogue of the distribution law (Def. 1.4) holds with η and P being two
processes — the ‘dot’ operator is a general form of sequential composition. This
equality is valid in [8] whenever η is a ‘monomorphic process’, meaning that η
can only reduce to 0 (which corresponds to µCCS), or to η itself. [6] presents a
finite axiomatisation of PA that exploits the operators of sum and left merge.

Lemma 1.5. The relation is strongly normalising and confluent.

Proof. If P P ′ then the weight of P ′ (defined as sum of the depths of all
prefixes occuring in P ′) is strictly smaller than the weight of P , whence the
strong normalisation. We then remark that is locally confluent, and conclude
with Newman’s Lemma. ut

Thus, for any process P , defines a normal form unique up to ≡, that will be
denoted by n(P). We let A,B, . . . range over normal forms.

The following lemma states that preserves bisimilarity:

Lemma 1.6. If P P ′, then P ∼ P ′. For any P , P ∼ n(P).

Proof. The relation (∪ ()−1 ∪ ≡) is a bisimulation. ut

4

2 Characterisation of Bisimilarity in MicroCCS

Our characterisation of ∼ on µCCS makes use of the notion of decomposition
into prime processes, defined as follows:

Definition 2.1. A process P is prime if P 6∼ 0 and P ∼ P1 |P2 implies P1 ∼ 0
or P2 ∼ 0.

When P ∼ P1 | . . . |Pn where the Pis are prime, we shall call P1 | . . . |Pn a
prime decomposition of P .

Proposition 2.2 (Unique decomposition). Any process admits a prime de-
composition which is unique up to bisimilarity: if P1 | . . . |Pn and Q1 | . . . |Qm
are two prime decompositions of the same process, then n = m and Pi ∼ Qi for
all i ∈ [1..n], up to a permutation of the indices.

Proof. Similar to the proof of [11, Theorem 4.3.1]: the case of µCCS is not
explicitly treated in that work, but the proof can be adapted rather easily. ut

An immediate consequence of the above result is the following property:

Corollary 2.3 (Cancellation). For all P,Q,R, P |R ∼ Q |R implies P ∼ Q.

Note that this is not true in presence of replication: a | !a ∼ 0 | !a, but a 6∼ 0.

The characterisation of ∼ using the distribution law follows from the obser-
vation that if a normal form is a prefixed process, then it is prime. This idea
is used in the proof of Lemma 2.5. We first establish a technical result, that
essentially exploits the same argument as the proof of Theorem 4.2 in [7].

Lemma 2.4. If η.P ∼ Q |Q′, with Q,Q′ 6∼ 0, then there exist A and k > 1 such
that η.P ∼ (η.A)k and η.A is a normal form.

Proof. By Lemma 1.6, we have η.P ∼ n(Q |Q′). Furthermore, we have that
n(Q |Q′) ≡

∏
i≤k ηi.Ai, where k > 1 and the processes ηi.Ai are in normal form.

Since the η prefix must be triggered to answer any challenge from the right
hand side, we have ηi = η and P ∼ Ai |

∏
l 6=i η.Al for all i ≤ k. In particular,

when i 6= j, we have P ∼ Ai | η.Aj |
∏
l 6∈{i,j} η.Al ∼ η.Ai |Aj |

∏
l 6∈{i,j} η.Al and

hence, by Corollary 2.3, Ai | η.Aj ∼ η.Ai |Aj . By reasoning on the sizes of the
parallel components in the prime decompositions of these two terms, we conclude
that η.Ai ∼ η.Aj for all i, j ≤ k.

Hence, we have η.P ∼ (η.A1)k with k > 1 and η.A1 is a normal form. ut

Lemma 2.5. Let A,B be two normal forms, A ∼ B implies A ≡ B.

Proof. We show by induction on n that for all A with #(A) = n, we have

(i) if A is a prefixed process, then A is prime;
(ii) for any B, A ∼ B implies A ≡ B.

5

The case n = 0 is immediate. Suppose that the property holds for all i < n, with
n ≥ 1.

(i) We write A = η.A′, and suppose by contradiction A ∼ P1 |P2 with P1, P2 6∼
0. By Lemma 2.4, we have A ∼ (η.B)k with k > 1 and η.B in normal form.
By triggering the prefix on the left hand side, we have A′ ∼ B | (η.B)k−1. It
follows by induction that A′ ≡ B | (η.B)k−1 (using property (ii)), and hence
A ≡ η.(B | (η.B)k−1, which is in contradiction with the fact that A is in
normal form.

(ii) Suppose now A ∼ B.
• If A is a prefixed process, B is prime by the previous point (#(B) = #(A)

by Lemma 1.3). Necessarily, A ≡ η.A′ and B ≡ η.B′ with A′ ∼ B′. By
induction, this entails A′ ≡ B′, and A ≡ B.

• Otherwise, A = η1.A1 | . . . | ηk.Ak with k > 1, and we know by induction
(property (i)) that ηi.Ai is prime for all i ≤ k. Similarly, we have B =
η′1.B1 | . . . | η′l.Bl with η′i.Bi prime for all i ≤ l.
By Proposition 2.2, k = m and ηi.Ai ∼ η′i.Bi (up to a permutation of
the indices), which gives η′i = ηi and Ai ∼ Bi for all i ≤ k. By induction,
we deduce Ai ≡ Bi for all i, which finally implies A ≡ B. ut

Lemmas 1.6 and 2.5 allow us to deduce the following result.

Theorem 2.6. Let P,Q be two µCCS processes. Then P ∼ Q iff n(P) ≡ n(Q).

Remark 2.1 (Unique decomposition of processes). Our proof relies on unique
decomposition of processes (Prop. 2.2), that first appeared in [10]. Unique de-
composition has been established for a variety of process algebras, and used as
a way to prove decidability of behavioural equivalence and to give complexity
bounds for the associated decision procedure ([9, 3] cite relevant references).

In the present study, beyond the existence of a unique decomposition, we
are interested in a syntactic characterisation of ∼ (which will in particular allow
us to derive Lemma 4.6 below). In this sense, our work is close to [5], where
the notion of maximally parallel process in CCS (with choice) is studied. [5]
defines a rewriting process through which maximally parallel normal forms can
be computed, and shows that in the case of µCCS, such normal forms are unique.
However, no syntactical characterisation of the set of normal forms is presented,
and such a characterisation cannot be directly deduced from the (rather involved)
definition of the rewriting process for full CCS.

We instead restrict ourselves to µCCS from the start, and rely explicitly on
the distribution law in order to ‘extract’ prime components of processes.

Remark 2.2 (Closure under substitutions). In (full) CCS, two strongly bisimilar
processes need not remain bisimilar whenever we apply a substitution that re-
places names with names. The standard counterexample is given by a.b+ b.a ∼
a | b: when we replace b with a, we obtain two processes that are distinguished
by ∼, since the latter can perform a τ transition that cannot be matched by the
former. This irregularity is the basis of the standard counterexample showing
that strong bisimilarity is not a congruence in the π-calculus.

6

In µCCS, on the other hand, ∼ is closed under substitutions: the intuitive
reason is that two processes related by an instance of the distribution law remain
equivalent when a substitution is applied (we can show in particular that for any
substitution σ, n(Pσ) ≡ n(n(P)σ)). This is not the case for the expansion law,
of which the counterexample above is an instance.

Remark 2.3 (τ prefix and weak bisimilarity). We do not address weak bisimilar-
ity in the present work. In µCCS, strong and weak bisimilarity coincide, i.e., the
internal transitions of processes are completely determined by the visible actions
(interactions). When including τ prefixes in the syntax, it can be proved that
adding the law τ.P = P is enough to characterise weak bisimilarity. The τ prefix
is usually absent in the π-calculus, to which we shall move in Section 4. Since
some results on CCS will be transferred to the π-calculus, we did not include
this construct in µCCS.

3 Nonexistence of a Finite Axiomatisation

We letD stand for the set of equations consisting of the three axioms of structural
congruence (C1, C2, C3), and the infinite family of distribution axioms

(Dk) : η.(P | (η.P)k) = (η.P)k+1, k ≥ 1 .

We let Dk stand for the finite restriction of D where only the first k distribution
axioms are included ((Di)1≤i≤k). We shall write E ` P = Q whenever P = Q
can be derived in equational logic using a given set E of axioms, and E 6` P = Q
when this is not the case.

(Dk)k≥1 forms an equational schema for the distribution law, and Theo-
rem 2.6 states that D is a complete axiomatisation of strong bisimilarity on
µCCS. Using a rather classical approach (i.e., establishing ω-completeness and
proving compactness, see [1]), this leads to the nonexistence of a finite axiomati-
sation of ∼ on µCCS. The lemma below provides the central technical property
satisfied by the (Dk)k≥1 which is necessary to derive Theorem 3.2, that says that
D is intrinsically infinite.

Lemma 3.1. Let a be a name. For any k, there exists n s.t. Dk 6` a.an = an+1.

Remember that an stands for the n-fold parallel composition of a.0, so that the
above equality is an instance of axiom (Dn).

Proof. Let n be a number strictly greater than k such that n+ 1 is prime, and
let θ(P,Q) denote the predicate: “P ∼ Q ∼ an+1, P ≡ a.P ′, and Q ≡ Q1 |Q2

with Q1, Q2 6≡ 0”. Suppose now that Dk ` a.an = an+1, and consider the
shortest proof of Dk ` P = Q for some processes P,Q such that either θ(P,Q)
or θ(Q,P). Since θ(a.an, an+1) holds, such a minimal proof does exist. We reason
about the last rule used in the derivation of this proof in equational logic. For
syntactic reasons, this cannot be reflexivity, a contextual rule, nor one of the
structural congruence axioms. It can be neither symmetry nor transitivity, since

7

otherwise this would give a shorter proof satisfying θ. The only possibility is
thus the use of one of the distribution axioms, say Di with 1 ≤ i ≤ k and
an+1 ∼ Q ≡ (a.Q′)i+1. By Lemma 1.3, since #(an+1) = n+1, i+1 has to divide
n + 1. This is contradictory, because we have 2 ≤ i + 1 ≤ k + 1 < n + 1, and
n+ 1 is prime. ut

Theorem 3.2 (No finite axiomatisation of ∼). For any finite set of axioms
E, there exist processes P and Q such that P ∼ Q but E 6` P = Q.

Proof. Standard, by proving that D is ω-complete and then using the Compact-
ness Theorem (see [1]). ut

4 A New Congruence Result for the π-calculus

4.1 The Finite, Sum-free π-calculus

π-calculus processes are built from an infinite set Nπ of names, ranged over using
a, b . . . ,m, n . . . , p, q . . . , x, y . . . , according to the following grammar:

φ ::= m(x)
∣∣ mn , P ::= 0

∣∣ φ.P ∣∣ P1 |P2

∣∣ (νp)P .

The input prefix m(x) binds name x in the continuation process, and so does
name restriction (νn) in the restricted process. A name that is not bound is
said to be free, and we let fn(P) stand for the free names of P . We assume
that any process that we manipulate satisfies a Barendregt convention: every
bound name is distinct from the other bound and free names of the process. We
shall use a, b, c to range over free names of processes, p, q, r (resp. x, y) to range
over names bound by restriction (resp. by input), and m,n to range over any
name, free or bound (note that these naming conventions are used in the above
grammar). Structural congruence on π0, written ≡, is the smallest congruence
that is an equivalence relation, contains α-equivalence, and satisfies the following
laws:

P |0 ≡ P P | (Q |R) ≡ (P |Q) |R P |Q ≡ Q |P (νp)0 ≡ 0

(νp)(νq)P ≡ (νq)(νp)P P | (νp)Q ≡ (νp)(P |Q) if p /∈ fn(P)

We let P [n/x] stand for the capture avoiding substitution of name x with name
n in P . We use σ to range over substitutions in π0 (that simultaneously replace
several names).

Definition 4.1 (Late operational semantics and ground bisimilarity).
The late operational semantics of π0 is given by a transition relation whose set
of labels is defined by:

µ ::= a(x)
∣∣ ab ∣∣ a(p)

∣∣ τ .

8

Names x and p are said to be bound in actions a(x) and a(p) respectively, and
other names are free. We use bn(µ) (resp. fn(µ)) to denote the set of bound
(resp. free) names of action µ.

The late transition relation, written −→π, is given by the following rules (sym-
metrical versions of the rules involving parallel composition are omitted):

φ.P
φ−→π P

P
a(x)−−−→π P

′ Q
ab−→π Q

′

P |Q τ−→π P
′[b/x] |Q′

P
ab−→π P

′

(νb)P
a(b)−−→π P

′
a 6= b P

a(x)−−−→π P
′ Q

a(p)−−→π Q
′

P |Q τ−→π (νp)(P ′[p/x] |Q′)

P
µ−→π P

′

P |Q µ−→π P
′ |Q

bn(µ) ∩ fn(Q)=∅
P

µ−→π P
′

(νp)P
µ−→π (νp)P ′

p /∈ fn(µ)

A ground bisimulation is a symmetric relation R between processes such that

whenever P R Q and P
µ−→π P

′, there exists Q′ s.t. Q
µ−→π Q

′ and P ′ R Q′.
Ground bisimilarity, written ∼g, is the union of all ground bisimulations.

Note that we do not respect the convention on names in the rule to infer a bound
output, precisely because we are transforming a free name (b) into a bound name.

Lemma 4.2. Suppose that Pσ
µ−→π P

′.

1. If µ is ab, a(p) or a(x), then P
µ′

−→π P
′′ with µ′σ = µ and P ′′σ = P ′.

2. If µ = τ then one of the three following properties hold, where the input and
output actions are offered concurrently by P in the last two cases.

(a) P
τ−→π P

′′ and P ′′σ = P ′,

(b) P
bc−→π

a(x)−−−→π P
′′ where σ(a) = σ(b) and P ′′[c/x]σ ∼ P ′,

(c) P
b(p)−−→π

a(x)−−−→π P
′′ where σ(a) = σ(b) and ((νp)P ′′[p/x])σ ∼ P ′.

Proof. Similar to the proof of Lemma 1.4.13 in [13], where the early transition
semantics is treated. ut

4.2 Mutual Desynchronisations

We now introduce the notion of mutual desynchronisation in µCCS, which is
defined as the existence of processes obeying certain conditions in the calculus.
We shall see that because of τ synchronisations, the absence of mutual desyn-
chronisations is related to substitution closure of ∼.

9

Definition 4.3 (Mutual desynchronisation in µCCS). We say that there
exists a mutual desynchronisation in µCCS whenever there are two prefixes

η1, η2, and five µCCS processes P, P ′, Q, Q′, R such that η1 6= η2, P
η1−→ P ′,

Q
η2−→ Q′ and η2.P |Q′ |R ∼ P ′ | η1.Q |R.

The notion of mutual desynchronisation is not specific to µCCS. As explained
in the introduction, it corresponds to a situation where three processes T, T12, T21
satisfy:

– T
η1−→ η2−→ T12 and T

η2−→ η1−→ T21, where the second prefix being triggered
occurs under the first one in both sequences of transitions.

– η1 6= η2 and T12 ∼ T21.

The proofs of Lemmas 4.9 and 4.10 will expose analogous situations in π0.

Definition 4.4. We define, for any µCCS process P and prefix η, the contri-
bution of P at η, written sη(P), by

sη(0)
def
= 0 sη(η′.P)

def
= 0 if η 6= η′

sη(P1 |P2)
def
= sη(P1) + sη(P2) sη(η.P)

def
= #(η.P)

Intuitively, sη(P) is the total size of the parallel components of P that start with
the prefix η.

Lemma 4.5. P ∼ Q implies sη(P) = sη(Q) for all η.

Proof. Follows from Theorem 2.6 and the observation that the distribution law
preserves the contribution of a process at a given interaction prefix. ut

Lemma 4.6 (No mutual desynchronisation). There exists no mutual desyn-
chronisation in µCCS.

Proof. Suppose by contradiction that there are processes such that P
η1−→ P ′,

Q
η2−→ Q′ and η2.P |Q′ |R ∼ P ′ | η1.Q |R.
By the cancellation property (Corollary 2.3), we have η2.P |Q′ ∼ P ′ | η1.Q,

hence for all η, sη(η2.P |Q′) = sη(P ′ | η1.Q) (Lemma 4.5).
Since sη1(η2.P |Q′) = sη1(Q′) ≤ #(Q′) and sη1(P ′ | η1.Q)) ≥ sη1(η1.Q) =

#(Q′) + 2, by taking η = η1 we finally get #(Q′) ≥ #(Q′) + 2. ut

This result will be used to show that a situation corresponding to a mutual
desynchronisation cannot arise in π0. Notice that the proof depends in an essen-
tial way on Lemma 4.5, which in turn relies on the axiomatisation of ∼ in µCCS
(Theorem 2.6).

In what follows, we fix two distinct names a and b, that will occur free in the
processes we shall consider. The definitions and results below will depend on a
and b, but we avoid making this dependency explicit, in order to ease readability.
Names a and b will be fixed in the proof of Lemma 4.11.

10

Definition 4.7 (Erasing a π0 process). Given a π0 process P , we define the
erasing of P , written E(P), as follows:

E(P1 |P2)
def
= E(P1) | E(P2) E((νp)P)

def
= E(P) E(0)

def
= 0

E(a(x).P)
def
= a.E(P) E(m(x).P)

def
= 0 if m 6= a

E(bn.P)
def
= b.E(P) E(mn.P)

def
= 0 if m 6= b

Note that a and b play different roles in the definition of E(·).
It is immediate from the definition that E(P) is a µCCS process whose only

prefixes are a and b. Intuitively, E(P) only exhibits the interactions of P at a (in
input) and b (in output) that are not guarded by interactions on other names.

Lemma 4.8 (Transitions of E(P)). Consider a π0 process P . We have:

– If P
a(x)−−−→π P

′, then E(P)
a−→ E(P ′).

– If P
bc−→π P

′ or P
b(p)−−→π P

′, then E(P)
b−→ E(P ′).

– Conversely, if E(P)
a−→ P0, then there exist x and P ′ such that P0 = E(P ′)

and P
a(x)−−−→π P ′. Similarly, if E(P)

b−→ P0, there exist c, p, P ′ such that

P0 = E(P ′) and either P
bc−→π P

′ or P
b(p)−−→π P

′.

Proof. Simple reasoning on the LTSs of µCCS and π0. ut

Proposition 4.1 (Transfer). If P ∼g Q in π0, then E(P) ∼ E(Q) in µCCS.

Proof. We reason by induction on the size of P (defined as the number of prefixes
in P). Consider a transition of E(P); as observed above, it can only be a transition
along a or a transition along b.

Suppose E(P)
a−→ P0. By Lemma 4.8, P

a(x)−−−→π P ′ and P0 = E(P ′). Since

P ∼g Q, Q
a(x)−−−→π Q

′ for some Q′ such that P ′ ∼g Q
′. By induction, the latter

relation gives E(P ′) ∼ E(Q′), and Q
a(x)−−−→π Q′ gives by Lemma 4.8 E(Q)

a−→
E(Q′).

The case E(P)
b−→ P0 is treated similarly: by Lemma 4.8, there are two cases,

according to whether P does a free output or a bound output. Reasoning like
above allows us to conclude in both cases. ut

We can now present our central technical result about π0, which comes in
two lemmas.

Lemma 4.9. If Q ∼g (νp̃)(a(x).P1 | bc.P2 |P3), then there exist some Q1, Q2,
Q3, q̃, such that Q ≡ (ν q̃)(a(x).Q1 | bc.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (ν q̃)(Q1 |Q2 |Q3).

11

Proof. Let P = (νp̃)(a(x).P1 | bc.P2 |P3) and P ′ = (νp̃)(P1 |P2 |P3).
Note that by our conventions on notations, c /∈ p̃.
Since Q ∼g P and P can perform two transitions along a(x) and bc respec-

tively, Q can also perform these transitions, which gives
Q ≡ (ν q̃)(a(x).Q1 | bc.Q2 |Q3) for some q̃, Q1, Q2, Q3,

the first (resp. second) component exhibiting the prefix that is triggered to an-
swer the challenge on a(x) (resp. bc).

Consider now the challenge P
bc−→π

a(x)−−−→π P ′, to which Q answers by per-

forming Q
bc−→π

a(x)−−−→π Qba, with P ′ ∼g Qba. If Qba = (ν q̃)(Q1 |Q2 |Q3), that is,
if Q triggers the prefixes on top of its first and second components, then we are
done. Similarly, if Q triggers a prefix in Q3 to answer the second challenge, say
Q3 = a(x).Q4 |Q5, we can set Q′1 = a(x).Q4 and Q′3 = Q1 |Q5, and the lemma
is proved.

The case that remains to be analysed is when Q2
a(x)−−−→π Q′2 and Qba =

(ν q̃)(a(x).Q1 |Q′2 |Q3) ∼g (νp̃)(P1 |P2 |P3).

We then consider the challenge where P fires its two topmost prefixes a(x)

and bc in the other sequence, namely P
a(x)−−−→π

bc−→π P
′. By hypothesis, Q triggers

the prefix of its first component for the first transition. To perform the second
transition, Q can fire the prefix bc either in its second or third component, in
which case, as above, we are done, or, and this is the last possibility, the prefix
bc occurs in Q1. This means Qab = (ν q̃)(Q′1 | bc.Q2 |Q3) ∼g (νp̃)(P1 |P2 |P3),

with Q1
bc−→π Q

′
1.

To sum up, we have Qab = (ν q̃)(Q′1 | bc.Q2 |Q3) ∼g (ν q̃)(a(x).Q1 |Q′2 |Q3) =

Qba, with Q1
bc−→π Q

′
1 and Q2

a(x)−−−→π Q
′
2: this resembles the mutual desynchro-

nisation of Definition 4.3, translated into the π-calculus.
Indeed, we can construct a mutual desynchronisation in µCCS: Qab ∼g Qba

implies E(Qab) ∼ E(Qba) by Prop. 4.1, and Q1
bc−→π Q′1 (resp. Q2

a(x)−−−→π Q′2)

implies by Lemma 4.8 E(Q1)
b−→ E(Q′1) (resp. E(Q2)

a−→ E(Q′2)). Finally, using
Lemma 4.6, we obtain a contradiction, which concludes our proof. ut

Lemma 4.10. If Q ∼g (νp, p̃)(a(x).P1 | bp.P2 |P3), then there exist some Q1,
Q2, Q3, such that Q ≡ (νp, q̃)(a(x).Q1 | bp.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (ν q̃)(Q1 |Q2 |Q3).

Proof (Hint). The proof follows the same lines as for the previous lemma. The
only difference is when analysing the transitions that lead to Qab: to perform
the second transition, Q can either extrude the name called p in the equality
Q ≡ (νp, q̃)(a(x).Q1 | bp.Q2 |Q3), or otherwise Q can be α-converted in order to
extrude another name. In the case where Q chooses to extrude a different name,
we can suppose without loss of generality that the necessary α-conversion is a
swapping between name p and a name q1 ∈ q̃, which brings us back to the case
where name p is the one being extruded.

12

The presence of a bound output introduces some notational complications
when expressing Qab, but basically it does not affect the proof w.r.t. the proof
of Lemma 4.9, because the function E(·) is not sensitive to name permutations
that do not involve a or b. ut

4.3 Congruence

Theorem 4.11 (Closure of ∼g under substitution). If P ∼g Q then for
any substitution σ, Pσ ∼g Qσ.

Proof. We prove that the relation R def
= {(Pσ,Qσ) | P ∼g Q} is a ground

bisimulation. We consider P , Q such that P ∼g Q and suppose Pσ
µ−→π P0. We

examine the transitions of P that make it possible for Pσ to do a µ-transition
to P0.

According to Lemma 4.2, there are two possibilities. The first possibility
corresponds to the situation where µ comes from an action that P can perform,

i.e., P
µ′

−→π P ′ for some µ′, with P ′σ = P0 and µ′σ = µ (cases 1 and 2a in

Lemma 4.2). Since P ∼g Q, Q
µ′

−→π Q
′ and P ′ ∼g Q

′ for some Q′. We can prove

that Qσ
µ−→ Q′σ, and since P ′ ∼g Q

′ we have (P ′σ,Q′σ) ∈ R.

The second possibility (which corresponds to the difficult case) is given by
µ = τ , where the synchronisation in P ′ has been made possible by the applica-
tion of σ. There are in turn two cases, corresponding to whether the synchro-

nisation involves a free or a bound name. In the former case, P
a(x)−−−→π P

′ and

P
bc−→π P

′′ for some a, x, b, c, P ′, P ′′. This entails P ≡ (νp̃)(a(x).P1 | bc.P2 |P3)
for some p̃, P1, P2, P3, and, since P ∼g Q, we conclude by Lemma 4.9 that
Q ≡ (ν q̃)(a(x).Q1 | bc.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (ν q̃)(Q1 |Q2 |Q3) .

By definition of R, this equivalence implies that we can apply any substitution
to these two processes to yield processes related by R, and in particular [c/x]σ,
which gives:

((νp̃)(P1 |P2 |P3))[c/x]σ R ((ν q̃)(Q1 |Q2 |Q3))[c/x]σ .

Using the Barendregt convention hypothesis, this amounts to

P0 ≡ ((νp̃)(P1[c/x] |P2 |P3))σ R ((ν q̃)(Q1[c/x] |Q2 |Q3))σ
def
= Q0 .

We can then conclude by checking that Qσ
τ−→π Q0.

We reason similarly for the case where the synchronisation involves the trans-
mission of a bound name, using Lemma 4.10 instead of Lemma 4.9. We remark
that Lemma 4.10 gives (νp̃)(P1 |P2 |P3) ∼g (ν q̃)(Q1 |Q2 |Q3), and in this case

Pσ
τ−→π (νp, p̃)(P1[p/x] |P2 |P3)σ (resp. Qσ

τ−→π (νp, q̃)(Q1[p/x] |Q2 |Q3)σ). In

13

order to be able to add the restriction on p to the terms given by Lemma 4.10,
we rely on the fact that ∼g is preserved by restriction: P ∼g Q implies (νp)P ∼g

(νp)Q for any P,Q, p. We can then reason as above to conclude. ut

Corollary 4.12 (Congruence of bisimilarity in π0). In π0, ground, early
and late bisimilarity coincide and are congruences.

Proof. By a standard argument (see [13]): since ∼g is closed under substitution,
∼g is an open bisimulation. ut

It is known (see [13]) that adding either replication or sum to π0 yields a
calculus where strong bisimilarity fails to be a congruence.

5 Conclusion

We have presented an axiomatisation of strong bisimilarity on a small subcalcu-
lus of CCS, and a new congruence result for the π-calculus.

Technically, the notion of mutual desynchronisation is related to substitution
closure of strong bisimilarity, as soon as substitutions can create new interactions
by identifying two names.

We have shown in Section 4 that there exists no mutual desynchronisation
in π0, and that ∼g is a congruence. In (full) CCS, mutual desynchronisations
exist, a simple example being given by a.b+b.a. The latter process is bisimilar to
a | b, but the equality fails to hold when b is replaced with a. The same reasoning
holds for the π-calculus with choice. It hence appears that in finite calculi, mutual
desynchronisations give rise to counterexamples to substitution closure of strong
bisimilarity. The situation is less clear when infinite behaviours can be expressed.
For instance, in the extension of µCCS with replication, the process !a | !b is

bisimilar to P
def
= !a.b | !b.a. Process P leads to a mutual desynchronisation:

we have P
a−→ b−→ ≡ P

b−→ a−→ ≡ P . We do not know at present whether ∼ is
substitution-closed in this extension of µCCS (we may remark that the two
aforementioned processes remain bisimilar when b is replaced with a).

Some subcalculi of the π-calculus where strong bisimilarity is a congruence
are obtained by restricting the output prefix [13]. In the asynchronous π-calculus
(Aπ), mutual desynchronisations do not appear, basically because the output
action is not a prefix. Strong bisimilarity is a congruence on Aπ. In the private
π-calculus (Pπ), since only private names are emitted, no substitution generated
by a synchronisation can identify two previously distinct names. Hence, although
mutual desynchronisations exist in Pπ (due to the presence of the sum operator),
strong bisimilarity is not substitution closed, but is a congruence. Indeed, to
obtain the latter property, we only need to consider the particular substitutions
at work in Pπ, which cannot identify two names.

The question of substitution closure can also be raised in the framework of lo-
cation sensitive behavioural equivalences such as distributed bisimilarity (see [4]).
Without having a formal proof for this claim, we expect this equivalence to be

14

substitution closed on restriction-free CCS. We believe this should be the case be-
cause in absence of restriction, distributed bisimilarity is discriminating enough
to analyse the maximum degree of parallelism in processes (in particular, the
expansion law is not valid for location sensitive equivalences).

Regarding future extensions of this work, we would like to study whether
our approach can be adapted to analyse weak bisimilarity in π0 (as mentioned in
Remark 2.3, strong and weak bisimilarity coincide in µCCS). Another interesting
direction, as hinted above, would be to study strong bisimilarity on infinite,
restriction-free calculi (in CCS and the π-calculus).

Acknowledgements. We are grateful to Arnaud Carayol for interesting discus-
sions at early stages of this work. An anonymous referee provided numerous
helpful suggestions, which helped us in particular to improve the proof of The-
orem 2.6. We benefited from support by the french initiative “ACI GEOCAL”
and from the ANR project “MoDyFiable”.

References

1. L. Aceto, W.J. Fokkink, A. Ingolfsdottir, and B. Luttik. Finite Equational Bases
in Process Algebra: Results and Open Questions. In Processes, Terms and Cycles:
Steps on the Road to Infinity, volume 3838 of LNCS. Springer Verlag, 2005.

2. M. Boreale and D. Sangiorgi. Some Congruence Properties for π-calculus Bisimi-
larities. TCS, 198:159–176, 1998.

3. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification over Infinite States.
In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

4. I. Castellani. Handbook of Process Algebra, chapter Process Algebras with Locali-
ties, pages 945–1045. North-Holland, 2001.

5. F. Corradini, R. Gorrieri, and D. Marchignoli. Towards parallelization of concur-
rent systems. Informatique Théorique et Applications, 32(4-6):99–125, 1998.

6. W. Fokkink and B. Luttik. An ω-complete Equational Specification of Interleaving.
In Proc. of ICALP’00, volume 1853 of LNCS, pages 729–743. Springer Verlag, 2000.

7. Y. Hirshfeld and M. Jerrum. Bisimulation Equivalence is Decidable for Normed
Process Algebra. Technical Report ECS-LFCS-98-386, LFCS, 1998.

8. Y. Hirshfeld and M. Jerrum. Bisimulation Equivalence is Decidable for Normed
Process Algebra. In Proc. of ICALP’99, volume 1644 of LNCS, pages 412–421.
Springer Verlag, 1999.

9. B. Luttik. What is Algebraic in Process Theory? Concurrency Column, Bulletin
of the EATCS, 88, 2006.

10. R. Milner and F. Moller. Unique Decomposition of Processes. TCS, 107(2):357–
363, 1993.

11. F. Moller. Axioms for Concurrency. PhD thesis, University of Edinburgh, 1988.
12. D. Sangiorgi. A Theory of Bisimulation for the π-Calculus. Acta Informatica,

33(1):69–97, 1996.
13. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.
14. B. Victor, F. Moller, M. Dam, and L.-H. Eriksson. The Mobility Workbench.

available from http://www.it.uu.se/research/group/mobility/mwb, 2006.

15

