63,632 research outputs found

    Algebraic Characterization of Uniquely Vertex Colorable Graphs

    Full text link
    The study of graph vertex colorability from an algebraic perspective has introduced novel techniques and algorithms into the field. For instance, it is known that kk-colorability of a graph GG is equivalent to the condition 1∈IG,k1 \in I_{G,k} for a certain ideal I_{G,k} \subseteq \k[x_1, ..., x_n]. In this paper, we extend this result by proving a general decomposition theorem for IG,kI_{G,k}. This theorem allows us to give an algebraic characterization of uniquely kk-colorable graphs. Our results also give algorithms for testing unique colorability. As an application, we verify a counterexample to a conjecture of Xu concerning uniquely 3-colorable graphs without triangles.Comment: 15 pages, 2 figures, print version, to appear J. Comb. Th. Ser.

    A Test Generation Framework for Distributed Fault-Tolerant Algorithms

    Get PDF
    Heavyweight formal methods such as theorem proving have been successfully applied to the analysis of safety critical fault-tolerant systems. Typically, the models and proofs performed during such analysis do not inform the testing process of actual implementations. We propose a framework for generating test vectors from specifications written in the Prototype Verification System (PVS). The methodology uses a translator to produce a Java prototype from a PVS specification. Symbolic (Java) PathFinder is then employed to generate a collection of test cases. A small example is employed to illustrate how the framework can be used in practice

    Conjectures, tests and proofs: An overview of theory exploration

    Get PDF
    A key component of mathematical reasoning is the ability to formulate interesting conjectures about a problem domain at hand. In this paper, we give a brief overview of a theory exploration system called QuickSpec, which is able to automatically discover interesting conjectures about a given set of functions. QuickSpec works by interleaving term generation with random testing to form candidate conjectures. This is made tractable by starting from small sizes and ensuring that only terms that are irreducible with respect to already discovered conjectures are considered. QuickSpec has been successfully applied to generate lemmas for automated inductive theorem proving as well as to generate specifications of functional programs. We give an overview of typical use-cases of QuickSpec, as well as demonstrating how to easily connect it to a theorem prover of the user’s choice

    KAJIAN TEOREMA BOLZANO-WEIERSTRASS UNTUK MENGKONSTRUKSI BARISAN YANG KONVERGEN DI R^n DAN APLIKASINYA DALAM PEMBUKTIAN TEOREMA EKSISTENSI MAX-MIN

    Get PDF
    A sequence is a function from the set of natural numbers to the set of real numbers . In sequences there is the concept of sequence convergence. Testing the convergence of a sequence can be done using the Bolzano-Weierstrass Theorem. This theorem states that every finite sequence has a convergent sequence. The relationship between convergent sequences and finite sequences is also important to study further. Apart from being used to prove the convergence of sequences, the Bolzano-Weirstrass Theorem can also be applied to prove the Max-Min Existence Theorem. This research was conducted to examine the relationship between convergent sequences and finite sequences, the relationship between convergence and continuous functions and the relationship between continuous functions and max-min values ​​with the aim of constructing a convergent sequence in R^n and its application in proving the Max-Min Existence Theorem. This research is a literature study. This research was conducted through a literature review of books and other literature. From the literature review, the materials are then discussed in depth. The results of the literature study show that a convergent sequence is a finite sequence, but a finite sequence is not necessarily convergent. In determining the convergence of a sequence using the Bolzano-Weierstrass Theorem, it is necessary to first show the limitations of the sequence. Furthermore, to prove the Max-Min Existence Theorem it is necessary to require that the sequence is finite and then this theorem can be proven using the Bolzano-Weierstrass Theorem and Apit Theorem. Keywords: Monotonous Sequence, Finite Sequence, Continuity, Bolzano-Weierstrass Theorem, Max-Min Existence Theorem

    Subset feedback vertex set is fixed parameter tractable

    Full text link
    The classical Feedback Vertex Set problem asks, for a given undirected graph G and an integer k, to find a set of at most k vertices that hits all the cycles in the graph G. Feedback Vertex Set has attracted a large amount of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a rich source of ideas in the field. In this paper we consider a more general and difficult version of the problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an instance comes additionally with a set S ? V of vertices, and we ask for a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et al. [SICOMP'00, SIDMA'00]. The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawarabayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is fixed-parameter tractable when parametrized by |S|. Next we present an algorithm which reduces the given instance to 2^k n^O(1) instances with the size of S bounded by O(k^3), using kernelization techniques such as the 2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1

    Learning to Prove Theorems via Interacting with Proof Assistants

    Full text link
    Humans prove theorems by relying on substantial high-level reasoning and problem-specific insights. Proof assistants offer a formalism that resembles human mathematical reasoning, representing theorems in higher-order logic and proofs as high-level tactics. However, human experts have to construct proofs manually by entering tactics into the proof assistant. In this paper, we study the problem of using machine learning to automate the interaction with proof assistants. We construct CoqGym, a large-scale dataset and learning environment containing 71K human-written proofs from 123 projects developed with the Coq proof assistant. We develop ASTactic, a deep learning-based model that generates tactics as programs in the form of abstract syntax trees (ASTs). Experiments show that ASTactic trained on CoqGym can generate effective tactics and can be used to prove new theorems not previously provable by automated methods. Code is available at https://github.com/princeton-vl/CoqGym.Comment: Accepted to ICML 201
    • …
    corecore