9 research outputs found

    Faster-LTN: a neuro-symbolic, end-to-end object detection architecture

    Get PDF
    The detection of semantic relationships between objects represented in an image is one of the fundamental challenges in image interpretation. Neural-Symbolic techniques, such as Logic Tensor Networks (LTNs), allow the combination of semantic knowledge representation and reasoning with the ability to efficiently learn from examples typical of neural networks. We here propose Faster-LTN, an object detector composed of a convolutional backbone and an LTN. To the best of our knowledge, this is the first attempt to combine both frameworks in an end-to-end training setting. This architecture is trained by optimizing a grounded theory which combines labelled examples with prior knowledge, in the form of logical axioms. Experimental comparisons show competitive performance with respect to the traditional Faster R-CNN architecture.Comment: accepted for presentation at ICANN 202

    Neuro-Symbolic Recommendation Model based on Logic Query

    Full text link
    A recommendation system assists users in finding items that are relevant to them. Existing recommendation models are primarily based on predicting relationships between users and items and use complex matching models or incorporate extensive external information to capture association patterns in data. However, recommendation is not only a problem of inductive statistics using data; it is also a cognitive task of reasoning decisions based on knowledge extracted from information. Hence, a logic system could naturally be incorporated for the reasoning in a recommendation task. However, although hard-rule approaches based on logic systems can provide powerful reasoning ability, they struggle to cope with inconsistent and incomplete knowledge in real-world tasks, especially for complex tasks such as recommendation. Therefore, in this paper, we propose a neuro-symbolic recommendation model, which transforms the user history interactions into a logic expression and then transforms the recommendation prediction into a query task based on this logic expression. The logic expressions are then computed based on the modular logic operations of the neural network. We also construct an implicit logic encoder to reasonably reduce the complexity of the logic computation. Finally, a user's interest items can be queried in the vector space based on the computation results. Experiments on three well-known datasets verified that our method performs better compared to state of the art shallow, deep, session, and reasoning models.Comment: 17 pages, 6 figure

    T-Norms Driven Loss Functions for Machine Learning

    Get PDF
    Neural-symbolic approaches have recently gained popularity to inject prior knowledge into a learner without requiring it to induce this knowledge from data. These approaches can potentially learn competitive solutions with a significant reduction of the amount of supervised data. A large class of neural-symbolic approaches is based on First-Order Logic to represent prior knowledge, relaxed to a differentiable form using fuzzy logic. This paper shows that the loss function expressing these neural-symbolic learning tasks can be unambiguously determined given the selection of a t-norm generator. When restricted to supervised learning, the presented theoretical apparatus provides a clean justification to the popular cross-entropy loss, which has been shown to provide faster convergence and to reduce the vanishing gradient problem in very deep structures. However, the proposed learning formulation extends the advantages of the cross-entropy loss to the general knowledge that can be represented by a neural-symbolic method. Therefore, the methodology allows the development of a novel class of loss functions, which are shown in the experimental results to lead to faster convergence rates than the approaches previously proposed in the literature

    Modular Design Patterns for Hybrid Learning and Reasoning Systems: a taxonomy, patterns and use cases

    Full text link
    The unification of statistical (data-driven) and symbolic (knowledge-driven) methods is widely recognised as one of the key challenges of modern AI. Recent years have seen large number of publications on such hybrid neuro-symbolic AI systems. That rapidly growing literature is highly diverse and mostly empirical, and is lacking a unifying view of the large variety of these hybrid systems. In this paper we analyse a large body of recent literature and we propose a set of modular design patterns for such hybrid, neuro-symbolic systems. We are able to describe the architecture of a very large number of hybrid systems by composing only a small set of elementary patterns as building blocks. The main contributions of this paper are: 1) a taxonomically organised vocabulary to describe both processes and data structures used in hybrid systems; 2) a set of 15+ design patterns for hybrid AI systems, organised in a set of elementary patterns and a set of compositional patterns; 3) an application of these design patterns in two realistic use-cases for hybrid AI systems. Our patterns reveal similarities between systems that were not recognised until now. Finally, our design patterns extend and refine Kautz' earlier attempt at categorising neuro-symbolic architectures.Comment: 20 pages, 22 figures, accepted for publication in the International Journal of Applied Intelligenc

    Domain Knowledge Guided Testing and Training of Neural Networks

    Get PDF
    The extensive impact of Deep Neural Networks (DNNs) on various industrial applications and research areas within the last decade can not be overstated. However, they are also subject to notable limitations, namely their vulnerability to various forms of security attacks and their need for excessive data - especially for particular types of DNNs such as generative adversarial networks (GANs). Tackling the former challenge, researchers have proposed several testing, analysis, and verification (TAV) methods for DNNs. However, current state-of-the-art DNN TAV methods are either not scalable to industrial-sized DNNs or are not expressible (i.e. can not test DNNs for a rich set of properties). On the other hand, making GANs more data-efficient is an open area of research, and can potentially lead to improvements in training time and costs. In this work, I address these issues by leveraging domain knowledge - task-specific knowledge provided as an additional source of information - in order to better test and train DNNs. In particular, I present Constrained Gradient Descent (CGD), a novel algorithm (and a resultant tool called CGDTest) that leverages domain knowledge (in the form of logical constraints) to create a DNN TAV method that is both scalable and expressible. Further, I introduce a novel gradient descent method (and a resultant GAN referred to as xAI-GAN) that leverages domain knowledge (provided in the form of neuron importance) to train GANs to be more data-efficient. Through empirical evaluation, I show that both tools improve over current state-of-the-art methods in their respective applications. This thesis highlights the potential of leveraging domain knowledge to mitigate DNN weaknesses and paves the way for further research in this area

    From Statistical Relational to Neuro-Symbolic Artificial Intelligence

    No full text
    The integration of learning and reasoning is one of the key challenges in artificial intelligence and machine learning today. The area of Neuro-Symbolic AI (NeSy) tackles this challenge by integrating symbolic reasoning with neural networks. In our recent work, we provided an introduction to NeSy by drawing several parallels to another field that has a rich tradition in integrating learning and reasoning, namely Statistical Relational Artificial Intelligence (StarAI)
    corecore