13 research outputs found

    A Simple Model to Generate Hard Satisfiable Instances

    Full text link
    In this paper, we try to further demonstrate that the models of random CSP instances proposed by [Xu and Li, 2000; 2003] are of theoretical and practical interest. Indeed, these models, called RB and RD, present several nice features. First, it is quite easy to generate random instances of any arity since no particular structure has to be integrated, or property enforced, in such instances. Then, the existence of an asymptotic phase transition can be guaranteed while applying a limited restriction on domain size and on constraint tightness. In that case, a threshold point can be precisely located and all instances have the guarantee to be hard at the threshold, i.e., to have an exponential tree-resolution complexity. Next, a formal analysis shows that it is possible to generate forced satisfiable instances whose hardness is similar to unforced satisfiable ones. This analysis is supported by some representative results taken from an intensive experimentation that we have carried out, using complete and incomplete search methods.Comment: Proc. of 19th IJCAI, pp.337-342, Edinburgh, Scotland, 2005. For more information, please click http://www.nlsde.buaa.edu.cn/~kexu/papers/ijcai05-abstract.ht

    Behavior of heuristics and state space structure near SAT/UNSAT transition

    Full text link
    We study the behavior of ASAT, a heuristic for solving satisfiability problems by stochastic local search near the SAT/UNSAT transition. The heuristic is focused, i.e. only variables in unsatisfied clauses are updated in each step, and is significantly simpler, while similar to, walksat or Focused Metropolis Search. We show that ASAT solves instances as large as one million variables in linear time, on average, up to 4.21 clauses per variable for random 3SAT. For K higher than 3, ASAT appears to solve instances at the ``FRSB threshold'' in linear time, up to K=7.Comment: 12 pages, 6 figures, longer version available as MSc thesis of first author at http://biophys.physics.kth.se/docs/ardelius_thesis.pd

    Taming a non-convex landscape with dynamical long-range order: memcomputing Ising benchmarks

    Full text link
    Recent work on quantum annealing has emphasized the role of collective behavior in solving optimization problems. By enabling transitions of clusters of variables, such solvers are able to navigate their state space and locate solutions more efficiently despite having only local connections between elements. However, collective behavior is not exclusive to quantum annealers, and classical solvers that display collective dynamics should also possess an advantage in navigating a non-convex landscape. Here, we give evidence that a benchmark derived from quantum annealing studies is solvable in polynomial time using digital memcomputing machines, which utilize a collection of dynamical components with memory to represent the structure of the underlying optimization problem. To illustrate the role of memory and clarify the structure of these solvers we propose a simple model of these machines that demonstrates the emergence of long-range order. This model, when applied to finding the ground state of the Ising frustrated-loop benchmarks, undergoes a transient phase of avalanches which can span the entire lattice and demonstrates a connection between long-range behavior and their probability of success. These results establish the advantages of computational approaches based on collective dynamics of continuous dynamical systems

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure

    Solving Constraint Satisfaction Problems with Matrix Product States

    Get PDF
    In the past decade, Matrix Product State (MPS) algorithms have emerged as an efficient method of modeling some many-body quantum spin systems. Since spin system Hamiltonians can be considered constraint satisfaction problems (CSPs), it follows that MPS should provide a versatile framework for studying a variety of general CSPs. In this thesis, we apply MPS to two types of CSP. First, use MPS to simulate adiabatic quantum computation (AQC), where the target Hamiltonians are instances of a fully connected, random Ising spin glass. Results of the simulations help shed light on why AQC fails for some optimization problems. We then present the novel application of a modified MPS algorithm to classical Boolean satisfiability problems, specifically k-SAT and max k-SAT. By construction, the algorithm also counts solutions to a given Boolean formula (\#-SAT). For easy satisfiable instances, the method is more expensive than other existing algorithms; however, for hard and unsatisfiable instances, the method succeeds in finding satisfying assignments where other algorithms fail to converge

    Tensor Network States: Optimizations and Applications in Quantum Many-Body Physics and Machine Learning

    Get PDF
    Tensor network states are ubiquitous in the investigation of quantum many-body (QMB) physics. Their advantage over other state representations is evident from their reduction in the computational complexity required to obtain various quantities of interest, namely observables. Additionally, they provide a natural platform for investigating entanglement properties within a system. In this dissertation, we develop various novel algorithms and optimizations to tensor networks for the investigation of QMB systems, including classical and quantum circuits. Specifically, we study optimizations for the two-dimensional Ising model in a transverse field, we create an algorithm for the kk-SAT problem, and we study the entanglement properties of random unitary circuits. In addition to these applications, we reinterpret renormalization group principles from QMB physics in the context of machine learning to develop a novel algorithm for the tasks of classification and regression, and then utilize machine learning architectures for the time evolution of operators in QMB systems
    corecore