7,901 research outputs found

    The Bottom-Up Position Tree Automaton, the Father Automaton and their Compact Versions

    Full text link
    The conversion of a given regular tree expression into a tree automaton has been widely studied. However, classical interpretations are based upon a Top-Down interpretation of tree automata. In this paper, we propose new constructions based on the Gluskov's one and on the one of Ilie and Yu one using a Bottom-Up interpretation. One of the main goals of this technique is to consider as a next step the links with deterministic recognizers, consideration that cannot be performed with classical Top-Down approaches. Furthermore, we exhibit a method to factorize transitions of tree automata and show that this technique is particularly interesting for these constructions, by considering natural factorizations due to the structure of regular expression.Comment: extended version of a paper accepted at CIAA 201

    Bottom Up Quotients and Residuals for Tree Languages

    Full text link
    In this paper, we extend the notion of tree language quotients to bottom-up quotients. Instead of computing the residual of a tree language from top to bottom and producing a list of tree languages, we show how to compute a set of k-ary trees, where k is an arbitrary integer. We define the quotient formula for different combinations of tree languages: union, symbol products, compositions, iterated symbol products and iterated composition. These computations lead to the definition of the bottom-up quotient tree automaton, that turns out to be the minimal deterministic tree automaton associated with a regular tree language in the case of the 0-ary trees

    Tree Buffers

    Get PDF
    In runtime verification, the central problem is to decide if a given program execution violates a given property. In online runtime verification, a monitor observes a program’s execution as it happens. If the program being observed has hard real-time constraints, then the monitor inherits them. In the presence of hard real-time constraints it becomes a challenge to maintain enough information to produce error traces, should a property violation be observed. In this paper we introduce a data structure, called tree buffer, that solves this problem in the context of automata-based monitors: If the monitor itself respects hard real-time constraints, then enriching it by tree buffers makes it possible to provide error traces, which are essential for diagnosing defects. We show that tree buffers are also useful in other application domains. For example, they can be used to implement functionality of capturing groups in regular expressions. We prove optimal asymptotic bounds for our data structure, and validate them using empirical data from two sources: regular expression searching through Wikipedia, and runtime verification of execution traces obtained from the DaCapo test suite

    Reachability in Higher-Order-Counters

    Full text link
    Higher-order counter automata (\HOCS) can be either seen as a restriction of higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of \HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level kk \HOCS with 00-test is complete for \mbox{(k−2)(k-2)}-fold exponential space; leaving out the 00-test leads to completeness for \mbox{(k−2)(k-2)}-fold exponential time. Restricting \HOCS (without 00-test) to level 22, we prove that global (forward or backward) reachability analysis is \PTIME-complete. This enhances the known result for pushdown systems which are subsumed by level 22 \HOCS without 00-test. We transfer our results to the formal language setting. Assuming that \PTIME \subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201

    Construction of rational expression from tree automata using a generalization of Arden's Lemma

    Full text link
    Arden's Lemma is a classical result in language theory allowing the computation of a rational expression denoting the language recognized by a finite string automaton. In this paper we generalize this important lemma to the rational tree languages. Moreover, we propose also a construction of a rational tree expression which denotes the accepted tree language of a finite tree automaton
    • …
    corecore