1,796 research outputs found

    Non uniform (hyper/multi)coherence spaces

    Full text link
    In (hyper)coherence semantics, proofs/terms are cliques in (hyper)graphs. Intuitively, vertices represent results of computations and the edge relation witnesses the ability of being assembled into a same piece of data or a same (strongly) stable function, at arrow types. In (hyper)coherence semantics, the argument of a (strongly) stable functional is always a (strongly) stable function. As a consequence, comparatively to the relational semantics, where there is no edge relation, some vertices are missing. Recovering these vertices is essential for the purpose of reconstructing proofs/terms from their interpretations. It shall also be useful for the comparison with other semantics, like game semantics. In [BE01], Bucciarelli and Ehrhard introduced a so called non uniform coherence space semantics where no vertex is missing. By constructing the co-free exponential we set a new version of this last semantics, together with non uniform versions of hypercoherences and multicoherences, a new semantics where an edge is a finite multiset. Thanks to the co-free construction, these non uniform semantics are deterministic in the sense that the intersection of a clique and of an anti-clique contains at most one vertex, a result of interaction, and extensionally collapse onto the corresponding uniform semantics.Comment: 32 page

    Introduction to Categories and Categorical Logic

    Get PDF
    The aim of these notes is to provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The notes are based on a lecture course given at Oxford over the past few years. They contain numerous exercises, and hopefully will prove useful for self-study by those seeking a first introduction to the subject, with fairly minimal prerequisites. The coverage is by no means comprehensive, but should provide a good basis for further study; a guide to further reading is included. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions. An Appendix contains a summary of what we will need, and it may be useful to review this first. In addition, some prior exposure to abstract algebra - vector spaces and linear maps, or groups and group homomorphisms - would be helpful.Comment: 96 page

    A Correspondence between Maximal Abelian Sub-Algebras and Linear Logic Fragments

    Full text link
    We show a correspondence between a classification of maximal abelian sub-algebras (MASAs) proposed by Jacques Dixmier and fragments of linear logic. We expose for this purpose a modified construction of Girard's hyperfinite geometry of interaction which interprets proofs as operators in a von Neumann algebra. The expressivity of the logic soundly interpreted in this model is dependent on properties of a MASA which is a parameter of the interpretation. We also unveil the essential role played by MASAs in previous geometry of interaction constructions

    Sequentiality vs. Concurrency in Games and Logic

    Full text link
    Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.Comment: 35 pages, appeared in Mathematical Structures in Computer Scienc

    Algebraic totality, towards completeness

    Get PDF
    Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans B{\mathcal{B}} and a conditional operator, which can be interpreted in this model. We prove completeness at type Bn→B{\mathcal{B}}^n\to{\mathcal{B}} for every n by an algebraic method
    • …
    corecore