6 research outputs found

    Decoding and File Transfer Delay Balancing in Network Coding Broadcast

    Full text link
    Network Coding is a packet encoding technique which has recently been shown to improve network performance (by reducing delays and increasing throughput) in broadcast and multicast communications. The cost for such an improvement comes in the form of increased decoding complexity (and thus delay) at the receivers end. Before delivering the file to higher layers, the receiver should first decode those packets. In our work we consider the broadcast transmission of a large file to N wireless users. The file is segmented into a number of blocks (each containing K packets - the Coding Window Size). The packets of each block are encoded using Random Linear Network Coding (RLNC).We obtain the minimum coding window size so that the completion time of the file transmission is upper bounded by a used defined delay constraint

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    Throughput and Delay Optimization of Linear Network Coding in Wireless Broadcast

    No full text
    Linear network coding (LNC) is able to achieve the optimal throughput of packet-level wireless broadcast, where a sender wishes to broadcast a set of data packets to a set of receivers within its transmission range through lossy wireless links. But the price is a large delay in the recovery of individual data packets due to network decoding, which may undermine all the benefits of LNC. However, packet decoding delay minimization and its relation to throughput maximization have not been well understood in the network coding literature. Motivated by this fact, in this thesis we present a comprehensive study on the joint optimization of throughput and average packet decoding delay (APDD) for LNC in wireless broadcast. To this end, we reveal the fundamental performance limits of LNC and study the performance of three major classes of LNC techniques, including instantly decodable network coding (IDNC), generation-based LNC, and throughput-optimal LNC (including random linear network coding (RLNC)). Various approaches are taken to accomplish the study, including 1) deriving performance bounds, 2) establishing and modelling optimization problems, 3) studying the hardness of the optimization problems and their approximation, 4) developing new optimal and heuristic techniques that take into account practical concerns such as receiver feedback frequency and computational complexity. Key contributions of this thesis include: - a necessary and sufficient condition for LNC to achieve the optimal throughput of wireless broadcast; - the NP-hardness of APDD minimization; - lower bounds of the expected APDD of LNC under random packet erasures; - the APDD-approximation ratio of throughput-optimal LNC, which has a value of between 4/3 and 2. In particular, the ratio of RLNC is exactly 2; - a novel throughput-optimal, APDD-approximation, and implementation-friendly LNC technique; - an optimal implementation of strict IDNC that is robust to packet erasures; - a novel generation-based LNC technique that generalizes some of the existing LNC techniques and enables tunable throughput-delay tradeoffs
    corecore