370 research outputs found

    From Hermite to stationary subdivision schemes in one and several variables

    No full text
    International audienceVector and Hermite subdivision schemes both act on vector data, but since the latter one interprets the vectors as function values and consecutive derivatives they differ by the "renormalization" of the Hermite scheme in any step. In this paper we give an algebraic factorization method in one and several variables to relate any Hermite subdivision scheme that satisfies the so-called spectral condition to a vector subdivision scheme. These factorizations are natural extensions of the "zero at π" condition known for the masks of refinable functions. Moreover, we show how this factorization can be used to investigate different forms of convergence of the Hermite scheme and why the multivariate situation is conceptionally more intricate than the univariate one. Finally, we give some examples of such factorizations

    Ellipse-preserving Hermite interpolation and subdivision

    Get PDF
    We introduce a family of piecewise-exponential functions that have the Hermite interpolation property. Our design is motivated by the search for an effective scheme for the joint interpolation of points and associated tangents on a curve with the ability to perfectly reproduce ellipses. We prove that the proposed Hermite functions form a Riesz basis and that they reproduce prescribed exponential polynomials. We present a method based on Green's functions to unravel their multi-resolution and approximation-theoretic properties. Finally, we derive the corresponding vector and scalar subdivision schemes, which lend themselves to a fast implementation. The proposed vector scheme is interpolatory and level-dependent, but its asymptotic behaviour is the same as the classical cubic Hermite spline algorithm. The same convergence properties---i.e., fourth order of approximation---are hence ensured

    Hermite subdivision schemes, exponential polynomial generation, and annihilators

    Full text link
    We consider the question when the so--called spectral condition} for Hermite subdivision schemes extends to spaces generated by polynomials and exponential functions. The main tool are convolution operators that annihilate the space in question which apparently is a general concept in the study of various types of subdivision operators. Based on these annihilators, we characterize the spectral condition in terms of factorization of the subdivision operator

    Extended Hermite Subdivision Schemes

    No full text
    International audienceSubdivision schemes are efficient tools for building curves and surfaces. For vector subdivision schemes, it is not so straightforward to prove more than the Hölder regularity of the limit function. On the other hand, Hermite subdivision schemes produce function vectors that consist of derivatives of a certain function, so that the notion of convergence automatically includes regularity of the limit. In this paper, we establish an equivalence betweena spectral condition and operator factorizations, then we study how such schemes with smooth limit functions can be extended into ones with higher regularity. We conclude by pointing out this new approach applied to cardinal splines

    Level-dependent interpolatory Hermite subdivision schemes and wavelets

    Full text link
    We study many properties of level-dependent Hermite subdivision, focusing on schemes preserving polynomial and exponential data. We specifically consider interpolatory schemes, which give rise to level-dependent multiresolution analyses through a prediction-correction approach. A result on the decay of the associated multiwavelet coefficients, corresponding to a uniformly continuous and differentiable function, is derived. It makes use of the approximation of any such function with a generalized Taylor formula expressed in terms of polynomials and exponentials
    • …
    corecore