91,022 research outputs found

    Aesthetics considerations in evolutionary computer aided design

    Get PDF
    The research described is concerned with establishing the aesthetic and functional evaluation of shape aspects within an evolutionary CAD modelling system. The approach uses genetic algorithms to evolve shapes by the successive ‘mating’ of objects through crossover and mutation of chromosomes describing geometric, aesthetic and functional aspects of objects. An evolutionary design system based on the genetic algorithm techniques generates shapes and the designer interacts with the system to identify shapes that should be used in the genetic creation of future generations. The current research is aimed at combining formal aesthetic and functional elements within the chromosome description of the objects and to provide computer-based fitness functions to work in conjunction with input from the designer to guide the optimisation of the evolutionary designs

    FFPopSim: An efficient forward simulation package for the evolution of large populations

    Get PDF
    The analysis of the evolutionary dynamics of a population with many polymorphic loci is challenging since a large number of possible genotypes needs to be tracked. In the absence of analytical solutions, forward computer simulations are an important tool in multi-locus population genetics. The run time of standard algorithms to simulate sexual populations increases as 8^L with the number L of loci, or with the square of the population size N. We have developed algorithms that allow to simulate large populations with a run-time that scales as 3^L. The algorithm is based on an analog of the Fast-Fourier Transform (FFT) and allows for arbitrary fitness functions (i.e. any epistasis) and genetic maps. The algorithm is implemented as a collection of C++ classes and a Python interface.Comment: available from: http://code.google.com/p/ffpopsi

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Evolutionary Computation in High Energy Physics

    Get PDF
    Evolutionary Computation is a branch of computer science with which, traditionally, High Energy Physics has fewer connections. Its methods were investigated in this field, mainly for data analysis tasks. These methods and studies are, however, less known in the high energy physics community and this motivated us to prepare this lecture. The lecture presents a general overview of the main types of algorithms based on Evolutionary Computation, as well as a review of their applications in High Energy Physics.Comment: Lecture presented at 2006 Inverted CERN School of Computing; to be published in the school proceedings (CERN Yellow Report
    • …
    corecore