9,301 research outputs found

    LT-23: The feedback vibrating capacitor fieldmeter

    Get PDF
    A redesign effort was undertaken starting in the fall of 1988 to replace the Models 1019A and 1019B fieldmeter probes resulting in greatly improved performance. Extensive testing was conducted to confirm performance of the new design and to evaluate outdoor atmospheric applicability. The following subjects are discussed: theory of operation, design improvements, performance, proper use, and applications of the new intrinsically safe design

    High-Dynamic-Range Lighting Estimation From Face Portraits.

    Get PDF
    We present a CNN-based method for outdoor highdynamic-range (HDR) environment map prediction from low-dynamic-range (LDR) portrait images. Our method relies on two different CNN architectures, one for light encoding and another for face-to-light prediction. Outdoor lighting is characterised by an extremely high dynamic range, and thus our encoding splits the environment map data between low and high-intensity components, and encodes them using tailored representations. The combination of both network architectures constitutes an end-to-end method for accurate HDR light prediction from faces at real-time rates, inaccessible for previous methods which focused on low dynamic range lighting or relied on non-linear optimisation schemes. We train our networks using both real and synthetic images, we compare our light encoding with other methods for light representation, and we analyse our results for light prediction on real images. We show that our predicted HDR environment maps can be used as accurate illumination sources for scene renderings, with potential applications in 3D object insertion for augmented reality

    Multispectral Imaging For Face Recognition Over Varying Illumination

    Get PDF
    This dissertation addresses the advantage of using multispectral narrow-band images over conventional broad-band images for improved face recognition under varying illumination. To verify the effectiveness of multispectral images for improving face recognition performance, three sequential procedures are taken into action: multispectral face image acquisition, image fusion for multispectral and spectral band selection to remove information redundancy. Several efficient image fusion algorithms are proposed and conducted on spectral narrow-band face images in comparison to conventional images. Physics-based weighted fusion and illumination adjustment fusion make good use of spectral information in multispectral imaging process. The results demonstrate that fused narrow-band images outperform the conventional broad-band images under varying illuminations. In the case where multispectral images are acquired over severe changes in daylight, the fused images outperform conventional broad-band images by up to 78%. The success of fusing multispectral images lies in the fact that multispectral images can separate the illumination information from the reflectance of objects which is impossible for conventional broad-band images. To reduce the information redundancy among multispectral images and simplify the imaging system, distance-based band selection is proposed where a quantitative evaluation metric is defined to evaluate and differentiate the performance of multispectral narrow-band images. This method is proved to be exceptionally robust to parameter changes. Furthermore, complexity-guided distance-based band selection is proposed using model selection criterion for an automatic selection. The performance of selected bands outperforms the conventional images by up to 15%. From the significant performance improvement via distance-based band selection and complexity-guided distance-based band selection, we prove that specific facial information carried in certain narrow-band spectral images can enhance face recognition performance compared to broad-band images. In addition, both algorithms are proved to be independent to recognition engines. Significant performance improvement is achieved by proposed image fusion and band selection algorithms under varying illumination including outdoor daylight conditions. Our proposed imaging system and image processing algorithms lead to a new avenue of automatic face recognition system towards a better recognition performance than the conventional peer system over varying illuminations
    • …
    corecore