48,252 research outputs found

    Reinventing discovery learning: a field-wide research program

    Get PDF
    © 2017, Springer Science+Business Media B.V., part of Springer Nature. Whereas some educational designers believe that students should learn new concepts through explorative problem solving within dedicated environments that constrain key parameters of their search and then support their progressive appropriation of empowering disciplinary forms, others are critical of the ultimate efficacy of this discovery-based pedagogical philosophy, citing an inherent structural challenge of students constructing historically achieved conceptual structures from their ingenuous notions. This special issue presents six educational research projects that, while adhering to principles of discovery-based learning, are motivated by complementary philosophical stances and theoretical constructs. The editorial introduction frames the set of projects as collectively exemplifying the viability and breadth of discovery-based learning, even as these projects: (a) put to work a span of design heuristics, such as productive failure, surfacing implicit know-how, playing epistemic games, problem posing, or participatory simulation activities; (b) vary in their target content and skills, including building electric circuits, solving algebra problems, driving safely in traffic jams, and performing martial-arts maneuvers; and (c) employ different media, such as interactive computer-based modules for constructing models of scientific phenomena or mathematical problem situations, networked classroom collective “video games,” and intercorporeal master–student training practices. The authors of these papers consider the potential generativity of their design heuristics across domains and contexts

    Analytic frameworks for assessing dialogic argumentation in online learning environments

    Get PDF
    Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation

    Mathematics teachers’ professional knowledge

    Get PDF
    This paper addresses the study of teachers’ knowledge, beliefs, conceptions and practices, presenting some illustrations from the area of problem solving. In mathematics education, the teacher has attracted much less work than the student. This may be due, in part, to the different knowledge base of interest in each case. Regarding students, we are concerned with their learning of mathematics. The nature of mathematical knowledge is itself problematic, yet that does not seem to raise too many difficulties for our work. Regarding teachers, it is much less clear what is the specific knowledge (nec-essary for teaching mathematics) that we should be looking at. Is it knowledge of math-ematics content? Of mathematics pedagogy? Of students’ cognitive processes? Some mixture of several of these? In the first part of the paper I will briefly review work done on teachers’ professional knowledge and related concepts within and outside PME. Then, I will present cases taken from empirical research and discuss a few concepts used in our investigations. And in the final part I will contrast some general frameworks to study mathematics teachers’ professional knowledge and draw some perspectives for future work

    Reflecting on the development of a new school subject: the development of technology education in New Zealand.

    Get PDF
    The last 10 years have seen the production of curricula in Australia, the United Kingdom, USA, Canada, Hong Kong and New Zealand that emphasise the importance of students developing technological literacy. This paper traces the development of a new subject - technology education - in the New Zealand curriculum and explores the politics of development of a new subject as well as the theoretical stances and research that contributed to its development from 1992 until 2005. This paper outlines the various stages of development including curriculum development, teacher development, and the move to creating a classroom research agenda to enhance the teaching and learning in technology education. The paper reinforces the notion that significant gains can be made in curriculum, teaching, learning and assessment when research and development are conducted in an ongoing manner

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Educational Technology as Seen Through the Eyes of the Readers

    Full text link
    In this paper, I present the evaluation of a novel knowledge domain visualization of educational technology. The interactive visualization is based on readership patterns in the online reference management system Mendeley. It comprises of 13 topic areas, spanning psychological, pedagogical, and methodological foundations, learning methods and technologies, and social and technological developments. The visualization was evaluated with (1) a qualitative comparison to knowledge domain visualizations based on citations, and (2) expert interviews. The results show that the co-readership visualization is a recent representation of pedagogical and psychological research in educational technology. Furthermore, the co-readership analysis covers more areas than comparable visualizations based on co-citation patterns. Areas related to computer science, however, are missing from the co-readership visualization and more research is needed to explore the interpretations of size and placement of research areas on the map.Comment: Forthcoming article in the International Journal of Technology Enhanced Learnin

    Creativity Training for Future Engineers: Preliminary Results from an Educative Experience

    Full text link
    Due in part to the increased pace of cultural and environmental change, as well as increased competition due to globalization, innovation is become one of the primary concerns of the 21st century. We present an academic course designed to develop cognitive abilities related to creativity within an engineering education context, based on a conceptual framework rooted in cognitive sciences. The course was held at \'Ecole Polytechnique de Montr\'eal (\'EPM), a world renowned engineering school and a pillar in Canada's engineering community. The course was offered twice in the 2014-2015 academic year and more than 30 students from the graduate and undergraduate programs participated. The course incorporated ten pedagogical strategies, including serious games, an observation book, individual and group projects, etc., that were expected to facilitate the development of cognitive abilities related to creativity such as encoding, and associative analytical thinking. The CEDA (Creative Engineering Design Assessment) test was used to measure the students' creativity at the beginning and at the end of the course. Field notes were taken after each of the 15 three-hour sessions to qualitatively document the educative intervention along the semester and students gave anonymous written feedback after completing the last session. Quantitative and qualitative results suggest that an increase in creativity is possible to obtain with a course designed to development cognitive abilities related to creativity. Also, students appreciated the course, found it relevant, and made important, meaningful learnings regarding the creative process, its cognitive mechanism and the approaches available to increase it.Comment: 10 page
    • 

    corecore