37,398 research outputs found

    Application of Generic CAD Models for Supporting Feature Based Assembly Process Planning

    Get PDF
    The paper discusses a novel geometric reasoning method that supports the definition of assembly sequence planning models departing from the CAD models of the parts involved. Specifically, by means of the presented algorithms that use a so-called collision point cloud approach one can determine the precise disassembly directions of parts having complex polygon mesh models. This information can be applied when defining assembly planning models both for suggesting precedence constraints as well as parameters for assembly operations. The presented heuristic algorithm was able to overcome certain shortcomings of earlier methods working with polygon mesh representations, and proved to be successful both in handling abstract and real-life industrial use cases. Working examples from both categories are presented in the paper

    Extracting, managing, and exploiting the semantics of mechanical CAD models in assembly tasks

    Get PDF
    The manufacturing of mechanical products is increasingly assisted by technologies that exploit the CAD model of the final assembly to address complex tasks in an automated and simplified way, to reduce development time and costs. However, it is proven that industrial CAD models are heterogeneous objects, involving different design conventions, providing geometric data on parts but often lacking explicit semantic information on their functionalities. As a consequence, existing approaches are mainly mathematics-based or need expert intervention to interpret assembly components, and this is limiting. The work presented in the thesis is placed in this context and aims at automatically extracting and leveraging in industrial applications high-level semantic information from B-rep models of mechanical products in standard format (e.g. STEP). This makes possible the development of promising knowledge intensive processes that take into account the engineering meaning of the parts and their relationships. The guiding idea is to define a rule-based approach that matches the shape features, the dimensional relations, and the mounting schemes strictly governing real mechanical assemblies with the geometric and topological properties that can be retrieved in CAD models of assemblies. More in practice, a standalone system is implemented which carries out two distinct operations, namely the data extraction and the data exploitation. The first involves all the steps necessary to process and analyze the geometric objects representing the parts of the assembly to infer their engineering meaning. It returns an enriched product model representation based on a new data structure, denoted as liaison, containing all the extracted information. The new product model representation, then, stands at the basis of the data exploitation phase, where assembly tasks, such as subassembly identification, assembly planning, and design for assembly, are addressed in a more effective way

    The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    Get PDF
    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution

    Automatic generation of robot and manual assembly plans using octrees

    Get PDF
    This paper aims to investigate automatic assembly planning for robot and manual assembly. The octree decomposition technique is applied to approximate CAD models with an octree representation which are then used to generate robot and manual assembly plans. An assembly planning system able to generate assembly plans was developed to build these prototype models. Octree decomposition is an effective assembly planning tool. Assembly plans can automatically be generated for robot and manual assembly using octree models. Research limitations/implications - One disadvantage of the octree decomposition technique is that it approximates a part model with cubes instead of using the actual model. This limits its use and applications when complex assemblies must be planned, but in the context of prototyping can allow a rough component to be formed which can later be finished by hand. Assembly plans can be generated using octree decomposition, however, new algorithms must be developed to overcome its limitations

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made

    Chain of refined perception in self-optimizing assembly of micro-optical systems

    Get PDF
    Today, the assembly of laser systems requires a large share of manual operations due to its complexity regarding the optimal alignment of optics. Although the feasibility of automated alignment of laser optics has been shown in research labs, the development effort for the automation of assembly does not meet economic requirements – especially for low-volume laser production. This paper presents a model-based and sensor-integrated assembly execution approach for flexible assembly cells consisting of a macro-positioner covering a large workspace and a compact micromanipulator with camera attached to the positioner. In order to make full use of available models from computer-aided design (CAD) and optical simulation, sensor systems at different levels of accuracy are used for matching perceived information with model data. This approach is named "chain of refined perception", and it allows for automated planning of complex assembly tasks along all major phases of assembly such as collision-free path planning, part feeding, and active and passive alignment. The focus of the paper is put on the in-process image-based metrology and information extraction used for identifying and calibrating local coordinate systems as well as the exploitation of that information for a part feeding process for micro-optics. Results will be presented regarding the processes of automated calibration of the robot camera as well as the local coordinate systems of part feeding area and robot base

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper
    • …
    corecore