2,040 research outputs found

    Frequent Itemset Mining for Big Data

    Get PDF
    Traditional data mining tools, developed to extract actionable knowledge from data, demonstrated to be inadequate to process the huge amount of data produced nowadays. Even the most popular algorithms related to Frequent Itemset Mining, an exploratory data analysis technique used to discover frequent items co-occurrences in a transactional dataset, are inefficient with larger and more complex data. As a consequence, many parallel algorithms have been developed, based on modern frameworks able to leverage distributed computation in commodity clusters of machines (e.g., Apache Hadoop, Apache Spark). However, frequent itemset mining parallelization is far from trivial. The search-space exploration, on which all the techniques are based, is not easily partitionable. Hence, distributed frequent itemset mining is a challenging problem and an interesting research topic. In this context, our main contributions consist in an (i) exhaustive theoretical and experimental analysis of the best-in-class approaches, whose outcomes and open issues motivated (ii) the development of a distributed high-dimensional frequent itemset miner. The dissertation introduces also a data mining framework which takes strongly advantage of distributed frequent itemset mining for the extraction of a specific type of itemsets (iii). The theoretical analysis highlights the challenges related to the distribution and the preliminary partitioning of the frequent itemset mining problem (i.e. the search-space exploration) describing the most adopted distribution strategies. The extensive experimental campaign, instead, compares the expectations related to the algorithmic choices against the actual performances of the algorithms. We run more than 300 experiments in order to evaluate and discuss the performances of the algorithms with respect to different real life use cases and data distributions. The outcomes of the review is that no algorithm is universally superior and performances are heavily skewed by the data distribution. Moreover, we were able to identify a concrete lack as regards frequent pattern extraction within high-dimensional use cases. For this reason, we have developed our own distributed high-dimensional frequent itemset miner based on Apache Hadoop. The algorithm splits the search-space exploration into independent sub-tasks. However, since the exploration strongly benefits of a full-knowledge of the problem, we introduced an interleaving synchronization phase. The result is a trade-off between the benefits of a centralized state and the ones related to the additional computational power due to parallelism. The experimental benchmarks, performed on real-life high-dimensional use cases, show the efficiency of the proposed approach in terms of execution time, load balancing and reliability to memory issues. Finally, the dissertation introduces a data mining framework in which distributed itemset mining is a fundamental component of the processing pipeline. The aim of the framework is the extraction of a new type of itemsets, called misleading generalized itemsets

    Frequent Itemsets Mining for Big Data: A Comparative Analysis

    Get PDF
    Itemset mining is a well-known exploratory data mining technique used to discover interesting correlations hidden in a data collection. Since it supports different targeted analyses, it is profitably exploited in a wide range of different domains, ranging from network traffic data to medical records. With the increasing amount of generated data, different scalable algorithms have been developed, exploiting the advantages of distributed computing frameworks, such as Apache Hadoop and Spark. This paper reviews Hadoop- and Spark-based scalable algorithms addressing the frequent itemset mining problem in the Big Data domain through both theoretical and experimental comparative analyses. Since the itemset mining task is computationally expensive, its distribution and parallelization strategies heavily affect memory usage, load balancing, and communication costs. A detailed discussion of the algorithmic choices of the distributed methods for frequent itemset mining is followed by an experimental analysis comparing the performance of state-of-the-art distributed implementations on both synthetic and real datasets. The strengths and weaknesses of the algorithms are thoroughly discussed with respect to the dataset features (e.g., data distribution, average transaction length, number of records), and specific parameter settings. Finally, based on theoretical and experimental analyses, open research directions for the parallelization of the itemset mining problem are presented

    A Novel Nodesets-Based Frequent Itemset Mining Algorithm for Big Data using MapReduce

    Get PDF
    Due to the rapid growth of data from different sources in organizations, the traditional tools and techniques that cannot handle such huge data are known as big data which is in a scalable fashion. Similarly, many existing frequent itemset mining algorithms have good performance but scalability problems as they cannot exploit parallel processing power available locally or in cloud infrastructure. Since big data and cloud ecosystem overcomes the barriers or limitations in computing resources, it is a natural choice to use distributed programming paradigms such as Map Reduce. In this paper, we propose a novel algorithm known as A Nodesets-based Fast and Scalable Frequent Itemset Mining (FSFIM) to extract frequent itemsets from Big Data. Here, Pre-Order Coding (POC) tree is used to represent data and improve speed in processing. Nodeset is the underlying data structure that is efficient in discovering frequent itemsets. FSFIM is found to be faster and more scalable in mining frequent itemsets. When compared with its predecessors such as Node-lists and N-lists, the Nodesets save half of the memory as they need only either pre-order or post-order coding. Cloudera\u27s Distribution of Hadoop (CDH), a MapReduce framework, is used for empirical study. A prototype application is built to evaluate the performance of the FSFIM. Experimental results revealed that FSFIM outperforms existing algorithms such as Mahout PFP, Mlib PFP, and Big FIM. FSFIM is more scalable and found to be an ideal candidate for real-time applications that mine frequent itemsets from Big Data

    Multi-Sorted Inverse Frequent Itemsets Mining: On-Going Research

    Get PDF
    Inverse frequent itemset mining (IFM) consists of generating artificial transactional databases reflecting patterns of real ones, in particular, satisfying given frequency constraints on the itemsets. An extension of IFM called many-sorted IFM, is introduced where the schemes for the datasets to be generated are those typical of Big Tables, as required in emerging big data applications, e.g., social network analytics

    Observations on Factors Affecting Performance of MapReduce based Apriori on Hadoop Cluster

    Full text link
    Designing fast and scalable algorithm for mining frequent itemsets is always being a most eminent and promising problem of data mining. Apriori is one of the most broadly used and popular algorithm of frequent itemset mining. Designing efficient algorithms on MapReduce framework to process and analyze big datasets is contemporary research nowadays. In this paper, we have focused on the performance of MapReduce based Apriori on homogeneous as well as on heterogeneous Hadoop cluster. We have investigated a number of factors that significantly affects the execution time of MapReduce based Apriori running on homogeneous and heterogeneous Hadoop Cluster. Factors are specific to both algorithmic and non-algorithmic improvements. Considered factors specific to algorithmic improvements are filtered transactions and data structures. Experimental results show that how an appropriate data structure and filtered transactions technique drastically reduce the execution time. The non-algorithmic factors include speculative execution, nodes with poor performance, data locality & distribution of data blocks, and parallelism control with input split size. We have applied strategies against these factors and fine tuned the relevant parameters in our particular application. Experimental results show that if cluster specific parameters are taken care of then there is a significant reduction in execution time. Also we have discussed the issues regarding MapReduce implementation of Apriori which may significantly influence the performance.Comment: 8 pages, 8 figures, International Conference on Computing, Communication and Automation (ICCCA2016
    • …
    corecore