
A Novel Nodesets-Based Frequent Itemset
Mining Algorithm for Big Data using
MapReduce

1051

Original Scientific Paper

Abstract – Due to the rapid growth of data from different sources in organizations, the traditional tools and techniques that
cannot handle such huge data are known as big data which is in a scalable fashion. Similarly, many existing frequent itemset mining
algorithms have good performance but scalability problems as they cannot exploit parallel processing power available locally or
in cloud infrastructure. Since big data and cloud ecosystem overcomes the barriers or limitations in computing resources, it is a
natural choice to use distributed programming paradigms such as Map Reduce. In this paper, we propose a novel algorithm known
as A Nodesets-based Fast and Scalable Frequent Itemset Mining (FSFIM) to extract frequent itemsets from Big Data. Here, Pre-Order
Coding (POC) tree is used to represent data and improve speed in processing. Nodeset is the underlying data structure that is efficient
in discovering frequent itemsets. FSFIM is found to be faster and more scalable in mining frequent itemsets. When compared with its
predecessors such as Node-lists and N-lists, the Nodesets save half of the memory as they need only either pre-order or post-order
coding. Cloudera's Distribution of Hadoop (CDH), a MapReduce framework, is used for empirical study. A prototype application is
built to evaluate the performance of the FSFIM. Experimental results revealed that FSFIM outperforms existing algorithms such as
Mahout PFP, Mlib PFP, and Big FIM. FSFIM is more scalable and found to be an ideal candidate for real-time applications that mine
frequent itemsets from Big Data.

Keywords: Big Data, Frequent Itemset Mining (FIM), MapReduce Programming Paradigm (MRPP), Fast and Scalable Frequent Item
set Mining (FSFIM)

1. INTRODUCTION

Frequent Itemset Mining (FIM) is a phenomenon in
data mining used to extract frequently occurring items
that exhibit latent relationships in the data. FIM leads
to the generation of association rules that provide Busi-
ness Intelligence (BI) when interpreted by domain ex-
perts. Association rule mining is the process of finding
patterns, associations, and correlations among sets of
items in a database. The Association Rules generated
have an antecedent and a consequent. An Association
Rule is a pattern of the form X⋀Y⟹Z [support, confi-
dence], where X, Y, and Z are items in the dataset. The
left-hand side of the rule X⋀Y is called the antecedent

of the rule and the right-hand side Z is called the con-
sequent of the rule. Within the dataset, confidence and
support are two measures to determine the certainty
or usefulness of each rule. Support is the probability
that a set of items in the dataset contains both the an-
tecedent and consequent of the rule i.e P (X∪ Y ∪ Z).
Confidence is the probability that a set of items con-
taining the antecedent also contains the consequent.
i.e., P (Z/(X ∪ Y)

Many FIM algorithms that came into existence are
classified into Apriori-based and pattern-growth-based
algorithms. These algorithms cannot exploit the paral-
lel processing power of cloud data centers.

Volume 14, Number 9, 2023

Borra Sivaiah
Research Scholar,
Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Kakinada,
Andra Pradesh, India,
CMR College of Engineering &Technology, Hyderabad
sivabetld@gmail.com

Ramisetty Rajeswara Rao
Professor of CSE,
Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Gurajada,
Andra Pradesh, India
raob4u@jntukucev.ac.in

1052 International Journal of Electrical and Computer Engineering Systems

Therefore, they suffer from the capability of dealing
with big data. Big Data is data that has characteristics
such as volume, variety, and velocity as shown in Fig.1.
Big Data is voluminous (often measured in petabyte-
scale), and has a variety of data such as structured, un-
structured, and semi-structured besides having con-
tinuous growth or streaming data. The importance of
Big Data processing signifies that when big data (com-
plete data) is not considered, it results in biased conclu-
sions. The amount of data being generated by different
sources of Big Data such as social media, World Wide
Web (WWW), and Internet of Things (IoT) use cases is
unprecedented and essentially needs a specialized mo-
dus operandi to mine it efficiently to arrive at Business
Intelligence (BI). There are two types of approaches used
in frequent item sets mining of Big Data: Apriori-based
and FP-Growth based. The Apriori-based algorithms
consume more memory and time in the generation of
frequent item sets from Big Data. The FP-Growth-based
algorithms were developed for faster generation of the
frequent itemsets instead of the Aprori-based algorithm.
Therefore, FP-growth-based algorithms are faster than
the Apriori-based approaches. However, FP-growth al-
gorithms also suffer from storing conditional FP-trees in
memory and then mining from them may require more
time and memory. The drawbacks of the existing works:

1. Some of the existing frequent item sets mining al-
gorithms consumed more memory and more min-
ing time.

2. Some of the existing algorithms don't use distrib-
uted programming paradigms to solve the scal-
ability problem.

 To address the existing drawbacks, the proposed re-
search is introduced. The main purpose of the research
in this article is to develop an efficient MapReduce-
based algorithm for faster and scalable discovery of
frequent itemsets from big data. The proposed method
needs distributed programming frameworks like Ha-
doop for mining big data as explored in Section 1.2.

1.1. MOTIvATION

Many researchers developed frequent pattern algo-
rithms for handling Big Data. The algorithms are divided
into two categories: Apriori-based and tree-based. Tree-
based algorithms are faster than Apriori-based algo-
rithms. The traditional tools and techniques cannot han-
dle big data, due to their limited capabilities. Frequent
itemset mining algorithms are faster but cannot use local
or cloud-based parallel processing power. Researchers
used parallel and distributed Hadoop MapReduce sys-
tems to quickly generate frequent item sets. Large data
makes it difficult to extract frequent item sets from trans-
actional databases, if extracted faster, then it could be
helpful for better decision-making. Using the best data
structures can reduce half of the memory and execution
time of frequent item generation from big data. When
a case study like healthcare is considered, there is ever-
growing data size leading to big data. Unless there is fast-

er convergence in frequent itemset mining, it takes more
time for frequent itemset mining. In many applications,
there is a need for quick convergence. It is the motivation
behind the research carried out and presented in this pa-
per. Our work has focused on building a new algorithm
for mining frequent item sets based on the best data
structure known as Nodeset and tree structure known as
POC tree. Towards this end, we proposed a framework for
FIM that is significantly faster than existing methods. Our
contributions to this paper are as follows.

1. A novel algorithm known as Fast and Scalable Fre-
quent item set mining (FSFIM) is proposed to ex-
tract frequent item sets from big data.

2. A Pre-Order Coding (POC) tree is used to represent
data and improve speed in processing leading to
improved performance.

3. A prototype is built to evaluate the FSFIM and com-
pare it with the state-of-the-art FIM techniques.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the literature on FIM techniques, especially
parallelized ones. Section 3 presents the proposed algo-
rithm and the underlying mechanisms and data structures.
Section 4 presents experimental results and discussion.
Section 5 concludes the work in the paper and gives sug-
gestions for improving the research further in the future.

1.2. ClOUDERA’S DISTRIBUTION OF HADOOp

Apache Hadoop framework is widely used in the
real world for processing big data. Cloudera's Distri-
bution of Hadoop (CDH) is based on the Apache Ha-
doop framework. It supports the MapReduce paradigm
where the number of worker nodes in the distributed
environment acts as a mapper and reducer.

Hadoop Distributed File System (HDFS) plays a crucial
role in the framework as it stores inputs and outputs.
HDFS can access data from various servers computed
distributed across the globe. The framework involves a
job tracker and task tracker to keep track of a given job
and underlying tasks respectively. The map phase is car-
ried out by thousands of worker nodes and the results
are given to reducers (worker nodes). On the other hand,
the reducers act on the data to produce the final output.

Fig. 2 shows the MapReduce phenomenon which is es-
sentially meant for dealing with large volumes of data. It
supports parallel processing to process data faster. Input
data is divided into many pieces and assigned to worker
nodes that complete a given job and return the results.

Fig. 1. Illustrates characteristics of big data

1053Volume 14, Number 9, 2023

2. RElATED WORK

Literature is found rich in the research on frequent
itemset mining algorithms. Many FIM algorithms that
target big data came into existence which are briefly
presented in this section.

Qiu et al. [1] proposed a parallel FIM algorithm known
as Yet Another Frequent Itemset Mining (YAFIM) which
is based on Apriori. They defined the YAFIM algorithm
to run using a distributed programming framework
known as Spark.

Yasir et al. [2] proposed an FIM algorithm to handle
sparse big data. They named it TRimmed Transaction
LattICE (TRICE). It generates trimmed subsets iteratively
to leverage performance in terms of memory consump-
tion and execution time. They intended to improve it to
have other variants of frequent itemsets such as maximal
frequent itemsets besides working on streaming data.

Gole and Tidke [3] proposed a MapReduce-based
method for FIM on big data. It is named ClustBigFIM. It
is derived from the BigFIM algorithm, for better speed
and scalability.

Fig. 2. Map Reduce Frame Work in Hadoop

Djenouri et al. [4] proposed two FIM algorithms
namely the Enhanced Approach for Single Scan ap-
proach for Frequent Itemset Mining (EA-SSFIM) and
MapReduce Single Scan approach for Frequent Itemset
Mining (MR-SSFIM) for big data. They are designed to
deal with sparse big data and big data respectively for
improvements in terms of reducing execution time and
improving efficiency in processing big data.

Apiletti et al. [5] review different FIM algorithms that are
developed for big data. Fernandez-Basso et al. [6] proposed
a distributed method for FIM which is meant for extracting
frequent itemsets from streaming data. Sethi and Ramesh
[7] proposed an FIM algorithm known as Hybrid Frequent
Itemset Mining (HFIM) that works in two phases. In the
first phase, it extracts frequent itemsets and in the second
phase, it obtains frequent itemsets of k-cardinality where

k is greater than or equal to 2. It could improve speedup
and execution time. Chon et al. [8] proposed a Graphics
Processing Unit (GPU) based FIM known as GMiner which
is much faster as it could exploit the power of GPU.

Liang and Wu [9] proposed a distributed FIM algo-
rithm known as Sequence-Growth. It makes use of a
lexicographical sequence tree that follows the idea of
lexicographical order. It also has a pruning strategy
known as breadth-wide support-based which makes
it scalable and efficient. In the future, they intend to
make it an incremental FIM algorithm.

Joy and Sherly [10] proposed a parallel FIM algorithm
known as Faster-IAPI that is executed using the Spark
RDD environment. It is employed to have symptom cor-
relations in patients' data in the healthcare domain for
disease prediction. Djenouri et al. [11] proposed three
versions of High-Performance Computing (HPC) that
make use of a single database scan. They are known
as Single Scan on GPU (GSS), Single Scan on Cluster
(CSS), and Single Scan on Cluster and GPU (CGSS). Out
of which CGSS was found to have better performance.

A distributed FIM algorithm known as BIGMiner has
been proposed in [12] which is scalable and causes less
network communication overhead. This algorithm ex-
ploits the GPU and MapReduce programming model to
have significantly improved performance.

Raj et al. [13]. have proposed an EAFIM method for an
efficient apriori-based frequent itemset mining algorithm
on Spark for big transactional data. Spark is gaining atten-
tion in big data processing due to its in-memory process-
ing capabilities. EAFIM uses parallel and distributed com-
puting environments and introduces two novel methods
to improve efficiency. Unlike apriori, candidate genera-
tion and count of support values occur simultaneously
during input dataset scanning. The updated input dataset
is calculated by removing useless items and transactions,
reducing the size of the input dataset for higher iterations.

Moens et al. [14] investigate the usage of the MapRe-
duce paradigm to execute different FIM algorithms.
They studied two such algorithms such as BigFIM and
Dist-Eclat thoroughly. They found that MapReduce
models outperform their predecessors. Xun et al. [15]
proposed parallel FIM based on Hadoop clusters. The
algorithm is characterized by its data partitioning ap-
proach that paves the way for a locality-based ap-
proach to enhance the performance of the algorithm.

Asbern and Asha [16] explored different algorithms for
FIM that operate on big data using the MapReduce par-
adigm. Kumar and Mohbey [17] investigated different
parallel FIM algorithms that are executed in distributed
environments. Different issues they identified in such
algorithms include scalability, privacy, complex data
types, load balancing, and gene regulation patterns.

Zitouni et al. [18] proposed a parallel FIM known as
CloPN. It follows a prime number-based approach for
FIM from big data. It is supposed to mine closed fre-

1054 International Journal of Electrical and Computer Engineering Systems

quent itemsets (CFI). Leung et al. [19] on the other hand
proposed an alternative data mining approach for
big data. It is known as scalable vertical mining using
Spark. Galetsi et al. [20] studied big data analytics asso-
ciated with the healthcare domain. They investigated
on different machine learning techniques used for data
analytics including FIM algorithms.

Fernandez-Basso et al. [21] defined a fuzzy mining
approach to have FIM on big data. They implemented
a method known as the automatic fuzzification meth-
od for this purpose. It takes weather forecast data and
generates association rules with energy efficiency us-
ing the Spark environment.

Fumarola and Malerba [22] proposed a method
known as approximate FIM that uses parallel process-
ing using the MapReduce paradigm. Djenouri et al. [23]
proposed a parallel framework for FIM using a meta-
heuristic approach. It is known as Cluster for FIM (CFIM).
At nodes in the cluster, the algorithm partitions data.
The framework is integrated with different metaheuris-
tics such as Genetic Algorithm (GA), BSO (Bees Swarm
Optimization), and Particle Swarm Optimization (PSO)
for better performance.

Aggarwal et al. [24] investigated air quality data with
location and time awareness for performing FIM. First,
it understands spatiotemporal dependencies in the
data and then employs the FIM process to generate
frequent itemsets. Luna et al. [25] proposed different
parallel versions of Apriori to work on big data using
the MapReduce paradigm. Their Hadoop-based imple-
mentation showed better performance than the exist-
ing methods. From the literature, it is understood that
parallel approaches used for FIM can perform better
than traditional FIM methods. However, the perfor-
mance achieved due to distributed environments is in-
sufficient as the underlying method for FIM is expected
to have a better approach. Towards this end, we pro-
posed a framework for FSFIM that is significantly faster
than existing methods.

S. Nalousi et al. [26] introduced a novel efficient ap-
proach called weighted frequent itemset mining using
weighted subtrees (WST-WFIM) to identify the average
weight of frequent rules. The average weight of found
rules is calculated using special trees and some novel
data structures on the frequent pattern growth (FP-
Growth) method. It works with the data set that each
item in each transaction has a certain weight and saves
them in the dedicated tree.

Fayuan Li et al. [27], Based on the calculation of
item set fuzziness, this approach incorporates the un-
predictability of potential world models to tackle the
problem of mining fuzzy frequent item sets based on
probability threshold. Fuzzy theory and uncertainty
are based on linguistic information and have been ex-
panded to cope with partial truth concepts. A dynamic
programming-based approach is used to compute the
frequent fuzzy probability.

TR-FC-GCM (Transaction Reduction - Frequency
Count - Generate Combination Method) created by
Ajay Sharma et al [28] discovers all significant frequent
patterns by creating all potential combinations of an
item with a single database search and performs better
for null and full datasets. B Sivaiah et al [29], Reviewed
Incremental mining, which aims to extract patterns
from dynamic databases that have applications in do-
mains such as product recommendation, text mining,
market basket analysis, and web click stream analysis.

Reshu Agarwal [30] suggested a method for finding
high average-utility item sets (HAUIs) that takes into ac-
count both the length of the itemsets and their utilities.
HUIs are found using the standard method based on the
individual utility of an item set, which is calculated as the
sum of the utilities of individual items. The difficulty is
that the aforementioned method of computing HUIs
does not take the length of the item set into account.

Wanyong Tian et al. [31] suggested a technique for
uncertain frequent item sets called UFP-ECIS (Uncer-
tain Frequent Pattern Mining with Ensembled Condi-
tional Item-wise Supports). The difficulties of informa-
tion redundancy and loss caused by a single probabilis-
tic frequent threshold can be successfully improved by
assembling numerous conditional item-wise supports.
Furthermore, by employing several pruning algorithms
based on the sorted downward closure feature and the
concept of least minimal probability frequent thresh-
old. Many existing frequent itemset mining algorithms
have good performance but scalability problems as
they cannot exploit parallel processing power available
locally or in cloud infrastructure. Since big data and
cloud ecosystem overcomes the barriers or limitations
in computing resources, it is a natural choice to use dis-
tributed programming paradigms such as Map Reduce.

3. FAST AND SCAlABlE FREqUENT ITEMSET
MININg (FSFIM) AlgORITHM

The proposed algorithm is known as Fast and Scal-
able Frequent Itemset Mining (FSFIM) used to extract
frequent item sets from big data. The data representa-
tion before discovering frequent itemsets is made using
POC-tree. Therefore, the construction of the POC tree is
an important part of the FSFIM. However, POC construc-
tion is made after producing frequent 1-itemsets. Based
on the minimum support (statistical measure to know
the quality of frequent pattern), after scanning the en-
tire database, a set of frequent 1-itemsets, denoted as
F1, with corresponding support is generated. Then the
items in F1 are ordered using support-descending order.
The ordered items are denoted as L1 where the frequent
items that have the same support are just taken in any
order. Then POC tree is constructed as follows. The first
root of the tree, denoted as Tr, is created but it is set to
"null". Then for every transaction in the given database
frequent itemsets, in the order of F1, are selected and
sorted. Let [p|P] denote a sorted frequent item list where
the first element is denoted as p while others are de-

1055Volume 14, Number 9, 2023

Fig. 3. Illustrates a sample set-enumeration tree

3.1. pOC-TREE

The node sets data structure used in this paper is
based on the POC (Pre-Order Coding) tree. Unlike its
predecessor PPC-tree which needs encoding of nodes
with pre-order and post-order codes causing overhead,
POC-tree needs only either pre-order or post-order and
not both. Since it is efficient, in this paper, we adapted
it from [26]. POC-tree can be understood based on the
data in Table 1 and the POC-tree representation in Fig.4.
The tree has a root node labeled "null" and many sub-
trees where each node is prefixed by an item. Each node
in the tree has different fields like item-name, children-
list, count, and pre-order. Item node refers to an item the
node represents. Count indicates the number of trans-
actions denoted by the path till this node. Children-list
refers to the children of the node and pre-order is the
node's pre-order code. The POC tree is similar to that of
the PPC tree where each node in the POC tree is encod-
ed by its pre-order while the PPC tree has each node en-
coded by its pre-order and post-order. After generating
the POC tree, the node sets are created. Once node sets
are created, the POC tree is not required. The transac-
tional items are provided in support-descending order
in the last column of the table. The POC-tree representa-
tion helps in the faster generation of frequent itemsets.
In other words, it accelerates the frequent itemset min-
ing process. When there are large volumes of data, in the
presence of cloud computing resources, it may be of use
to leverage performance benefits.

Table 1. Shows a simple transactional database

ID Ordered Frequent Items Support-Descending Items
1 a, c, g, f c, f, a

2 e, a, c, b b, c, e, a

3 e, c, b, i b, c, e

4 b, f, h b, f

5 b, f, e, c, d b, c, e, f

Fig. 4. POC-tree constructed for the data in Table

The FSFIM algorithm for mining Big Data works as
follows: FSFIM takes transactional database T and mini-
mum support threshold th as inputs. It produces fre-
quent itemsets (results) R. Step 1 constructs the POC
tree as discussed earlier in this section. Step 3 discovers
all frequent 1-itemsets. Step 3 starts an iterative process
for each node in the POC tree. Step 5 extracts the item
associated with the visiting node in the POC tree. Step
5 through Step 11, there is an iterative process used to
obtain all frequent 2-itemsets into F2. Steps 12 through
18, prunes infrequent 2-itemsets present in F2. Step 19
scans the POC tree and an iterative process from Step 20
through Step 29 discovers frequent (>2) itemsets. The
map() function ends here by returning F representing
frequent itemsets for the given portion of transactions.
This way multiple map() functions operate based on the
worker nodes involved in the map phase of the MapRe-
duce paradigm. The intermediate results (F of each map-
per) are given to reducers to combine results and return
final frequent itemsets obtained from the given T.

Algorithm: Fast and Scalable Frequent Itemset
Mining algorithm

pseudocode: A Novel Nodesets Based Fast and Scalable
Frequent Itemset Mining

Input: A transactional database T, minimum support
threshold th

Output: Discovered frequent itemsets R

Map() Function
1. Construct POC tree
2. F1 ← FindFrequent1Itemsets ()
3. For each node n in the POC tree
4. item ← FindItem(n)
5. For each ancestor of n and n’
6. itemn’ ← FindItem(n’)
7. IF item and itemn’ belong to F2 Then
8. support_of_item_itemn’

 support_of_item_itemn’ + n.acc

noted as P. Then the insert tree function is carried out. If
the transaction has as child node N with the same item
name as that of p, N's count is increased by 1, if not new
node N is created and its count is initialized to 1. Then
it is added to the transaction's children list. As far as P
has some items, the insert tree is invoked recursively to
complete POC tree construction. Afterward, the POC
tree is scanned to, following pre-order traversal, have a
pre-order of each node in the tree. Once the POC tree is
constructed, it is possible to find all frequent 2-itemsets
and corresponding node sets. Afterward, frequent k(>2)-
itemsets are discovered. The algorithm has a pruning
strategy known as promotion which depends on the no-
tion of superset equivalence property. To represent each
search space, the algorithm uses a set-enumeration tree
as shown in Fig. 3.

1056 International Journal of Electrical and Computer Engineering Systems

9. F2 ← F2U{item, itemn’}
10. End If
11. End For
12. For each itemset Q in F2
13. IF Q.sup<th x |T| Then
14. F2 ← F2-{Q}
15. Else
16. Q.nodeset ← null
17. End If
18. End For
19. Scan POC tree
20. For each node n in the POC tree
21. item ← FindItem(n)
22. For each ancestor of n’ and n’’
23. itemn’’ ← FindItem(n’’)
24. IF item and itemn’ belong to F2 Then
25. item_itemn’.nodeset ← item_itemn’.

 nodeset U itemn’.N_info
26. End If
27. End For
28. F=F U F1
29. Return F
Reduce() Function
30. For each F in intermediate Frequent Itemsets
31. R+=F
32. End For
33. Return R

4. ExpERIMENTAl RESUlTS AND ANAlySIS

We experimented with the Cloudera environment to
evaluate the FSFIM algorithm and compare that with
state-of-the-art methods such as Mahout PFP [32], Mlib
PFP [33], and Big FIM [34]. For experiments, the real da-
taset known as Delicious explored in [35] is used. This da-
taset is a collection of web tags. Each record represents
the tag assigned by a user to a URL and it consists of 4 at-
tributes: date, user id (anonymized), tagged URL, and tag
value. The transactional representation of the delicious
dataset includes one transaction for each record, where
each transaction is a set of four pairs (attribute, value), i.e.,
one pair for each attribute. The dataset stores more than
3 years of web tags. It is very sparse because of the huge
number of different URLs and tags. A prototype applica-
tion is built using Java language on top of the MapReduce
paradigm to implement the proposed algorithm. The da-
taset has 41,949,956 transactions and 57,372,977 items.
Observations are made in terms of execution time against
different minimum support values and several attributes.

Table 2. Shows execution time of different
algorithms against various mins up values

Minsup (%)
Execution Time (Seconds)

Mahout pFp Mlib pFp Big FIM FSFIM
0 90000 10000 7500 5000

0.2 9500 8000 6200 3000

0.4 500 2500 500 300

0.6 400 900 400 250

0.8 400 600 400 150

1 400 400 400 100

As presented in Table 2, the execution time of the
algorithms is provided for different minsup (%) values.

As presented in Fig. 5, it is evident that the minimum
support values used for experiments are presented on
the horizontal axis while the execution time is shown on
the vertical axis. The results revealed that the proposed
method FSFIM outperforms the state-of-the-art methods.

Fig. 5. Performance comparison in terms of
execution time against different mins up (%)

As presented in Table 3, the execution time of the algo-
rithms is provided for different transaction length values.

Table 3. Shows the execution time of different
algorithms against various transaction lengths

Transaction
length

Execution Time (Seconds)
Mlib pFp Mahout pFp Big FIM FSFIM

10 100 120 120 70

20 100 125 125 115

30 120 150 150 100

40 450 300 300 200

50 1250 425 425 354

60 3200 550 550 530

70 5100 600 600 585

80 7500 950 650 620

90 8600 1400 900 835

100 9800 1800 1200 1100

Fig. 6. Performance comparison in terms of
execution time against transaction length

As presented in Fig. 6, it is evident that the transaction
length values used for experiments are presented on the
horizontal axis while the execution time is shown on the
vertical axis. The results revealed that the proposed meth-
od FSFIM outperforms the state-of-the-art methods.

1057Volume 14, Number 9, 2023

Table 4. Shows the execution time of different
algorithms against several attributes

The execution time of the algorithms is provided for
a different number of attributes is presented in Table 4.

Number of
Attributes

Execution Time (Seconds)

Mahout pFp Mlib pFp FSFIM

0 100 400 50

10 1400 4200 600

20 1800 12100 800

30 2500 13900 1200

40 7000 18760 4500

50 18100 19850 15200

Fig. 7. Performance comparison in terms of
execution time against the number of attributes

The FSMFI is better than the existing Mahout PFP,
and Mlib PFP. As presented in Fig. 7, it is evident that
the number of attributes used for experiments is pre-
sented in the horizontal axis while the execution time is
shown in the vertical axis. The results revealed that the
proposed method FSFIM outperforms the state-of-the-
art methods. Experimental results revealed that FSFIM
outperforms existing algorithms such as Mahout PFP,
Mlib PFP, and Big FIM. FSFIM is more scalable and found
to be an ideal candidate for real-time applications that
mine frequent itemsets from big data.

5. CONClUSION AND FUTURE WORK

In this paper, we propose a novel algorithm known as A
Novel Nodesets Based Fast and Scalable Frequent Itemset
Mining (FSFIM) to extract frequent itemsets from big data.
Pre-Order Coding (POC) tree is used to represent data and
improve speed in processing. Nodeset is the underlying
data structure that is efficient in discovering frequent
itemsets. When compared with its predecessors such as
Node-lists and N-lists, the Nodeset saves half of the mem-
ory as it needs only either a pre-order or post-order code.
Cloudera's Distribution of Hadoop (CDH), a MapReduce
framework, is used for empirical study. A prototype appli-
cation is built to evaluate the performance of the FSFIM.
Experimental results revealed that FSFIM outperforms ex-
isting algorithms such as Mahout PFP, Mlib PFP, and Big
FIM. FSFIM is more scalable and found to be an ideal can-
didate for real-time applications that mine frequent item-

sets from big data. Findings in the empirical study include
faster execution and scalability. In the future, we would
like to extend the FSFIM to support incremental mining of
frequent itemsets to avoid scanning the entire database
and reinventing wheel everything when the algorithm is
executed.

6. REFERENCES

[1] H. Qiu, R. Gu, C. Yuan, Y. Huang, “YAFIM: A Parallel Fre-
quent Itemset Mining Algorithm with Spark”, Proceed-
ings of the IEEE International Parallel & Distributed
Processing Symposium Workshops, Phoenix, AZ, USA,
19-23 May 2014, pp. 1-8.

[2] M. Yasir et al. “TRICE: Mining Frequent Itemsets by Itera-
tive TRimmed Transaction LattICE in Sparse Big Data”,
IEEE Access, Vol. 7, 2019, pp. 181688-181705.

[3] S. Gole, B. Tidke, ''Frequent itemset mining for Big Data
in social media using ClustBigFIM algorithm“, Proceed-
ings of the International Conference on Pervasive Com-
puting, Pune, India, 8-10 January 2015, pp. 1-6.

[4] Y. Djenouri, D. Djenouri, J. C.-W. Lin, A. Belhadi, “Fre-
quent Itemset Mining in Big Data with Effective Single
Scan Algorithms”, IEEE Access, Vol. 6, 2018, pp. 1-15.

[5] D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, F. Pulvirenti, L.
Venturini, “Frequent Itemsets Mining for Big Data: A Com-
parative Analysis”, Big Data Research, Vol. 9, 2017, pp. 67-83.

[6] C. Fernandez-Basso, A. J. Francisco-Agra, M. J. Martin-
Bautista, M. D. Ruiz, “Finding tendencies in streaming
data using Big Data frequent itemset mining”, Knowl-
edge-Based Systems, 2018, pp. 1-21.

[7] K. K. Sethi, D. Ramesh, “HFIM: a Spark-based hybrid fre-
quent itemset mining algorithm for big data process-
ing”, The Journal of Supercomputing, Vol. 73, No. 8,
2017, pp. 3652-3668.

[8] K.-W. Chon, S.-H. Hwang, M.-S. Kim, “GMiner: A fast GPU-
based frequent itemset mining method for large-scale
data”, Information Sciences, Vol. 439-440, 2018, pp. 19-38.

[9] Y.-H. Liang, S.-Y. Wu, “Sequence-Growth: A Scalable and
Effective Frequent Itemset Mining Algorithm for Big
Data Based on MapReduce Framework”, Proceedings of
the IEEE International Congress on Big Data, New York,
NY, USA, 2015, pp. 1-8.

[10] R. Joy, K. K. Sherly, “Parallel frequent itemset mining
with spark RDD framework for disease prediction”, Pro-
ceedings of the International Conference on Circuit,
Power and Computing Technologies, Nagercoil, India,
18-19 March 2016, pp. 1-5.

[11] Y. Djenouri, D. Djenouri, A. Belhadi, A. Cano, “Exploiting
GPU and cluster parallelism in single scan frequent item-
set mining”, Information Sciences, Vol. 496, 2018, pp. 1-15.

1058 International Journal of Electrical and Computer Engineering Systems

[12] K.-W. Chon, M.-S. Kim, “BIGMiner: a fast and scalable

distributed frequent pattern miner for big data”, Cluster

Computing, Vol. 21, 2018, pp. 1-14.

[13] S. Raj et al. “EAFIM: efficient apriori-based frequent

itemset mining algorithm on Spark for big transaction-

al data”, Knowledge and Information Systems, Vol. 62,

2020, pp. 3565-3583.

[14] S. Moens, E. Aksehirli, B. Goethals, “Frequent Itemset

Mining for Big Data”, Proceedings of the IEEE Interna-

tional Conference on Big Data, Silicon Valley, CA, USA,

6-9 October 2013, pp. 1-8.

[15] Y. Xun, J. Zhang, X. Qin, X. Zhao, “FiDoop-DP: Data Par-

titioning in Frequent Itemset Mining on Hadoop Clus-

ters”, IEEE Transactions on Parallel and Distributed Sys-

tems, Vol. 28, No. 1, 2017, pp. 101-114.

[16] A. Asbern, P. Asha, “Performance evaluation of asso-

ciation mining in Hadoop single node cluster with Big

Data”, Proceedings of the International Conference on

Circuits, Power and Computing Technologies, Nager-

coil, India, 19-20 March 2015, pp. 1-5.

[17] S. Kumar, K. K. Mohbey, “A review on big data parallel

and distributed approaches of pattern mining”, Journal

of King Saud University - Computer and Information

Sciences, Vol. 34, No. 5, 2019, pp. 1-24.

[18] M. Zitouni, R. Akbarinia, S. B. Yahia, F. Masseglia, “A Prime

Number Based Approach for Closed Frequent Itemset

Mining in Big Data”, Proceedings of Database and Ex-

pert Systems Applications, Valencia, Spain, pp. 509-516.

[19] C. K. Leung, H. Zhang, J. Souza, W. Lee, “Scalable Vertical

Mining for Big Data Analytics of Frequent Itemsets”, Pro-

ceedings of Database and Expert Systems Applications,

2018, pp. 3-17.

[20] P. Galetsi, K. Katsaliaki, S. Kumar, “Big data analytics in

the health sector: Theoretical framework, techniques,

and prospects”, International Journal of Information

Management, Vol. 50, 2020, pp. 206-216.

[21] C. Fernandez-Basso, M. D. Ruiz, M. J. Martin-Bautista,

''A fuzzy mining approach for energy efficiency in a Big

Data framework”, IEEE Transactions on Fuzzy Systems,

Vol. 28, 2020, pp. 1-12.

[22] F. Fumarola, D. Malerba, ''A parallel algorithm for ap-

proximate frequent itemset mining using MapReduce”,

Proceedings of the International Conference on High-

Performance Computing & Simulation, Bologna, Italy,

21-25 July 2014, pp. 1-8.

[23] Y. Djenouri et al. ''A Novel Parallel Framework for Meta-

heuristic-based Frequent Itemset Mining“, Proceedings

of the IEEE Congress on Evolutionary Computation,

Wellington, New Zealand, 10-13 June 2019, pp. 1-7.

[24] A. Aggarwal, D. Toshniwal, “Frequent Pattern Mining on

Time and Location Aware Air Quality Data”, IEEE Access,

Vol. 7, 2019, pp. 98921-98933.

[25] J. M. Luna, F. Padillo, M. Pechenizkiy, S. Ventura, “Apriori

Versions Based on MapReduce for Mining Frequent Pat-

terns on Big Data”, IEEE Transactions on Cybernetics, Vol.

48, No. 10, 2017, pp. 2851-2865.

[26] S. Nalousi, Y. Farhang, A. B. Sangar, "Weighted Frequent

Itemset Mining Using Weighted Subtrees: WST-WFIM",

IEEE Canadian Journal of Electrical and Computer Engi-

neering, Vol. 44, No. 2, 2021, pp. 206-215.

[27] F. Li, Z. Zhang, B. Cheng, P. Zhang, "Probabilistic Fuzzy

Frequent Item Sets Mining (PPFIM),” Proceedings of the

7th International Conference on Cloud Computing and

Big Data Analytics, Chengdu, China, 2022, pp. 127-132.

[28] A. Sharma, R. K. Singh, "An Efficient Approach to Find

Frequent Item Sets in Large Database”, Proceedings of

the 1st Odisha International Conference on Electrical

Power Engineering, Communication and Computing

Technology, Bhubaneswar, India, 2021, pp. 1-6.

[29] B. Sivaiah, R. R. Rao, "A Survey on Fast and Scalable In-

cremental Frequent Item Set Methods for Big Data”, Pro-

ceedings of the International Conference on Intelligent

Controller and Computing for Smart Power, Hyderabad,

India, 2022, pp. 1-5.

[30] R. Agarwal, A. Gautam, A. K. Saksena, A. Rai, S. V. Karatan-

gi, "Method for Mining Frequent Item Sets Considering

Average Utility”, Proceedings of the International Con-

ference on Emerging Smart Computing and Informat-

ics, Pune, India, 2021, pp. 275-278.

[31] W. Tian, F. Li, Y. Liu, Z. Wang, T. Zhang, "Depth-First Un-

certain Frequent Itemsets Mining based on Ensembled

Conditional Item-Wise Supports", Proceedings of the In-

ternational Conference on Intelligent Supercomputing

and BioPharma, Zhuhai, China, 2023, pp.121-128.

[32] S. Bagui, K. Devulapalli, J. Coffey, "A heuristic approach

for load balancing the FP-growth algorithm on MapRe-

duce", Array, Vol. 7, 2020, p. 100035.

[33] X. Meng et al. “Mllib: Machine learning in Apache spark”,

Journal of Machine Learning Research, Vol. 17, No. 1,

2016, pp. 1235-1241.

[34] Y. Rochd., I. Hafidi, B. Ouartassi, “A Review of Scalable Al-

gorithms for Frequent Itemset Mining for Big Data Us-

ing Hadoop and Spark”, Real-Time Intelligent Systems,

Lecture Notes in Real-Time Intelligent Systems, Spring-

er, 2017, pp. 90-99.

[35] R. Wetzker, C. Zimmermann, C. Bauckhage, “Analyzing so-

cial bookmarking systems: adel.icio.us cookbook”, Min-

ing Social Data Workshop Proceedings, 2008, pp. 26-30.

