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Abstract – Due to the rapid growth of data from different sources in organizations, the traditional tools and techniques that 
cannot handle such huge data are known as big data which is in a scalable fashion. Similarly, many existing frequent itemset mining 
algorithms have good performance but scalability problems as they cannot exploit parallel processing power available locally or 
in cloud infrastructure. Since big data and cloud ecosystem overcomes the barriers or limitations in computing resources, it is a 
natural choice to use distributed programming paradigms such as Map Reduce. In this paper, we propose a novel algorithm known 
as A Nodesets-based Fast and Scalable Frequent Itemset Mining (FSFIM) to extract frequent itemsets from Big Data. Here, Pre-Order 
Coding (POC) tree is used to represent data and improve speed in processing. Nodeset is the underlying data structure that is efficient 
in discovering frequent itemsets. FSFIM is found to be faster and more scalable in mining frequent itemsets. When compared with its 
predecessors such as Node-lists and N-lists, the Nodesets save half of the memory as they need only either pre-order or post-order 
coding. Cloudera's Distribution of Hadoop (CDH), a MapReduce framework, is used for empirical study. A prototype application is 
built to evaluate the performance of the FSFIM. Experimental results revealed that FSFIM outperforms existing algorithms such as 
Mahout PFP, Mlib PFP, and Big FIM. FSFIM is more scalable and found to be an ideal candidate for real-time applications that mine 
frequent itemsets from Big Data.

Keywords: Big Data, Frequent Itemset Mining (FIM), MapReduce Programming Paradigm (MRPP), Fast and Scalable Frequent Item 
set Mining (FSFIM)

1.  INTRODUCTION

Frequent Itemset Mining (FIM) is a phenomenon in 
data mining used to extract frequently occurring items 
that exhibit latent relationships in the data. FIM leads 
to the generation of association rules that provide Busi-
ness Intelligence (BI) when interpreted by domain ex-
perts. Association rule mining is the process of finding 
patterns, associations, and correlations among sets of 
items in a database.  The Association Rules generated 
have an antecedent and a consequent. An Association 
Rule is a pattern of the form X⋀Y⟹Z [support, confi-
dence], where X, Y, and Z are items in the dataset. The 
left-hand side of the rule X⋀Y is called the antecedent 

of the rule and the right-hand side Z is called the con-
sequent of the rule. Within the dataset, confidence and 
support are two measures to determine the certainty 
or usefulness of each rule. Support is the probability 
that a set of items in the dataset contains both the an-
tecedent and consequent of the rule i.e P (X∪ Y ∪ Z).  
Confidence is the probability that a set of items con-
taining the antecedent also contains the consequent. 
i.e., P (Z/(X ∪ Y)

Many FIM algorithms that came into existence are 
classified into Apriori-based and pattern-growth-based 
algorithms. These algorithms cannot exploit the paral-
lel processing power of cloud data centers.

Volume 14, Number 9, 2023

Borra Sivaiah
Research Scholar, 
Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Kakinada, 
Andra Pradesh, India,  
CMR College of Engineering &Technology, Hyderabad
sivabetld@gmail.com

Ramisetty Rajeswara Rao
Professor of CSE,
Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Gurajada,
Andra Pradesh, India
raob4u@jntukucev.ac.in



1052 International Journal of Electrical and Computer Engineering Systems

Therefore, they suffer from the capability of dealing 
with big data. Big Data is data that has characteristics 
such as volume, variety, and velocity as shown in Fig.1. 
Big Data is voluminous (often measured in petabyte-
scale), and has a variety of data such as structured, un-
structured, and semi-structured besides having con-
tinuous growth or streaming data. The importance of 
Big Data processing signifies that when big data (com-
plete data) is not considered, it results in biased conclu-
sions. The amount of data being generated by different 
sources of Big Data such as social media, World Wide 
Web (WWW), and Internet of Things (IoT) use cases is 
unprecedented and essentially needs a specialized mo-
dus operandi to mine it efficiently to arrive at Business 
Intelligence (BI). There are two types of approaches used 
in frequent item sets mining of Big Data: Apriori-based 
and FP-Growth based. The Apriori-based algorithms 
consume more memory and time in the generation of 
frequent item sets from Big Data. The FP-Growth-based 
algorithms were developed for faster generation of the 
frequent itemsets instead of the Aprori-based algorithm. 
Therefore, FP-growth-based algorithms are faster than 
the Apriori-based approaches. However, FP-growth al-
gorithms also suffer from storing conditional FP-trees in 
memory and then mining from them may require more 
time and memory. The drawbacks of the existing works:

1. Some of the existing frequent item sets mining al-
gorithms consumed more memory and more min-
ing time.

2. Some of the existing algorithms don't use distrib-
uted programming paradigms to solve the scal-
ability problem.

 To address the existing drawbacks, the proposed re-
search is introduced.   The main purpose of the research 
in this article is to develop an efficient MapReduce-
based algorithm for faster and scalable discovery of 
frequent itemsets from big data. The proposed method 
needs distributed programming frameworks like Ha-
doop for mining big data as explored in Section 1.2.

1.1. MOTIvATION 

Many researchers developed frequent pattern algo-
rithms for handling Big Data. The algorithms are divided 
into two categories: Apriori-based and tree-based. Tree-
based algorithms are faster than Apriori-based algo-
rithms. The traditional tools and techniques cannot han-
dle big data, due to their limited capabilities.  Frequent 
itemset mining algorithms are faster but cannot use local 
or cloud-based parallel processing power. Researchers 
used parallel and distributed Hadoop MapReduce sys-
tems to quickly generate frequent item sets. Large data 
makes it difficult to extract frequent item sets from trans-
actional databases, if extracted faster, then it could be 
helpful for better decision-making. Using the best data 
structures can reduce half of the memory and execution 
time of frequent item generation from big data. When 
a case study like healthcare is considered, there is ever-
growing data size leading to big data. Unless there is fast-

er convergence in frequent itemset mining, it takes more 
time for frequent itemset mining. In many applications, 
there is a need for quick convergence. It is the motivation 
behind the research carried out and presented in this pa-
per. Our work has focused on building a new algorithm 
for mining frequent item sets based on the best data 
structure known as Nodeset and tree structure known as 
POC tree. Towards this end, we proposed a framework for 
FIM that is significantly faster than existing methods. Our 
contributions to this paper are as follows.

1. A novel algorithm known as Fast and Scalable Fre-
quent item set mining (FSFIM) is proposed to ex-
tract frequent item sets from big data.

2. A Pre-Order Coding (POC) tree is used to represent 
data and improve speed in processing leading to 
improved performance.

3. A prototype is built to evaluate the FSFIM and com-
pare it with the state-of-the-art FIM techniques. 

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the literature on FIM techniques, especially 
parallelized ones. Section 3 presents the proposed algo-
rithm and the underlying mechanisms and data structures. 
Section 4 presents experimental results and discussion. 
Section 5 concludes the work in the paper and gives sug-
gestions for improving the research further in the future.

1.2. ClOUDERA’S DISTRIBUTION OF HADOOp

Apache Hadoop framework is widely used in the 
real world for processing big data. Cloudera's Distri-
bution of Hadoop (CDH) is based on the Apache Ha-
doop framework. It supports the MapReduce paradigm 
where the number of worker nodes in the distributed 
environment acts as a mapper and reducer.

Hadoop Distributed File System (HDFS) plays a crucial 
role in the framework as it stores inputs and outputs. 
HDFS can access data from various servers computed 
distributed across the globe. The framework involves a 
job tracker and task tracker to keep track of a given job 
and underlying tasks respectively. The map phase is car-
ried out by thousands of worker nodes and the results 
are given to reducers (worker nodes). On the other hand, 
the reducers act on the data to produce the final output. 

Fig. 2 shows the MapReduce phenomenon which is es-
sentially meant for dealing with large volumes of data. It 
supports parallel processing to process data faster. Input 
data is divided into many pieces and assigned to worker 
nodes that complete a given job and return the results. 

Fig. 1. Illustrates characteristics of big data
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2. RElATED WORK

Literature is found rich in the research on frequent 
itemset mining algorithms. Many FIM algorithms that 
target big data came into existence which are briefly 
presented in this section.

Qiu et al. [1] proposed a parallel FIM algorithm known 
as Yet Another Frequent Itemset Mining (YAFIM) which 
is based on Apriori. They defined the YAFIM algorithm 
to run using a distributed programming framework 
known as Spark. 

Yasir et al. [2] proposed an FIM algorithm to handle 
sparse big data. They named it TRimmed Transaction 
LattICE (TRICE). It generates trimmed subsets iteratively 
to leverage performance in terms of memory consump-
tion and execution time. They intended to improve it to 
have other variants of frequent itemsets such as maximal 
frequent itemsets besides working on streaming data. 

Gole and Tidke [3] proposed a MapReduce-based 
method for FIM on big data. It is named ClustBigFIM. It 
is derived from the BigFIM algorithm, for better speed 
and scalability.

Fig. 2. Map Reduce Frame Work in Hadoop

Djenouri et al. [4] proposed two FIM algorithms 
namely the Enhanced Approach for Single Scan ap-
proach for Frequent Itemset Mining (EA-SSFIM) and 
MapReduce Single Scan approach for Frequent Itemset 
Mining (MR-SSFIM) for big data. They are designed to 
deal with sparse big data and big data respectively for 
improvements in terms of reducing execution time and 
improving efficiency in processing big data. 

Apiletti et al. [5] review different FIM algorithms that are 
developed for big data. Fernandez-Basso et al. [6] proposed 
a distributed method for FIM which is meant for extracting 
frequent itemsets from streaming data. Sethi and Ramesh 
[7] proposed an FIM algorithm known as Hybrid Frequent 
Itemset Mining (HFIM) that works in two phases. In the 
first phase, it extracts frequent itemsets and in the second 
phase, it obtains frequent itemsets of k-cardinality where 

k is greater than or equal to 2. It could improve speedup 
and execution time. Chon et al. [8] proposed a Graphics 
Processing Unit (GPU) based FIM known as GMiner which 
is much faster as it could exploit the power of GPU. 

Liang and Wu [9] proposed a distributed FIM algo-
rithm known as Sequence-Growth. It makes use of a 
lexicographical sequence tree that follows the idea of 
lexicographical order. It also has a pruning strategy 
known as breadth-wide support-based which makes 
it scalable and efficient. In the future, they intend to 
make it an incremental FIM algorithm.

Joy and Sherly [10] proposed a parallel FIM algorithm 
known as Faster-IAPI that is executed using the Spark 
RDD environment. It is employed to have symptom cor-
relations in patients' data in the healthcare domain for 
disease prediction. Djenouri et al. [11] proposed three 
versions of High-Performance Computing (HPC) that 
make use of a single database scan. They are known 
as Single Scan on GPU (GSS), Single Scan on Cluster 
(CSS), and Single Scan on Cluster and GPU (CGSS). Out 
of which CGSS was found to have better performance. 

A distributed FIM algorithm known as BIGMiner has 
been proposed in [12] which is scalable and causes less 
network communication overhead. This algorithm ex-
ploits the GPU and MapReduce programming model to 
have significantly improved performance. 

Raj et al. [13]. have proposed an EAFIM method for an 
efficient apriori-based frequent itemset mining algorithm 
on Spark for big transactional data. Spark is gaining atten-
tion in big data processing due to its in-memory process-
ing capabilities. EAFIM uses parallel and distributed com-
puting environments and introduces two novel methods 
to improve efficiency. Unlike apriori, candidate genera-
tion and count of support values occur simultaneously 
during input dataset scanning. The updated input dataset 
is calculated by removing useless items and transactions, 
reducing the size of the input dataset for higher iterations.

Moens et al. [14] investigate the usage of the MapRe-
duce paradigm to execute different FIM algorithms. 
They studied two such algorithms such as BigFIM and 
Dist-Eclat thoroughly. They found that MapReduce 
models outperform their predecessors. Xun et al. [15] 
proposed parallel FIM based on Hadoop clusters. The 
algorithm is characterized by its data partitioning ap-
proach that paves the way for a locality-based ap-
proach to enhance the performance of the algorithm.

Asbern and Asha [16] explored different algorithms for 
FIM that operate on big data using the MapReduce par-
adigm. Kumar and Mohbey [17] investigated different 
parallel FIM algorithms that are executed in distributed 
environments. Different issues they identified in such 
algorithms include scalability, privacy, complex data 
types, load balancing, and gene regulation patterns. 

Zitouni et al. [18] proposed a parallel FIM known as 
CloPN. It follows a prime number-based approach for 
FIM from big data. It is supposed to mine closed fre-
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quent itemsets (CFI). Leung et al. [19] on the other hand 
proposed an alternative data mining approach for 
big data. It is known as scalable vertical mining using 
Spark. Galetsi et al. [20] studied big data analytics asso-
ciated with the healthcare domain. They investigated 
on different machine learning techniques used for data 
analytics including FIM algorithms. 

Fernandez-Basso et al. [21] defined a fuzzy mining 
approach to have FIM on big data. They implemented 
a method known as the automatic fuzzification meth-
od for this purpose. It takes weather forecast data and 
generates association rules with energy efficiency us-
ing the Spark environment. 

Fumarola and Malerba [22] proposed a method 
known as approximate FIM that uses parallel process-
ing using the MapReduce paradigm. Djenouri et al. [23] 
proposed a parallel framework for FIM using a meta-
heuristic approach. It is known as Cluster for FIM (CFIM). 
At nodes in the cluster, the algorithm partitions data. 
The framework is integrated with different metaheuris-
tics such as Genetic Algorithm (GA), BSO (Bees Swarm 
Optimization), and Particle Swarm Optimization (PSO) 
for better performance. 

Aggarwal et al. [24] investigated air quality data with 
location and time awareness for performing FIM. First, 
it understands spatiotemporal dependencies in the 
data and then employs the FIM process to generate 
frequent itemsets. Luna et al. [25] proposed different 
parallel versions of Apriori to work on big data using 
the MapReduce paradigm. Their Hadoop-based imple-
mentation showed better performance than the exist-
ing methods. From the literature, it is understood that 
parallel approaches used for FIM can perform better 
than traditional FIM methods. However, the perfor-
mance achieved due to distributed environments is in-
sufficient as the underlying method for FIM is expected 
to have a better approach. Towards this end, we pro-
posed a framework for FSFIM that is significantly faster 
than existing methods. 

S. Nalousi et al. [26] introduced a novel efficient ap-
proach called weighted frequent itemset mining using 
weighted subtrees (WST-WFIM) to identify the average 
weight of frequent rules. The average weight of found 
rules is calculated using special trees and some novel 
data structures on the frequent pattern growth (FP-
Growth) method. It works with the data set that each 
item in each transaction has a certain weight and saves 
them in the dedicated tree.

Fayuan Li et al. [27], Based on the calculation of 
item set fuzziness, this approach incorporates the un-
predictability of potential world models to tackle the 
problem of mining fuzzy frequent item sets based on 
probability threshold. Fuzzy theory and uncertainty 
are based on linguistic information and have been ex-
panded to cope with partial truth concepts. A dynamic 
programming-based approach is used to compute the 
frequent fuzzy probability.

TR-FC-GCM (Transaction Reduction - Frequency 
Count - Generate Combination Method) created by 
Ajay Sharma et al [28] discovers all significant frequent 
patterns by creating all potential combinations of an 
item with a single database search and performs better 
for null and full datasets. B Sivaiah et al [29], Reviewed 
Incremental mining, which aims to extract patterns 
from dynamic databases that have applications in do-
mains such as product recommendation, text mining, 
market basket analysis, and web click stream analysis. 

Reshu Agarwal [30] suggested a method for finding 
high average-utility item sets (HAUIs) that takes into ac-
count both the length of the itemsets and their utilities. 
HUIs are found using the standard method based on the 
individual utility of an item set, which is calculated as the 
sum of the utilities of individual items. The difficulty is 
that the aforementioned method of computing HUIs 
does not take the length of the item set into account.

Wanyong Tian et al. [31] suggested a technique for 
uncertain frequent item sets called UFP-ECIS (Uncer-
tain Frequent Pattern Mining with Ensembled Condi-
tional Item-wise Supports). The difficulties of informa-
tion redundancy and loss caused by a single probabilis-
tic frequent threshold can be successfully improved by 
assembling numerous conditional item-wise supports. 
Furthermore, by employing several pruning algorithms 
based on the sorted downward closure feature and the 
concept of least minimal probability frequent thresh-
old. Many existing frequent itemset mining algorithms 
have good performance but scalability problems as 
they cannot exploit parallel processing power available 
locally or in cloud infrastructure. Since big data and 
cloud ecosystem overcomes the barriers or limitations 
in computing resources, it is a natural choice to use dis-
tributed programming paradigms such as Map Reduce.

3. FAST AND SCAlABlE FREqUENT ITEMSET 
MININg (FSFIM) AlgORITHM

The proposed algorithm is known as Fast and Scal-
able Frequent Itemset Mining (FSFIM) used to extract 
frequent item sets from big data. The data representa-
tion before discovering frequent itemsets is made using 
POC-tree. Therefore, the construction of the POC tree is 
an important part of the FSFIM. However, POC construc-
tion is made after producing frequent 1-itemsets. Based 
on the minimum support (statistical measure to know 
the quality of frequent pattern), after scanning the en-
tire database, a set of frequent 1-itemsets, denoted as 
F1, with corresponding support is generated. Then the 
items in F1 are ordered using support-descending order. 
The ordered items are denoted as L1 where the frequent 
items that have the same support are just taken in any 
order. Then POC tree is constructed as follows. The first 
root of the tree, denoted as Tr, is created but it is set to 
"null". Then for every transaction in the given database 
frequent itemsets, in the order of F1, are selected and 
sorted. Let [p|P] denote a sorted frequent item list where 
the first element is denoted as p while others are de-
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Fig. 3. Illustrates a sample set-enumeration tree

3.1. pOC-TREE

The node sets data structure used in this paper is 
based on the POC (Pre-Order Coding) tree. Unlike its 
predecessor PPC-tree which needs encoding of nodes 
with pre-order and post-order codes causing overhead, 
POC-tree needs only either pre-order or post-order and 
not both. Since it is efficient, in this paper, we adapted 
it from [26]. POC-tree can be understood based on the 
data in Table 1 and the POC-tree representation in Fig.4. 
The tree has a root node labeled "null" and many sub-
trees where each node is prefixed by an item. Each node 
in the tree has different fields like item-name, children-
list, count, and pre-order. Item node refers to an item the 
node represents. Count indicates the number of trans-
actions denoted by the path till this node. Children-list 
refers to the children of the node and pre-order is the 
node's pre-order code. The POC tree is similar to that of 
the PPC tree where each node in the POC tree is encod-
ed by its pre-order while the PPC tree has each node en-
coded by its pre-order and post-order. After generating 
the POC tree, the node sets are created. Once node sets 
are created, the POC tree is not required. The transac-
tional items are provided in support-descending order 
in the last column of the table. The POC-tree representa-
tion helps in the faster generation of frequent itemsets. 
In other words, it accelerates the frequent itemset min-
ing process. When there are large volumes of data, in the 
presence of cloud computing resources, it may be of use 
to leverage performance benefits.

Table 1. Shows a simple transactional database

ID Ordered Frequent Items Support-Descending Items 
1 a, c, g, f c, f, a

2 e, a, c, b b, c, e, a

3 e, c, b, i b, c, e

4 b, f, h b, f

5 b, f, e, c, d b, c, e, f

Fig. 4. POC-tree constructed for the data in Table

The FSFIM algorithm for mining Big Data works as 
follows: FSFIM takes transactional database T and mini-
mum support threshold th as inputs. It produces fre-
quent itemsets (results) R. Step 1 constructs the POC 
tree as discussed earlier in this section. Step 3 discovers 
all frequent 1-itemsets. Step 3 starts an iterative process 
for each node in the POC tree. Step 5 extracts the item 
associated with the visiting node in the POC tree. Step 
5 through Step 11, there is an iterative process used to 
obtain all frequent 2-itemsets into F2. Steps 12 through 
18, prunes infrequent 2-itemsets present in F2. Step 19 
scans the POC tree and an iterative process from Step 20 
through Step 29 discovers frequent (>2) itemsets. The 
map() function ends here by returning F representing 
frequent itemsets for the given portion of transactions. 
This way multiple map() functions operate based on the 
worker nodes involved in the map phase of the MapRe-
duce paradigm. The intermediate results (F of each map-
per) are given to reducers to combine results and return 
final frequent itemsets obtained from the given T.

Algorithm: Fast and Scalable Frequent Itemset 
Mining algorithm 

pseudocode: A Novel Nodesets Based Fast and Scalable 
Frequent Itemset Mining

Input: A transactional database T, minimum support 
threshold th

Output: Discovered frequent itemsets R

Map() Function
1. Construct POC tree
2. F1 ← FindFrequent1Itemsets ()
3. For each node n in the POC tree 
4.     item ← FindItem(n)
5.     For each ancestor of n and n’
6.         itemn’ ← FindItem(n’)
7.         IF item and itemn’ belong to F2 Then
8.             support_of_item_itemn’  

             support_of_item_itemn’ + n.acc

noted as P. Then the insert tree function is carried out. If 
the transaction has as child node N with the same item 
name as that of p, N's count is increased by 1, if not new 
node N is created and its count is initialized to 1. Then 
it is added to the transaction's children list. As far as P 
has some items, the insert tree is invoked recursively to 
complete POC tree construction. Afterward, the POC 
tree is scanned to, following pre-order traversal, have a 
pre-order of each node in the tree.  Once the POC tree is 
constructed, it is possible to find all frequent 2-itemsets 
and corresponding node sets. Afterward, frequent k(>2)-
itemsets are discovered. The algorithm has a pruning 
strategy known as promotion which depends on the no-
tion of superset equivalence property. To represent each 
search space, the algorithm uses a set-enumeration tree 
as shown in Fig. 3.
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9.              F2 ← F2U{item, itemn’}
10.         End If
11.     End For
12. For each itemset Q in F2
13.     IF Q.sup<th x |T| Then
14.         F2 ← F2-{Q}
15.     Else
16.         Q.nodeset ← null
17.     End If
18. End For
19. Scan POC tree
20. For each node n in the POC tree
21.     item ← FindItem(n)
22.     For each ancestor of n’ and n’’
23.         itemn’’ ← FindItem(n’’)
24.         IF item and itemn’ belong to F2 Then
25.             item_itemn’.nodeset ← item_itemn’. 

             nodeset U itemn’.N_info
26.         End If
27.     End For
28. F=F U F1
29. Return F
Reduce() Function
30. For each F in intermediate Frequent Itemsets
31.     R+=F
32. End For
33. Return R

4. ExpERIMENTAl RESUlTS AND ANAlySIS

We experimented with the Cloudera environment to 
evaluate the FSFIM algorithm and compare that with 
state-of-the-art methods such as Mahout PFP [32], Mlib 
PFP [33], and Big FIM [34]. For experiments, the real da-
taset known as Delicious explored in [35] is used. This da-
taset is a collection of web tags. Each record represents 
the tag assigned by a user to a URL and it consists of 4 at-
tributes: date, user id (anonymized), tagged URL, and tag 
value. The transactional representation of the delicious 
dataset includes one transaction for each record, where 
each transaction is a set of four pairs (attribute, value), i.e., 
one pair for each attribute. The dataset stores more than 
3 years of web tags. It is very sparse because of the huge 
number of different URLs and tags. A prototype applica-
tion is built using Java language on top of the MapReduce 
paradigm to implement the proposed algorithm. The da-
taset has 41,949,956 transactions and 57,372,977 items. 
Observations are made in terms of execution time against 
different minimum support values and several attributes. 

Table 2. Shows execution time of different 
algorithms against various mins up values

Minsup (%)
Execution Time (Seconds)

Mahout pFp Mlib pFp Big FIM FSFIM
0 90000 10000 7500 5000

0.2 9500 8000 6200 3000

0.4 500 2500 500 300

0.6 400 900 400 250

0.8 400 600 400 150

1 400 400 400 100

As presented in Table 2, the execution time of the 
algorithms is provided for different minsup (%) values.

As presented in Fig. 5, it is evident that the minimum 
support values used for experiments are presented on 
the horizontal axis while the execution time is shown on 
the vertical axis. The results revealed that the proposed 
method FSFIM outperforms the state-of-the-art methods.

Fig. 5. Performance comparison in terms of 
execution time against different mins up (%)

As presented in Table 3, the execution time of the algo-
rithms is provided for different transaction length values.

Table 3. Shows the execution time of different 
algorithms against various transaction lengths

Transaction 
length

Execution Time (Seconds)
Mlib pFp Mahout pFp Big FIM FSFIM

10 100 120 120 70

20 100 125 125 115

30 120 150 150 100

40 450 300 300 200

50 1250 425 425 354

60 3200 550 550 530

70 5100 600 600 585

80 7500 950 650 620

90 8600 1400 900 835

100 9800 1800 1200 1100

Fig. 6. Performance comparison in terms of 
execution time against transaction length

As presented in Fig. 6, it is evident that the transaction 
length values used for experiments are presented on the 
horizontal axis while the execution time is shown on the 
vertical axis. The results revealed that the proposed meth-
od FSFIM outperforms the state-of-the-art methods. 
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Table 4. Shows the execution time of different
algorithms against several attributes

The execution time of the algorithms is provided for 
a different number of attributes is presented in Table 4. 

Number of 
Attributes

Execution Time (Seconds)

Mahout pFp Mlib pFp FSFIM

0 100 400 50

10 1400 4200 600

20 1800 12100 800

30 2500 13900 1200

40 7000 18760 4500

50 18100 19850 15200

Fig. 7. Performance comparison in terms of 
execution time against the number of attributes

The FSMFI is better than the existing Mahout PFP, 
and Mlib PFP. As presented in Fig. 7, it is evident that 
the number of attributes used for experiments is pre-
sented in the horizontal axis while the execution time is 
shown in the vertical axis. The results revealed that the 
proposed method FSFIM outperforms the state-of-the-
art methods. Experimental results revealed that FSFIM 
outperforms existing algorithms such as Mahout PFP, 
Mlib PFP, and Big FIM. FSFIM is more scalable and found 
to be an ideal candidate for real-time applications that 
mine frequent itemsets from big data.

5. CONClUSION AND FUTURE WORK

In this paper, we propose a novel algorithm known as A 
Novel Nodesets Based Fast and Scalable Frequent Itemset 
Mining (FSFIM) to extract frequent itemsets from big data. 
Pre-Order Coding (POC) tree is used to represent data and 
improve speed in processing. Nodeset is the underlying 
data structure that is efficient in discovering frequent 
itemsets. When compared with its predecessors such as 
Node-lists and N-lists, the Nodeset saves half of the mem-
ory as it needs only either a pre-order or post-order code. 
Cloudera's Distribution of Hadoop (CDH), a MapReduce 
framework, is used for empirical study. A prototype appli-
cation is built to evaluate the performance of the FSFIM. 
Experimental results revealed that FSFIM outperforms ex-
isting algorithms such as Mahout PFP, Mlib PFP, and Big 
FIM. FSFIM is more scalable and found to be an ideal can-
didate for real-time applications that mine frequent item-

sets from big data. Findings in the empirical study include 
faster execution and scalability. In the future, we would 
like to extend the FSFIM to support incremental mining of 
frequent itemsets to avoid scanning the entire database 
and reinventing wheel everything when the algorithm is 
executed.
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