436 research outputs found

    A Review on Reconfigurable Low Pass Bandstop Filter Based on Technology, Method and Design

    Get PDF
    Abstract-Reconfigurable filter technology is in robustness development. Due on the tunable and reconfigurable capability will contribute a various advantages in wireless applications. This tuning selectivity consist a numerous method, for example using varactor, micromachines, and PINdiodes.This review paper discussed PIN diodes as a switching element. The design and development of different types of switching element were then described. This paper presents of reconfigurable low pass bandstop filter WLAN, UWB bands applications for the past few years that operatedbetween1 to 5.6GHz. Most of the studies were focus on Chebyshev filter because of the excellent selectivity and the response is easy to be analyzed. Different types of method have been introduced in reconfigurable low pass bandstop filter, design and performance of the filter will then be compared

    Planar microwave filters with electronically tunability and other novel configurations

    Get PDF
    In order to meet the increasing demands of advance wireless communications and radar systems, several novel types of bandpass filters and bandstop filters have been developed in this thesis. A new type of varactor-tuned dual-mode bandpass filters have been presented to achieve a nearly constant absolute bandwidth over a wide tuning range by using a single DC bias circuit. Since the two operating modes (i.e., the odd and even modes) in a dualmode microstrip open-loop resonator do not couple to each other, tuning the passband frequency is accomplished by merely changing the two modal frequencies proportionally. Design equations and procedures are derived, and two two-pole tunable bandpass filters and a four-pole tunable bandpass filter of this type are demonstrated experimentally. Miniature microstrip doublet dual-mode filters that exhibit quasi-elliptic function response without using any cross coupling have been developed. It shows that a single two-pole filter or the doublet can produce two transmission zeros resulting from a double behaviour of the dual-mode resonator of this type. Electromagnetic (EM) simulation and experiment results of the proposed filters are described. Parallel feed configuration of a microstrip quasi-elliptic function bandpass filter has been built with a pair of open-loop dual-mode resonators. By employing this new coupling scheme, a novel filter topology with three-pole quasi-elliptic function frequency response can be obtained, leading to good passband performance, such as low insertion loss and good matching at the mid-band of passband. A designed three-pole bandpass filter of this type is demonstrated experimentally. A new class of dual-band filters based on non-degenerate dual-mode microstrip slow-wave open-loop resonators, which support two non-degenerate modes that do not couple, have been introduced. Different feed schemes that affect the filtering characteristics are investigated. Examples of dual-band filters of this type are described with simulation and experiment results. iii In order to achieve a wide spurious-free upper passband, a novel design of bandstop filter with cancellation of first spurious mode by using coupled three-section step impedance resonators (SIRs) has been developed. This cancellation occurs when two transmission poles coincide with the first spurious mode (transmission zero) by properly choosing the step impedance ratio and the gap between the SIR and the main transmission line. A stripline bandstop filter and a microstrip bandstop filter of this type are designed, fabricated and tested. As a preliminary investigation, the microstrip filter is tuned electronically using ferroelectric thin film varactors

    A Review on Reconfigurable Low Pass Bandstop Filter Based on Technology, Method and Design

    Get PDF
    Abstract-Reconfigurable filter technology is in robustness development. Due on the tunable and reconfigurable capability will contribute a various advantages in wireless applications. This tuning selectivity consist a numerous method, for example using varactor, micromachines, and PINdiodes.This review paper discussed PIN diodes as a switching element. The design and development of different types of switching element were then described. This paper presents of reconfigurable low pass bandstop filter WLAN, UWB bands applications for the past few years that operatedbetween1 to 5.6GHz. Most of the studies were focus on Chebyshev filter because of the excellent selectivity and the response is easy to be analyzed. Different types of method have been introduced in reconfigurable low pass bandstop filter, design and performance of the filter will then be compared

    Reconfigurable Microwave Filters

    Get PDF

    Compensation technique for nonlinear distortion in RF circuits for multi-standard wireless systems

    Get PDF
    Recent technological advances in the RF and wireless industry has led to the design requirement of more sophisticated devices which can meet stringent specifications of bandwidth, data rate and throughput. These devices are required to be extremely sensitive and hence any external interference from other systems can severely affect the device and the output. This thesis introduces the existing problem in nonlinear components in a multi-standard wireless system due to interfering signals and suggests potential solution to the problem. Advances in RF and wireless systems with emerging new communication standards have made reconfigurablility and tunability a very viable option. RF transceivers are optimised for multi-standard operation, where one band of frequency can act as an interfering signal to the other band. Due to the presence of nonlinear circuits in the transceiver chains such as power amplifiers, reconfigurable and tunable filters and modulators, these interfering signals produce nonlinear distortion products which can deform the output signal considerably. Hence it becomes necessary to block these interfering signals using special components. The main objective of this thesis is to analyse and experimentally verify the nonlinear distortions in various RF circuits such as reconfigurable and tunable filters and devise ways to minimize the overall nonlinear distortion in the presence of other interfering signals. Reconfigurbality and tunablity in filters can be achieved using components such as varactor diodes, PIN diodes and optical switches. Nonlinear distortions in such components are measured using different signals and results noted. The compensation method developed to minimize nonlinear distortions in RF circuits caused due to interfering signals is explored thoroughly in this thesis. Compensation method used involves the design of novel microstrip bandstop filters which can block the interfering signals and hence give a clean output spectrum at the final stage. Recent years have seen the emergence of electronic band gap technology which has “band gap” properties meaning that a bandstop response is seen within particular range of frequency. This concept was utilised in the design of several novel bandstop filters using defected microstrip structure. Novel tunable bandstop filters has been introduced in order to block the unwanted signal. Fixed single-band and dual-band filters using DMS were fabricated with excellent achieved results. These filters were further extended to tunable structures. A dual-band tunable filter with miniaturized size was developed and designed. The designed filters were further used in the compensation technique where different scenarios showing the effect of interfering signals in wireless transceiver were described. Mathematical analysis proved the validation of the use of a bandstop filter as an inter-stage component. Distortion improvements of around 10dB have been experimentally verified using a power amplifier as device under test. Further experimental verification was carried out with a transmitter which included reconfigurable RF filters and power amplifier where an improvement of 15dB was achieved

    Miniaturised and reconfigurable planar filters for ultra-wideband applications

    Get PDF
    An increasing demand for electromagnetic spectrum has resulted from the emergence of feature-rich and faster throughputs wireless applications. This necessitates the developments of dynamic reconfigurable or multifunctional systems to better exploit the existing spectrum. Future wireless devices will be expected to communicate over several bands with various other devices in order to fine tune the services they provide to the user. Each band may require a separate RF transceiver and such modern wireless multi-band multi-mode communication systems call for high performance, highly integrated compact modules. Since the Federal Communications Commission (FCC) released the unlicensed frequency band 3.1-10.6 GHz for ultra-wideband (UWB) commercial communications, the development race for commercialising UWB technology has seen a dramatic increase around the world. The aim of this research is to develop reconfigurable planar microwave filters for ultrawideband applications. The project investigates some key design issues of reconfigurable filters, which are being observed constantly in the latest development and realisation of microwave filters. Both analytical and numerical methods are performed to construct a realistic and functional design. Two different types of frequency reconfigurability are investigated in this thesis: discrete (e.g. PIN diode, Optical switch) and continuous (e.g. varactor diode). Using the equivalent circuits and considering the direct coupled filter structure in most cases, several topologies with attractive features are developed for future communication systems. The proposed works may be broadly categorised into three sections as follows. The first section explores a square ring shape close loop resonator along with an opencircuited stub in the symmetry plane. To realise a reconfigurable frequency states within the same spectrum, an innovative approach is developed for this case. An optical or photoconductive switch, comprised of a silicon die activated using near infrared light is investigated as a substitute of PIN diode and performances are evaluated to compare the feasibilities. In addition, a in-band interference rejection technique via externally coupled Tshape resonator is shown. However, it is observed that both structures achieve significant size reductions by utilising the inner part of the resonators. To improve the filter selectivity, a convenient design approach generating a pair of transmission zeros between both passband edges and a single zero in the stop band for harmonic suppression is discussed in the second section. Moreover, the development of notched rejection bands are studied and several novel methods to create a single and multiple notched bands employing the square ring shape structure are proposed. On inspection, it is found that the notch structure can be implemented without deteriorating the filter performances. The discussions are supplemented with detailed design examples which are accompanied by theoretical, simulated and experimental results in order to illustrate the filter development process and showcase practical filter performance. The third section reveals a novel highly compact planar dual-mode resonator with sharp rejections characteristics for UWB applications. A bandwidth reconfiguring technique is demonstrated by splitting its even-mode resonance. Filter structure with the dual-mode resonator is shown to have a relatively wide tuning range, significantly low insertion loss and a constant selectivity along with frequency variations in comparison to similar published works. Finally, the earlier dual-mode structure are modified to realise a dual wideband behaviour. A detail analysis with comprehensive design procedures is outlined and a solution for controlling the frequency bandwidths independently according to the application interest is provided. In line with the previous section, experimental verification is presented to support and supplement the discussions

    Synthesis, design, and fabrication techniques for reconfigurable microwave and millimeter-wave filters

    Get PDF
    As wireless communication becomes increasingly ubiquitous, the need for radio receivers which can dynamically adjust to their operating environment grows more urgent. In order to realize reconfigurable receivers, tunable RF front-end components are needed. This dissertation focuses on the theory, design, and implementation of reconfigurable microwave and millimeter-wave filters for use in such receivers. First, a theoretical framework is developed for absorptive bandstop filters, a new class of bandstop filters which overcomes some of the limitations of traditional tunable bandstop filters caused by the use of lossy tunable resonators. This theory is used in conjunction with silicon-micromachining fabrication technology to realize the first ever tunable bandstop filter at W-Band frequencies, as well as a state-of-the-art Ka-band tunable bandstop filter. The problem of bandwidth variation in tunable filters is then addressed. Widely-tunable filters often suffer from variations in bandwidth, excluding them from many applications which require constant bandwidth. A new method for reducing the bandwidth variation of filters using low-loss evanescent-mode cavity resonators is presented, and this technique is used to realize up to 90% reduction of bandwidth variation in octave-tunable bandstop filters. Lastly, a new differential coupling structure for evanescent-mode cavity resonators is developed, enabling the design of fully-balanced and balanced-to-unbalanced (balun) filters. An octave-tunable 3-pole bandpass balun filter using this coupling structure is presented. The balun filter has excellent amplitude and phase balance, resulting in common-mode rejection of greater than 40 dB across its octave tuning range

    Co-design of Reconfigurable and Multifunction Passive RF/Microwave Components

    Get PDF
    In order to meet the market demands, multi-band communication systems that are able to accommodate different wireless technologies to be compatible with different wireless standards should be investigated and realized. Multifunction and multi-band RF front-end components are promising solutions for reducing the size and enhancing the performance of multi-band communication systems. This dissertation focuses on the design and implementation of different multifunction and tunable microwave components for use in multi-standard, flexible transceiver. For frequency-domain duplexing (FDD) communication systems, in which the uplink and downlink channels are carried on different RF frequencies, a diplexer is an essential component to separate the transmitting and receiving signals from the antenna. Electrically tunable diplexers simplify the architecture of reconfigurable RF-front end. Moreover, in modern communication systems, the crowding of the spectrum and the scaling of electronics can result in higher common-mode interference and even-order non-linearity issues. In this dissertation, three tunable compact SIW-based dual-mode diplexers, with various SE (single-ended) and BAL (balanced) capabilities, are introduced for the first time. The dual-mode operation results in a dependent tuning between the two ports. The presented designs are for SE-SE, SE-BAL, and BAL-BAL. However, based on the presented design concepts, any combination of the diplexer ports can be achieved in terms of supporting the balanced and single-ended system interface. The fabricated diplexers show low insertion loss, high isolation, good tuning range and high common mode rejection. Tunable bandstop filter (BSF) is one of the essential components in the design of RF front-ends that require wide-band operations. A wide-open front-end leaves the receiver vulnerable to jamming by high-power signals. As a result, this type of front-ends requires dynamic isolation of any interfering signal. Realization of such filters in a balanced configuration, as a second function, is an important step in the realization of full-balanced RF front-ends. Balanced (differential) circuits have many important advantages over unbalanced (single-ended) circuits such as immunity to system noise, reduction of transient noise generation and inherent suppression of even-order nonlinearities. All reported balanced filters are bandpass filters that target wide pass-bands and high common-mode rejection. These filters are necessary for wide-band RF front-ends but, as mentioned above, leave the system open to interferers and jammers. In this dissertation, a new differential coupling structure for evanescent-mode cavity resonators is developed, enabling the design of fully-balanced tunable BSF. The proposed filter is tunable from 1.57-3.18 GHz with 102% tuning range. In addition, over the full range, the measured 10-dB fractional bandwidth ranges from 1-2.4%, and the attenuation level is better than 47 dB. Lastly, Substrate Integrated Waveguide (SIW) evanescent-mode cavity resonators (EVA) are employed in the design of RF couplers, quadrature hybrid and rat-race couplers. These couplers are used in the design of numerous RF front-end components such as power amplifiers, balanced mixers, and antenna array feeding networks. Utilizing such resonators (EVA) in the design allows the couplers to have wide spurious-free range, low power consumption, high power handling capability and both tunability and filtering capabilities. The proposed quadrature hybrid coupler can be tuned starting from 1.32–2.22 GHz with a measured insertion loss range from 1.29 to 0.7 dB. The measured reflection and isolation are better than 12 dB and 17 dB, respectively. Moreover, the coupler has a measured spurious free range of 5.1–3fo (lowest–highest frequency). Regarding rat-race coupler, two designs are introduced. The first design is based on a full-mode cavity while the second one is more compact and based on a half-mode cavity. Both designs show more than 70% tuning range, and the isolation is better than 30 dB

    Synthesis, design, and fabrication techniques for reconfigurable microwave and millimeter-wave filters

    Get PDF
    As wireless communication becomes increasingly ubiquitous, the need for radio receivers which can dynamically adjust to their operating environment grows more urgent. In order to realize reconfigurable receivers, tunable RF front-end components are needed. This dissertation focuses on the theory, design, and implementation of reconfigurable microwave and millimeter-wave filters for use in such receivers. First, a theoretical framework is developed for absorptive bandstop filters, a new class of bandstop filters which overcomes some of the limitations of traditional tunable bandstop filters caused by the use of lossy tunable resonators. This theory is used in conjunction with silicon-micromachining fabrication technology to realize the first ever tunable bandstop filter at W-Band frequencies, as well as a state-of-the-art Ka-band tunable bandstop filter. The problem of bandwidth variation in tunable filters is then addressed. Widely-tunable filters often suffer from variations in bandwidth, excluding them from many applications which require constant bandwidth. A new method for reducing the bandwidth variation of filters using low-loss evanescent-mode cavity resonators is presented, and this technique is used to realize up to 90% reduction of bandwidth variation in octave-tunable bandstop filters. Lastly, a new differential coupling structure for evanescent-mode cavity resonators is developed, enabling the design of fully-balanced and balanced-to-unbalanced (balun) filters. An octave-tunable 3-pole bandpass balun filter using this coupling structure is presented. The balun filter has excellent amplitude and phase balance, resulting in common-mode rejection of greater than 40 dB across its octave tuning range
    corecore