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ABSTRACT 

Hickle, Mark D. Ph.D., Purdue University, December 2016. Synthesis, Design, and 
Fabrication Techniques for Reconfigurable Microwave and Millimeter-Wave Filters. 
Major Professor: Dimitrios Peroulis. 

 
As wireless communication becomes increasingly ubiquitous, the need for radio 

receivers which can dynamically adjust to their operating environment grows more 

urgent. In order to realize reconfigurable receivers, tunable RF front-end components are 

needed. This dissertation focuses on the theory, design, and implementation of 

reconfigurable microwave and millimeter-wave filters for use in such receivers. 

First, a theoretical framework is developed for absorptive bandstop filters, a new 

class of bandstop filters which overcomes some of the limitations of traditional tunable 

bandstop filters caused by the use of lossy tunable resonators. This theory is used in 

conjunction with silicon-micromachining fabrication technology to realize the first ever 

tunable bandstop filter at W-Band frequencies, as well as a state-of-the-art Ka-band 

tunable bandstop filter.  

The problem of bandwidth variation in tunable filters is then addressed. Widely-

tunable filters often suffer from variations in bandwidth, excluding them from many 

applications which require constant bandwidth. A new method for reducing the 

bandwidth variation of filters using low-loss evanescent-mode cavity resonators is 

presented, and this technique is used to realize up to 90% reduction of bandwidth 

variation in octave-tunable bandstop filters. 

Lastly, a new differential coupling structure for evanescent-mode cavity resonators is 

developed, enabling the design of fully-balanced and balanced-to-unbalanced (balun) 

filters. An octave-tunable 3-pole bandpass balun filter using this coupling structure is 

presented. The balun filter has excellent amplitude and phase balance, resulting in 

common-mode rejection of greater than 40 dB across its octave tuning range. 
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  INTRODUCTION 1.

1.1 Motivation 

Why do we need reconfigurable microwave filters? This is an important question 

which must be answered before embarking on a journey of research and discovery into 

tunable filters. After all, microwave engineers have been designing communication 

systems for a number of decades using static filters with good success, and tunable filters 

tend to have worse performance than their static counterparts while being much more 

complex and expensive. There are many ways to answer this question, but all center 

around two facts: the number of devices in the world which communicate wirelessly is 

increasing at an unprecedented rate, and the usable radio spectrum is a fixed and limited 

natural resource. These facts have driven the development of software-defined and 

cognitive radios, which use software to implement many traditionally-hardware blocks 

such as mixers, filters, and demodulators, and can dynamically adjust their operating 

parameters such as center frequency, bandwidth, modulation type, etc. to optimally use 

the available radio spectrum. 

The simplest practical architecture for a software-defined or cognitive radio is shown 

in Fig. 1.1(a), in which signals from the antenna are amplified by a wideband low-noise 

amplifier (LNA), down-converted by a mixer (though even this step is optional if high-

frequency analog-to-digital converters (ADCs) are available at the RF frequency), then 

digitized for channel selection and demodulation. A receiver architecture such as this 

allows large amounts of flexibility as it can operate on numerous frequencies, limited 

only by the bandwidths of the antenna, LNA, mixer, and ADC, which are generally very 

wideband when compared to the RF preselect filters which most receivers use. This 

leaves the receiver vulnerable to jamming signals which can cause the LNA to saturate,  
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(a) 

 
 (b) 

Fig. 1.1. (a) Receiver chain for a simple software-defined radio. (b) Receiver chain for a 
software-defined radio utilizing a tunable bandpass or bandstop filter between the antenna and 
LNA. 

however, limiting the usefulness of such receivers and precluding them from use in 

spectral environments which contain strong interfering signals.  

In order to achieve the same functionality while addressing the problem of 

interfering signals, a tunable filter can be inserted into the receiver chain in front of the 

LNA, as shown in Fig. 1.1(b). Tunable bandpass filters offer a potential solution, as they 

can dynamically preselect a certain band of frequencies while rejecting interferers at 

other frequencies. This filtering scheme would prove useful if the receiver only needs to 

receive signals in a single band at a time, and / or there are many interfering signals 

which need to be simultaneously suppressed. However, if the receiver needs to receive 

signals on multiple bands simultaneously, and / or there is only one strong interfering 
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signal, then a tunable bandstop filter might prove to be more useful as it can highly 

attenuate a narrow band of frequencies while passing all other frequencies with minimal 

loss. Other more highly reconfigurable types of filters could also be used, such as 

bandpass-to-bandstop switchable filters, bandpass filters with tunable bandwidths and / or 

transmission zeros, etc. 

1.2 Overview of Tunable Filter Technologies 

A multitude of different technologies have been used in the past half of a century to 

realize tunable filters. The following sections will give an overview of these technologies. 

1.2.1 Ferrimagnetic Filters 

Perhaps the oldest variety of tunable filters are those which utilize ferrite materials as 

tuning elements, dating back to at least the 1950’s [1]. Yttrium-Iron-Garnet (YIG) is the 

most common magnetic material used in such resonators. A single-crystal of YIG 

machined into a sphere acts as a microwave resonator, and the resonant frequency can be 

tuned by applying a magnetic bias field. By coupling multiple of these YIG resonators 

together, a frequency-tunable filter can be realized. YIG resonators have very high 

quality factors (typically 1,000-2,000) and can be tuned over very wide frequency ranges 

(often more than an octave). They possess a number of drawbacks, however. Due to the 

hysteretic properties of the ferrite materials which comprise YIG resonators, they suffer 

severe hysteresis effects in their frequency-tuning characteristics. This necessitates 

complex control algorithms, which increase the overall size and complexity of the filters 

and slows their tuning speeds. A large current is required to generate the magnetic bias 

field, which results in high power consumption (typically several watts) and precludes 

these filters from use in battery-powered devices. Despite all of the drawbacks, many 

commercially-available YIG-tuned filter modules exist [2]–[4]. 

1.2.2 Varactor-Tuned Filters 

Tunable filters which use variable-capacitance varactor diodes as tuning elements 

have been researched since the 1980’s [5], [6]. Varactor diodes are semiconductor 
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junction devices in which the junction capacitance can be controlled by an applied 

reverse bias voltage. Varactors can achieve wide capacitance tuning ratios, up to 10:1 [7]. 

The tuning speed of varactors is very fast, often on the order of 10’s of nanoseconds. The 

quality factor of a varactor is determined by its effective series resistance, which stems 

from the losses in the semiconductor material. Typical semiconductor materials used are 

silicon and gallium-arsenic (GaAs). Filters using varactors as tuning elements have been 

implemented using lumped-element resonators [8]–[12], microstrip resonators [5], [6], 

[13]–[24], and substrate-integrated cavity resonators [25]–[29]. Due to the relatively high 

semiconductor losses in varactors, the quality-factor of varactor-tuned filters is usually 

dominated by the Q of the varactor, and is usually limited to 50-100 at frequencies from 

0.5 to 4 GHz. The power handling and linearity of such filters is also quite limited due to 

the non-linear nature of the varactor diodes.  

1.2.3 RF MEMS Tunable Filters 

A more recent approach to realize reconfigurable filters uses Radio-Frequency 

Microelectromechanical Systems (RF MEMS) as tuning elements. RF MEMS 

components use micron-scale (1 – 1000 μm) movable mechanical components to achieve 

reconfigurability. Examples include ohmic-contact switches, in which a thin metal beam 

creates metal-to-metal contact between two signal paths, and varactors, in which thin, 

deflectable beams are used to create variable-gap parallel plate capacitors. RF MEMS 

devices avoid the use of semiconductors in signal paths, which in turn reduces both losses 

and non-linearities in the device. This allows RF-MEMS-tuned filters to have very high 

performance when compared to varactor-tuned filters, with quality factors often ranging 

from 100-300. The increased performance comes at the expense of slow speed (typical 

10’s of microseconds), limited reliability, and high cost of fabrication and packaging. 

Many examples of RF MEMS tunable filters can be found in [30]–[38]. 

1.2.4 Evanescent-Mode Cavity Filters 

Evanescent-mode cavity resonators are below-cutoff sections of waveguide loaded 

with capacitive tuning elements. The basic structure of such a cavity resonator is shown 

in Fig. 1.2, which consists of a rectangular metal cavity loaded with a central metal post. 
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The post is connected to the bottom of the cavity, but a small gap (on order of 1 to 20 μm) 

is left between the top of the post and the ceiling of the cavity. A parallel-plate 

capacitance is formed between the top of the post and the ceiling of the cavity, lowering 

the frequency of the resonator and making the resonant frequency very sensitive to the 

gap between the post and the ceiling. If the ceiling of the cavity is moveable by utilizing 

an actuator such as a piezoelectric disc or an electrostatically-actuated membrane, then 

the gap and thus the frequency of the resonator can be tuned. Because there are no 

dielectric or semiconductor losses or non-linearities, the resonators have very high quality 

factors, ranging from 300-1,500. Wide tuning ranges can also be realized, with up to two 

octaves being demonstrated [39]. Many excellent examples of tunable filters have been 

demonstrated using this technology [39]–[83] 

The drawbacks of evanescent-mode cavity resonator-based filters include relatively 

large size at low frequencies compared to lumped element filters, slow tuning speed 

compared to varactor-tuned filters (tens of microseconds to several milliseconds, 

depending on the actuator used) and potentially complex control algorithms if 

piezoelectric discs (which suffer from hysteresis issues) are used. Most of the research 

contained in this dissertation utilizes these resonators because of their extremely high 

performance compared to other types of tunable resonators. 

 
Fig. 1.2. Cross section view of an evanescent-mode cavity resonator.  
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1.3 Dissertation Overview 

This dissertation is organized into chapters as follows: 

• Chapter 2 presents a detailed theoretical and practical analysis of absorptive 

bandstop filters, a relatively new class of bandstop filter which overcomes some 

of the limitations of traditional reflective bandstop filters by allowing the filter to 

achieve theoretically infinite stopband attenuation despite the use of finite-

quality-factor resonators, which usually limits the amount of achievable stopband 

rejection in traditional reflective bandstop filters. This chapter fills in many of the 

knowledge gaps associated with this type of filter by investigating and optimizing 

the sensitivity of the filters to process variations, the tradeoffs between selectivity 

and tuning range, the relative benefits and drawbacks of higher-order absorptive 

filters, and presents a clear design procedure for realizing such filters. Several 

absorptive filters realized with varactor-tuned microstrip resonators are designed 

and implemented to demonstrate the design process and design tradeoffs. The 

filters are able to achieve greater than 90 dB of stopband rejection despite using 

low-Q (< 100) resonators 

• Chapter 3 demonstrates widely tunable, high-isolation Ka- and W-band bandstop 

filters realized with evanescent-mode resonators. These filters combine the theory 

and design principles developed in Chapter 2 with the high-quality-factors and 

wide tunability afforded by silicon-micromachined evanescent-mode cavity 

resonators to realize large notch depths of up to 70 dB, with 3-dB bandwidths as 

narrow as 1.5% and out-of-band insertion loss of less than 3.25 dB. Two filters 

are presented, which have 22 to 43 GHz and 75 to 103 GHz tuning ranges. These 

filters are fabricated using all-silicon technology, and are tuned with low-power 

electrostatic actuators which have bias voltages of less than 90V. The 

demonstrated filters have the potential to enable robust millimeter-wave 

communication systems which can operate in the presence of large interfering 

signals.  

• Chapter 4 presents a novel switched-frequency filter utilizing commercially-

available RF MEMS switched-capacitor bank as a tuning element. The filter has 
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two passbands, located at 0.95 GHz and 2.45 GHz, which can both be activated or 

deactivated independently. The filter uses an intrinsic switching topology, in 

which deactivation of one of the passbands is achieved by detuning some of the 

filter’s resonators. This technique allows the filter bank to achieve < 20 dB of off-

state isolation for each band, while maintaining low on-state passband insertion 

since no lossy switching elements (such as solid-state microwave switches) are in 

the direct signal path, as is the case in traditional switched filter banks. This 

chapter represents the winning entry of the 2015 RF MEMS Tunable Filter 

student design competition at the 2015 International Microwave Symposium. 

• Chapter 5 presents a new bandwidth compensation method which allows high-Q 

evanescent-mode cavity resonator-based filters to be implemented with nearly 

constant absolute or fractional bandwidth, in contrast to traditional widely-tuned 

evanescent-mode filters which experience large variations in bandwidth across 

their center frequency’s tuning range. This bandwidth compensation method 

consists of coupling each resonator in the filter to the source-to-load through-line 

with two coupling elements, separated by a length of transmission line. This 

induces a frequency variation into the coupling coefficient which, if designed 

correctly, compensates the positive frequency dependence inherent to the 

coupling elements to either provide a constant coupling coefficient for constant 

fractional bandwidth filters, or a negatively-sloped coupling coefficient for 

constant absolute bandwidth filters. The method is demonstrated with octave 

tunable filters, and it is shown that this new method can reduce the absolute 

bandwidth variation over an octave tuning range by up to 95% compared to the 

traditional coupling method. 

• Chapter 6 introduces for the first time a method for implementing tunable 

balanced-to-unbalanced (balun) filters using evanescent-mode cavity resonators. 

To date very few tunable balun filters (that is, microwave filters which have a 

single-ended input and a differential output) have been demonstrated, due to the 

difficulty in maintaining good amplitude and phase balance between the 

differential output ports across a wide tuning range. This chapter develops a 

differential external coupling mechanism for evanescent-mode cavity resonators 
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which behaves very nearly like an ideal balun attached to the output of the filter. 

A 3-pole 3.2 to 6.1 GHz tunable balun filter is demonstrated using this coupling 

method. The filter maintains < 0.2 dB of amplitude imbalance and < 0.9o of phase 

imbalance across its entire tuning range. This is better performance than any other 

tunable balun filters demonstrated to date. Morever, at its best tuning state with 

respect to amplitude/phase imbalance (center frequency of 6.2 GHz), the filter has 

less than 0.024 dB of amplitude imbalance and less than 0.2o of phase imbalance, 

which is better than existing state-of-the-art static balun filters. 

• Chapter 7 presents a new broadband external coupling structure for tunable 

bandstop filters utilizing evanescent-mode cavity resonators. The typical method 

for realizing external coupling in these filters uses a large slot in the ground plane 

of the source-to-load transmission line, but this introduces parasitics which 

severely degrade the upper passband of the filter. The coupling method presented 

in this chapter is a modification of the work in [56], extending it so that it works 

at higher frequencies and can be realized using a much simpler fabrication process. 

This new coupling structure is used to realize a 3 to 6 GHz tunable bandstop filter 

whose 3-dB passband extends up to 28.5 GHz. This is the widest fractional upper 

passband (ratio of the 3-dB upper passband to the lowest tuned resonator 

frequency) reported for any filter with a center frequency greater than 2 GHz. 

• Chapter 8 summarizes the major contributions of dissertation and presents future 

work. A frequency-tunable fully-differential bandpass filter is proposed as an 

extension of the work in Chapter 6. It is shown that utilizing the differential 

coupling structure from Chapter 6 at both the input and output of the filter creates 

a fully-differential filter which has greater than 80 dB of common-mode rejection 

in its passband. 



9 
 

 

 

 

  THEORY AND DESIGN OF FREQUENCY-TUNABLE 2.
ABSORPTIVE BANDSTOP FILTERS 

2.1 Introduction 

One of the main attractive features of cognitive radio transceivers is their ability to 

dynamically adjust operation parameters such as center frequency, bandwidth, and 

modulation type, in order to optimally utilize the available spectrum [84]. Such 

transceivers often maximize frequency flexibility by utilizing very wideband RF front 

ends, but this leaves the receiver prone to jamming signals which can saturate the 

receiver and block the desired signals of interest. These jamming signals can come from a 

variety of intentional or unintentional sources, and are often dynamic, unpredictable, and 

can be many orders of magnitude stronger than the signals of interest. Tunable bandstop 

filters, which have the ability to dynamically suppress a narrow band of frequencies while 

maintaining a wide passband, offer a potential solution to this problem and, as a result, 

have garnered much research interest in recent years. One particular drawback of tunable 

bandstop filters, however, is that tunable resonators in compact form-factors tend to have 

low unloaded quality factors (QU). Since the amount of attenuation that a typical 

bandstop filter can achieve is limited when low-quality-factor resonators are used, many 

of the published tunable bandstop filters fail to provide the high levels of rejection that 

are needed in cognitive radio applications. 

A bandstop filter utilizing evanescent-mode cavity resonators is presented in [56]. Its 

maximum attenuation only ranges from 15-35 dB with a 1.2% to 3.2% fractional 

bandwidth. In [85] a varactor-tuned micostrip bandstop filter is demonstrated with 37-40 

dB of stopband attenuation for a fractional bandwidth of 10%-14 %. Stopband rejection 

of 7-27 dB with a fractional bandwidth of 1.6%-3.6% is presented in [26], which is a 

bandstop filter implemented with varactor-tuned substrate-integrated evanescent-mode 
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cavity resonators. Other notable examples of tunable bandstop filters can be found in [12], 

[86], [87]. 

A new class of bandstop filter which partially overcomes the aforementioned problems 

caused by low-quality-factor resonators was recently introduced in [23], [88], [89]. This 

type of filter achieves its stopband attenuation not by reflecting incident signals as 

traditional reflective bandstop filters do, but by utilizing two signal paths which are 180o 

out of phase and result in destructive interference over a narrow bandwidth. This allows 

the filter to achieve very large (theoretically infinite) attenuation in its stopband, 

regardless of the constituent resonators’ unloaded quality factors. This kind of filter is 

called an “absorptive bandstop filter” because it realizes increased stopband attenuation 

by absorbing a portion of the incident signals which would otherwise be reflected. The 

concept has been utilized by several authors since, and has been demonstrated in 

technologies such as microstrip [18], [24], lumped elements [8], [11], and evanescent-

mode cavities [45], [53], [82], [90]. Despite the many excellent examples of absorptive 

bandstop filters which have been published, several aspects of this class of filter have not 

yet been investigated. For example, none of the aforementioned papers have discussed 

how to predict or optimize the tuning range over which a tunable absorptive bandstop 

filter can achieve very large stopband attenuation. Additionally, there has been no 

discussion of how to design an absorptive bandstop filter to meet a certain bandwidth 

requirement, no analysis of the design tradeoffs which must be made when designing 

such filters, and no step-by-step design procedure other than an iterative manual 

optimization process.  

In response to these and other knowledge gaps, this chapter seeks to present a detailed 

analysis of absorptive bandstop filters which furthers knowledge of this class of filter. A 

theoretical foundation for optimizing the tuning range over which absorptive bandstop 

filters can achieve (ideally) infinite attenuation is developed, along with design principles 

to increase their robustness to process variations. The tradeoffs between selectivity and 

tuning range, and the impact of non-ideal effects such as coupling dispersion, 

transmission-line length variation, and parasitic coupling are examined and design 

principles are developed to mitigate these effects.  
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First, the topology of an absorptive bandstop filter is presented, and relevant equations 

are derived in detail. The tradeoffs between various performance metrics such as 

bandwidth, tuning range, and sensitivity are examined, and practical design 

considerations are presented. A comparison of the relative benefits and drawbacks of 

higher-order versus lower-order filters is made. Lastly, a step-by-step design procedure is 

presented, and several varactor-tuned microstrip absorptive bandstop filters are designed, 

fabricated, and measured to validate the theory and design principles presented in this 

chapter.  

2.2 Design Principles of absorptive Filters 

2.2.1 Analysis of a Two-Pole Absorptive Bandstop Filter 

A schematic representation of a two-pole absorptive bandstop filter is shown in Fig. 

2.1(a). This circuit was first disclosed in [23], [89], and the following analysis in Section 

II.A bears similarities to that in [23], [24] but is included here for the completeness of this 

chapter and to introduce the different notation and terminology used in this chapter. 

 

Fig. 2.1. (a) Schematic representation of a two-pole absorptive bandstop filter. (b) 
Equivalent circuit of (a). Source-to-load coupling is implemented by a transmission line of 
characteristic impedance Z0 and electrical length θ, resonator coupling elements are implemented 
by admittance inverters, and resonators are represented as parallel RLC resonators.  

 The filter consists of two resonators coupled to a source-to-load transmission line of 

length θ  with coupling coefficients kE1,2, and coupled to each other with coupling 
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coefficient k12. Though represented as shunt-parallel RLC resonators in Fig. 2.1(b), the 

resonators can be implemented as any resonators which have parallel RLC equivalent 

circuits near resonance. The coupling elements are implemented as admittance inverters 

scaled by the resonator and system characteristic impedances as defined in [91], and the 

source-to-load coupling is assumed to be an ideal TEM transmission line. With the sign 

convention used in this analysis, positive coupling provides a +90o insertion phase 

whereas negative coupling yields a -90o insertion phase. The source and load impedances 

are assumed in this analysis to be identical to the characteristic impedance of the 

transmission line. The expressions in Fig. 2.1 are defined as follows:  

𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟1,2 =
1
𝑍𝑍𝑅𝑅

�
1
𝑄𝑄𝑈𝑈

+ 𝑝𝑝 ± 𝑗𝑗𝑗𝑗� (2.1) 

𝑝𝑝 = 𝑗𝑗 �
𝜔𝜔
𝜔𝜔0

−
𝜔𝜔0

𝜔𝜔
� (2.2) 

𝐽𝐽12 = 𝑘𝑘12/𝑍𝑍𝑅𝑅 (2.3) 

𝐽𝐽𝐸𝐸1,2 = 𝑘𝑘𝐸𝐸1,2/�𝑍𝑍0𝑍𝑍𝑅𝑅 (2.4) 

𝑍𝑍𝑅𝑅 = �𝐿𝐿/𝐶𝐶 (2.5) 

𝜔𝜔0 = 1/√𝐿𝐿𝐶𝐶 (2.6) 

𝑄𝑄𝑈𝑈 =
𝑅𝑅
𝜔𝜔0𝐿𝐿

= 𝜔𝜔0𝑅𝑅𝐶𝐶 (2.7) 

Yres1,2 represents the admittance of each resonator, and is simply the parallel 

combination the inductor, capacitor, and resistor which comprise each resonator, slightly 

rearranged and reduced using the definitions for the frequency variable (2.2), the 

resonators’ impedances (2.5), and the resonators’ unloaded quality factors (2.7). The 

capacitors are differentially tuned by a factor of 1±B, which allows for asynchronous 

tuning of the resonators if B is chosen to be nonzero. The frequency-invariant reactance 

B in equation (2.1) which appears as a result of this differential capacitance tuning is only 

approximate – in reality the reactance would have frequency dependence, but in the 

narrowband case it can be approximated as constant. Equations (2.2) and (2.5)-(2.7) are 

derived from [92] 
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Fig. 2.2. Step-by-step process for calculating the S-parameters of the circuit in Fig. 2.1. 

To obtain the transmission and reflection coefficients (S21 and S11) of the circuit in 

Fig. 2.1(b), all components are first converted into their representative ABCD matrices 

(Fig. 2.2(a)) using the expressions in equations (2.8)-(2.23) [92], [93]. 

𝐴𝐴1 = cos (𝜃𝜃) (2.8)  𝐴𝐴3,5 = 1 (2.9) 

𝑗𝑗1 = 𝑗𝑗𝑍𝑍0sin (𝜃𝜃) (2.10)  𝑗𝑗3,5 = 0 (2.11) 

𝐶𝐶1 =  𝑗𝑗/𝑍𝑍0sin (𝜃𝜃) (2.12)  𝐶𝐶3,5 = 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟1,2  (2.13) 

𝐷𝐷1 = cos (𝜃𝜃) (2.14)  𝐷𝐷3,5 = 1 (2.15) 

𝐴𝐴2,6 = 0 (2.16)  𝐴𝐴4 = 0 (2.17) 

𝑗𝑗2,6 = −𝑗𝑗/𝐽𝐽𝐸𝐸1,2 (2.18)  𝑗𝑗4 = −𝑗𝑗/𝐽𝐽12 (2.19) 

𝐶𝐶2,6 = −𝑗𝑗 ∙ 𝐽𝐽𝐸𝐸1,2 (2.20)  𝐶𝐶4 = −𝑗𝑗 ∙ 𝐽𝐽12  (2.21) 

𝐷𝐷2,6 = 0 (2.22)  𝐷𝐷4 = 0 (2.23) 
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The elements in the bottom branch of the circuit (the resonators and coupling 

elements) are cascaded together by multiplying their ABCD matrices (Fig. 2.2(b)). The 

resulting matrix is converted into its equivalent Y-parameter matrix (Fig. 2.2(c)), which 

is then added to the Y-parameter matrix of the transmission line due to their parallel 

configuration (Fig. 2.2(d)). The resulting Y-parameter matrix is converted into its 

equivalent S-Parameter matrix [93] (Fig. 2.2(e)).  The resulting transmission and 

reflection coefficients are given in (2.25)-(2.27). Inspection of (2.25) shows that S21 = 0 

at the filter’s center frequency (ω = ω0, or alternatively p = 0) when 

1
𝑄𝑄𝑈𝑈2

+ 𝑗𝑗2 + 𝑘𝑘12
2 + 𝑘𝑘12𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2 sin𝜃𝜃 = 0. (2.24) 

The filter has theoretically infinite attenuation even with finite-QU resonators if this 

equation is satisfied, and thus it is the governing equation for absorptive bandstop filters. 

The mechanism by which absorptive bandstop filters achieve infinite attenuation can 

be seen by examining the poles and zeros of S21. For simplicity, the highpass prototype 

equivalent of (2.25) is used, which can be obtained by redefining (2.2) as p = jω. 

Equations for the poles and zeros can be found in [24]. Fig. 2.3 shows the poles and zeros  

 

(a)                                                                                 (b) 
Fig. 2.3. Poles and zeros of S21 for (a) reflective and absorptive bandstop filters, and (b) 

reflective and perfectly-matched absorptive bandstop filters. In the case of the perfectly-matched 
absorptive bandstop filter, a pole and a zero cancel each other out, leaving a single pole/zero pair 
which corresponds to an ideal 1st order bandstop filter.  
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𝑆𝑆21 =
𝑒𝑒−𝑗𝑗𝑗𝑗(𝑝𝑝2 + 2

𝑄𝑄 𝑝𝑝 + 𝑗𝑗2 + 𝑘𝑘12
2 + 1

𝑄𝑄𝑈𝑈2
+ 𝑘𝑘12𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2 sin𝜃𝜃)

𝑝𝑝2 +
4 + �𝑘𝑘𝐸𝐸1

2 + 𝑘𝑘𝐸𝐸2
2�𝑄𝑄𝑈𝑈

2𝑄𝑄𝑈𝑈
𝑝𝑝 + 𝑗𝑗𝑒𝑒−𝑗𝑗𝑗𝑗 𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2(𝑘𝑘12 + 1

2𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2 sin(𝜃𝜃)) + 1
𝑄𝑄𝑈𝑈2

+ 1
2𝑄𝑄𝑈𝑈

(𝑘𝑘𝐸𝐸12 + 𝑘𝑘𝐸𝐸22 ) + 𝑗𝑗2 + 𝑘𝑘122 + 𝑗𝑗 𝑗𝑗2 (𝑘𝑘𝐸𝐸12 − 𝑘𝑘𝐸𝐸22 )
 (2.25) 

𝑆𝑆11 =
−1

2 �𝑘𝑘𝐸𝐸1
2 + 𝑒𝑒−2𝑗𝑗𝑗𝑗 𝑘𝑘𝐸𝐸22 �𝑝𝑝 + 𝜇𝜇

𝑝𝑝2 +
4 + �𝑘𝑘𝐸𝐸1

2 + 𝑘𝑘𝐸𝐸2
2�𝑄𝑄𝑈𝑈

2𝑄𝑄𝑈𝑈
𝑝𝑝 + 𝑗𝑗𝑒𝑒−𝑗𝑗𝑗𝑗 𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2(𝑘𝑘12 + 1

2𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2 sin(𝜃𝜃)) + 1
𝑄𝑄𝑈𝑈2

+ 1
2𝑄𝑄𝑈𝑈

(𝑘𝑘𝐸𝐸12 + 𝑘𝑘𝐸𝐸22 ) + 𝑗𝑗2 + 𝑘𝑘122 + 𝑗𝑗 𝑗𝑗2 (𝑘𝑘𝐸𝐸12 − 𝑘𝑘𝐸𝐸22 )
 (2.26) 

𝜇𝜇 = −𝑗𝑗𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘12𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2 +
𝑒𝑒−2𝑗𝑗𝑗𝑗𝑘𝑘𝐸𝐸22 (−2 + 2𝑗𝑗𝑗𝑗𝑄𝑄 + 𝑘𝑘𝐸𝐸12 𝑄𝑄)

4𝑄𝑄
−
𝑘𝑘𝐸𝐸12 (2 + 2𝑗𝑗𝑗𝑗𝑄𝑄 + 𝑘𝑘𝐸𝐸22 𝑄𝑄)

4𝑄𝑄
 (2.27) 
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of both a two-pole reflective bandstop filter and a two-pole absorptive bandstop filter. 

The reflective filter has a double zero which is offset from the jω axis due to the use of 

finite-QU resonators, and thus has limited attenuation. The absorptive filter’s 

interresonator coupling, along with the asynchronous tuning of its resonators, splits the 

zeros, restoring one zero to the origin while moving the other zero to the left in the 

complex plane. Thus the absorptive filter has infinite attenuation at its center frequency, 

but has less selectivity than a lossless two-pole bandstop filter which has two zeros at the 

origin. When B = 0, k12 = 1/QU, and θ = 90o, as in the case of the perfectly-matched 

absorptive filter, the two poles fall on top of one of the zeros. This cancels a pole/zero 

pair, leaving one pole and one zero – corresponding to a lossless 1st order bandstop filter.  

Many combinations of kE1,2, k12, B, QU and θ can provide valid solutions to (2.24), 

and thus it is instructive to examine the bounds placed on each variable, and to see how 

the choice of each variable affects the filter’s transfer function. It should be noted that in 

the following analysis, the coupling coefficients (kE1,2, k12) and quality factor (QU) are 

assumed to be frequency-independent, and the transmission line length (θ) is assumed to 

be linearly proportional to frequency. While this is not precisely true in practice, this 

simplification is often sufficiently accurate in narrowband designs and is an important 

analysis step. Fine tuning and frequency-dependent effects are analyzed in Section III. 

2.2.2 Limits on External Coupling  

The limits on external coupling (kE1 and kE2) can be found by solving (2.24) for kE1 

and kE2, which yields the following equation: 

𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2 = −

1
𝑄𝑄𝑈𝑈2

+ 𝑗𝑗2 + 𝑘𝑘122

𝑘𝑘12 sin 𝜃𝜃
 (2.28) 

This equation is similar to equation (8) in [23], with the important exception that it 

allows kE1 and kE2 to be different, both in magnitude and in sign. This provides two very 

useful insights about absorptive bandstop filters. First, it shows that the filter can still  
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(a) 

 

(b) 

Fig. 2.4. (a) The effect that kE has on bandwidth and reflection coefficient. (b) Variation of 
maximum reflection coefficient (at ω = ω0) with kE. k12 = 1/QU and θ = 90o in both figures. At the 
minimum value of kE (�2/𝑄𝑄𝑈𝑈), the filter is perfectly matched  and has zero reflection coefficient. 
When kE is increased beyond its minimum value, the reflection coefficient becomes nonzero and 
increases with kE. In each case the filter has infinite attenuation at its center frequency  

achieve infinite attenuation even with small variations in external coupling due to 

manufacturing variations as long as (2.28) can still be satisfied. Second, it shows that the 
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relative polarities of kE1, kE2, and k12 dictate the length of transmission line which must 

be used. 

In order for the signs of both the left- and right-hand sides of (2.28) to be consistent, 

the sign of the quantity kE1kE2k12sinθ must be negative. Therefore if either one or three 

of the variables kE1, kE2, and k12 are negative, then sinθ must be positive (0o < θ < 180o). 

However, if all of the aforementioned variables are positive, or two of them are negative, 

then sinθ must be negative (180o < θ < 360o). This is a key fact because as shown in 

Section II.D, the length of source-to-load transmission line is critical when maximizing 

the tuning range of the filter. A detailed explanation of how to determine the polarities of 

external and interresonator couplings is presented in Appendix A. 

Though they can differ in sign as dictated by the physical coupling structure, the 

magnitudes of kE1 and kE2 are usually chosen to be equal for the sake of simplicity (i.e. 

kE1 = kE = ± kE2). For a given k12, QU, and θ, the minimum kE which will allow ideally 

infinite attenuation is 

𝑘𝑘𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 = �
1
𝑄𝑄𝑈𝑈2

+ 𝑘𝑘122

𝑘𝑘12 sin 𝜃𝜃
, 

(2.29) 

which occurs when B = 0. For any value of kE larger than (2.29), B can be chosen by 

asynchronously tuning the resonators such that (2.28) is still satisfied. Minimizing (2.29) 

with respect to k12 and θ shows that the absolute minimum possible value for kE  for a 

given QU is 

𝑘𝑘𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚
∗ = �2/𝑄𝑄𝑈𝑈, (2.30) 

obtained when k12 = 1/QU, and θ = 90o. If these values are substituted into (2.24), it can 

be seen that the filter has zero reflection coefficient, and thus is a perfectly-matched 

absorptive bandstop filter [23]. When kE is larger than this absolute minimum value, the 

reflection coefficient is nonzero, and increases with increasing kE as shown in Fig. 2.4. 
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Fig. 2.5. Maximum and minimum allowable values for interresonator coupling (k12) plotted 
versus external coupling (kE) and unloaded quality factor (QU), obtained from (2.31) with B = 0. 
At the minimum value of kE (�2/𝑄𝑄𝑈𝑈), there is only one permissible value for k12 (1/QU). A 
broader range of values for k12 can be used when kE is increased beyond its minimum value, 
providing design flexibility and decreased sensitivity to process variations. 

2.2.3 Limits on Interresonator Coupling 

Solving (2.24) for k12 yields the following equation:  

|𝑘𝑘12| =
1
2
�𝑘𝑘𝐸𝐸

2|sin𝜃𝜃| ± �(𝑘𝑘𝐸𝐸
2 sin𝜃𝜃)2 −

4
𝑄𝑄𝑈𝑈2

− 4𝑗𝑗2� (2.31) 

 All solutions for k12 come in pairs due to the quadratic nature of the equation. When 

B = 0, the two solutions represent the maximum and minimum allowable values of k12 for 

given kE, QU, and θ. For all values of k12 between these extrema, B can be chosen by 

asynchronously tuning the resonators such that (2.31) is satisfied. Fig. 2.5 shows the 

maximum and minimum allowable values for k12 plotted versus kE, for several values of 

QU. Note that when kE is equal to its minimum value (2.30), there is only one possible 

value for k12, whereas for kE greater than (2.30) a range of values of k12 are possible. This 

is an important fact for designs which are robust to process variations. If the minimum kE 

is chosen, then any slight variation in QU, k12, or kE will not allow infinite attenuation. 
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This can make the design process particularly challenging, because it is often difficult to 

accurately predict the unloaded qualify factor of tunable resonators. By choosing kE 

larger than its minimum value, however, the design is desensitized to process variations, 

and small variations in kE, QU, or k12 can be compensated by asynchronously tuning the 

resonators. However, this comes at the expense of decreased selectivity as is seen in 

Section II.E.  

The ability to compensate for variations in kE, k12, QU, and θ by asynchronously 

tuning the resonators has previously been noted in [23]. However, this analysis shows for 

the first time the range of values of kE and k12 that can be compensated by asynchronous 

tuning, and that the design robustness can be increased by increasing the value of kE. 

2.2.4 Tuning Range 

Since (2.24) depends on the electrical length of the through-line (θ), which is 

proportional to frequency, it can only have solutions for a certain range of frequencies. 

Solving (2.24) for θ with B = 0 yields the minimum and maximum allowable values of θ 

for a given QU, k12, kE1, and kE2:  

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = sin−1 �

1
𝑄𝑄𝑈𝑈2

+ 𝑗𝑗2 + 𝑘𝑘122

𝑘𝑘𝐸𝐸2𝑘𝑘12
� + 𝑚𝑚180° (2.32) 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = 180° − 𝜃𝜃1 + 𝑚𝑚360° (2.33) 

where n is an even integer if the sign of kE1kE2k12 is negative, and an odd integer if 

the sign of kE1kE2k12 is negative.  

With an ideal, dispersionless transmission line, the electrical length (θ) of the 

transmission line is linearly proportional to frequency. The ratio of θmax/θmin is equivalent 

to the ratio fmax/fmin, and this ratio can tell us the tuning range of the filter – that is, the 

range of center frequencies for which (2.24) can be satisfied. This ratio, designated as the 

tuning range (TR), is 

𝑔𝑔𝑅𝑅 =
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

. 
(2.34) 
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If one seeks to design a widely-tunable absorptive bandstop filter, it is desirable to 

know how the choice of design parameters affects the tuning range, and how to increase 

the tuning range. The tuning range increases monotonically with QU and kE, as shown in 

Fig. 2.6. However, it can be shown that there is an optimal value for k12 which maximizes 

(2.34):  

𝑘𝑘12,𝑜𝑜𝑜𝑜𝑜𝑜 = 1 𝑄𝑄𝑈𝑈⁄  (2.35) 

This optimal value of k12 can be seen in Fig. 2.7, which plots tuning range as a 

function of k12 for different values of kE. It should be noted that this is the same value of 

k12 which minimizes kE, as in equation (2.29). 

By observing the limits on the numerator and denominator of (2.34), the absolute 

maximum tuning range can be determined. If kE is chosen arbitrarily large and a 

nominally 90o line is used, then it can be seen that θmax approaches 180o and θmin 

approaches 0o. The maximum tuning range is then 180o/0o or ∞:1, indicating that if kE is 

chosen to be large enough an arbitrarily large tuning range can be achieved. In practice 

however, the tuning range is limited by how large kE can practically be realized. If the 

nominal θ is 270o, then as kE becomes infinitely large, θmax approaches 360o and θmin 

approaches 180o. The ideally maximum tuning range is then 360o/180o, or 2:1. This 

shows that the maximum possible tuning range for a filter with a nominally 270o through 

line is one octave, although in practice the finite physically-realizable values of kE will 

result in less than a 2:1 tuning range. Though a filter with a 90o line cannot provide an 

infinite tuning range when practical coupling values are considered, it will always 

provide a larger tuning range than a filter utilizing a 270o through-line for a given kE, QU, 

and k12. The same procedure shows that further increasing lengths of transmission line 

result in further decreasing tuning ranges. It is clear that if a wide tuning range is desired, 

the length of through-line should be chosen as short as possible.  A 90o through line is 

always preferable from this perspective, but in practice it is not always possible. As 

explained in Section II.A, the required length of transmission line depends on the relative 

signs of the coupling elements, and some filter technologies have no flexibility in the sign 

of the coupling elements or must sacrifice complexity or performance in order to change 

the coupling sign. In other situations, particularly at high frequencies and in designs on  
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Fig. 2.6. Tuning range plotted versus external coupling with (a) a nominally 90o and (b) a 
nominally 270o source-to-load transmission line. Interresonator coupling k12 is the 1/QU. 

 

Fig. 2.7. Tuning range plotted versus interresonator coupling with (a) a nominally 90o and (b) 
a nominally 270o source-to-load transmission line. QU = 100 
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(a) 

 

(b) 

Fig. 2.8. Dependence of (a) 3-dB and (b) 50-dB fractional bandwidths on external coupling 
and unloaded quality factor. 

high-permittivity substrates, a 90o transmission line might be too short to practically 

implement between the resonators. Thus, it is necessary to investigate the performance of 

absorptive filters which utilize nominally 270o through-lines. 



24 
 

 

 

 

2.2.5 Bandwidth 

Bandwidth is a critical design parameter of bandstop filters, and thus it is important 

to determine the dependence of bandwidth on the various filter design variables. The X-

dB bandwidth of the filter (defined as the bandwidth of the filter at an attenuation level of 

X dB) can be obtained from (2.25): 

𝑗𝑗𝐵𝐵 = �1
𝑅𝑅
�𝐿𝐿𝐴𝐴(2 + 𝐾𝐾) − 2 +

1
2√

16 + 𝑍𝑍� (2.36) 

𝑍𝑍 = (𝐾𝐾2 − 4)[4(2 − 𝐿𝐿𝐴𝐴) + 𝐾𝐾(4 + 𝐾𝐾)(1 − 𝐿𝐿𝐴𝐴)]𝐿𝐿𝐴𝐴 (2.37) 

𝑅𝑅 = 𝑄𝑄𝑄𝑄
2 (1 − 𝐿𝐿𝐴𝐴) (2.38) 

𝐾𝐾 = 𝑘𝑘𝐸𝐸
2𝑄𝑄𝑈𝑈 (2.39) 

𝐿𝐿𝐴𝐴 = 10−
𝑋𝑋
10 (2.40) 

The transmission line length θ is set equal to 90o in order to simplify the equations. If 

𝑘𝑘𝐸𝐸 = �2/𝑄𝑄𝑈𝑈 , as in the case of a perfectly-matched absorptive bandstop filter as 

described in Section II.B, then equation (2.36) reduces to 

𝑗𝑗𝐵𝐵 = 2/(𝑄𝑄𝑢𝑢�10
𝑋𝑋
10 − 1) (2.41) 

which identical to the equation for the bandwidth of absorptive bandstop filters derived in 

[23]. 

The dependence of 3-dB and 50-dB bandwidths on kE and QU are shown in Fig. 2.8. 

The bandwidth has a strong dependence on kE, and a weaker dependence on QU. 

Although high levels of attenuation can be achieved regardless of resonator quality factor, 

higher selectivity (narrower 3-dB bandwidth and larger 50-dB bandwidth) can be 

achieved with higher-QU resonators. 

The dependence of 3-dB bandwidth on the length of the through-line (θ) can be 

obtained through simulation, and is shown in Fig. 2.9. For a nominally 90o through-line, 

the bandwidth variation with respect to θ is minimal for realistic values of θ which will  
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Fig. 2.9. Effect of through-line length (θ) on 3-dB bandwidth. QU = 100, k12 = 0.01. 

be encountered in a tunable filter. However, when a nominally 270o through-line is used, 

even a filter with a tuning range of 1.5:1 can experience bandwidth variations of 20% or 

more. The choice of k12 has very little effect on bandwidth, as long as it is chosen 

according to (2.31).  

Because the tuning range and the bandwidth are both strongly dependent on kE, it is 

possible to examine the maximum tuning range for a given bandwidth, and vice versa. A 

plot of bandwidth vs. tuning range for several values of QU is shown in Fig. 10. From this 

graph it can be seen that in order to increase tuning range by increasing kE, the bandwidth 

must also be increased. However, if higher QU resonators can be used, the same tuning 

range can be obtained with a smaller bandwidth. This effect is much more prominent for 

filters with nominally 270o through-lines, which are limited to a maximum possible 

tuning range of 2:1.  

2.2.6 Higher Order Filters 

Although a two-pole absorptive bandstop filter is able to achieve large maximum 

attenuation, it can only do so over a very narrow bandwidth. For example, the two-pole 

filter in Fig. 2.12(a) only has a 0.14% 50-dB bandwidth for a 3-dB bandwidth of 9.7%. If 

high attenuation is required over a wider bandwidth, the order of the filter can be  



26 
 

 

 

 

 
(a) 

 
(b) 

Fig. 2.10. Relationship between tuning range and minimum (a) 3-dB and (b) 50-dB 
fractional bandwidths. Larger tuning ranges require larger values of kE, which results in wider 
bandwidths. |k12| = 1/QU. 

increased by  cascading two or more two-pole stages. In general 90o transmission lines 

are required in order to have a symmetric filter transfer function [94], due to the 

impedance mismatch between the stages. However, in cases where the two-pole stages 

have very small reflection coefficients (as discussed in Section II.B), the impedance 

mismatch between stages is less pronounced and the exact length of the inter-stage  
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Fig. 2.11. Schematic of a four-pole absorptive filter created by cascading two two-pole 
sections with a 90o

 transmission line between sections. Undesired inter-stage coupling is 
represented with the dashed line (k23). 

transmission line becomes less important. For example, in [18], [24], approximately 30o 

long inter-stage transmission lines are used. The increased selectivity of higher-order 

filters is shown in Fig. 2.12(a), in which the four-pole filter (purple trace)has a 12× 

greater 50-dB bandwidth (1.7%) than the two-pole filter, for the same 3-dB bandwidth. 

This comes at the expense of a smaller tuning range and increased passband insertion loss, 

however. It can be seen in Fig. 2.12(b) that four- and six-pole filters require smaller 

external coupling (kE) values than a two-pole filter for an equivalent 3-dB bandwidth, and 

this reduces the  center-frequency tuning range over which the filter can achieve high 

attenuation as discussed in Section II.D.   

It is critical to prevent coupling between the stages when cascading 2-pole stages to 

form higher-order filters. Parasitic coupling between the two adjacent resonators of the 

separate stages (k23 in Fig. 2.11) reduces the maximum level of attenuation by a pole-

splitting effect. Fig. 2.13 shows the maximum attenuation states of a four-pole filter with 

various levels of parasitic inter-stage coupling.  

2.3 Design of Microstrip Absorptive Bandstop Filters 

To verify the preceding design principles and demonstrate a practical design example, 

four microstrip-based absorptive bandstop filters were designed. All filters were 

implemented with varactor-tuned, grounded quarter-wave microstrip resonators, chosen 

for their ease of implementation, ability to achieve wide tuning range, compact size, and  
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(a) 

 

(b) 

Fig. 2.12. (a) Comparison of 2-pole filter response with 4-pole response which have equal 3-
dB bandwidth (purple trace) and equal 40-dB bandwidth (orange trace). (b) Comparison of 
bandwidths for 2-pole, 4-pole, and 6-pole filters. QU = 100, θ = 90o , and k12 = 1/QU in both graphs. 

wide spurious-free response. All filters were designed to operate over a 1.25 to 2.5 GHz 

tuning range. Filters A and B were designed to demonstrate that the required length of 

source-to-load through-line depends on the sign of the couplings as stated in Section II.B, 

and that using a nominally 90o through-line results in a wider tuning range than using a  
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Fig. 2.13. Effect of parasitic inter-stage coupling (k23) on filter performance. Even very small 
amounts of parasitic coupling can degrade filter performance by limiting the maximum 
achievable equiripple attenuation level. 

 

Fig. 2.14. Frequency dependence of interresonator coupling, extracted from electromagnetic 
simulations. 

nominally 270o through-line. Filter A utilizes positive mutual inductance as 

interresonator coupling, which provides +90o insertion phase and thus requires a 

nominally 270o through-line. Filter B reverses the sign of interresonator coupling by  
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Fig. 2.15. Minimum required external coupling (𝑘𝑘𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚) and simulated external coupling 
values for different coupling gaps (𝑔𝑔𝐸𝐸𝑋𝑋𝑇𝑇). For all frequencies where the actual value of kE is 
greater than kE,min, the filter can achieve an absorptive response. g12 = 0.15 mm. 

reversing the position of the grounding via, and thus requires a nominally 90o through-

line. The 3-dB bandwidths of Filter A and Filter B are equal: 5% at 1.5 GHz. Filter C 

utilizes a 90o through-line and is identical to Filter B with the exception of a narrower 3-

dB bandwidth: 2.5% at 1.5 GHz. It illustrates the tradeoff between bandwidth and tuning 

range, as it has a narrower bandwidth and thus a smaller tuning range than the otherwise-

identical Filter B.  The fourth filter (Filter D) consists of two Filter Cs cascaded to form a 

four-pole filter, and illustrates increased selectivity with the penalty of reduced tuning 

range when compared to a 2-pole filter, as discussed in Section II.F. A detailed design 

procedure for Filter B is shown next. The design procedures for the other filters are 

omitted for brevity, but are essentially identical to the procedure used to design Filter B. 

First, the varactors and the dimensions of the resonators were selected to yield the 

desired tuning range using a standard design procedure such as in [92]. MACOM 

MA46H202 GaAs hyperabrupt tuning varactors were chosen for their high QU and wide 

tuning range (0.6-6pF, QU = 2000  at  50 MHz). Using the information in the varactor’s 

datasheet and electromagnetic simulation of the microstrip resonators, the unloaded  
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Fig. 2.16. Layout and dimensions of the designed filters. All dimensions are in millimeters. 
VB1,2,3,4 denote the varactors’ bias voltages. 

quality factor was estimated at different frequencies in order to aid in choosing the 

interresonator coupling coefficient.  

Design curves for interresonator coupling (k12) versus frequency for different 

resonator spacings were calculated from electromagnetic simulation according to the 

method in [95] and are plotted in Fig. 2.14.The optimal value of k12 (1/QU) which allows 

for the minimum value of kE was calculated using the estimated values of QU, and is also 

plotted in Fig. 2.14. It decreases with increasing frequency because of the frequency 

dependence of the resonator’s unloaded quality factor, and it is clear that it has the 

opposite trend as the actual values of k12 which increase with frequency. Because smaller 

values of QU and kE increase the design’s sensitivity to the choice of k12 (see (2.31) and 

Fig. 2.5) k12 should be chosen such that it is equal to its optimal value at the lowest 
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frequency of the tuning range, where QU and kE are the smallest. From the graphs in Fig. 

2.14, the interresonator coupling gap g12 was initially chosen to be 0.25 mm in order to 

provide a coupling coefficient of 0.02 at 1.25 GHz, the optimal coupling coefficient for a 

resonator QU of 50.  This serves as a starting point for fine tuning later in the design 

process.  

The through transmission line length was initially chosen to be 29 mm long (90o long 

at 1.9 GHz, the mid-point of the filter’s tuning range), measured from the outside 

extremities of the resonators. Choosing the through-line to be 90o at the center of the 

tuning range minimizes the deviation of its electrical length from a quarter wavelength, 

which is the required length of transmission line for a symmetric bandstop filter response 

[94]. This also serves as a starting point for fine tuning later in the design process. 

Once the frequency-dependent values of Qu and k12 are known and the transmission 

line length has been chosen, the minimum value of kE required to obtain an absorptive 

response can be calculated from equation (2.29). Fig. 2.15 shows the minimum required 

values of kE for nominally 90o (Filter B) and 270o (Filter A) through-lines, along with kE 

extracted for several values of gEXT. The method in Appendix A is used to extract kE from 

simulations. Due to the frequency-dependence of k12, kE, and QU, the equation developed 

for calculating the tuning range (2.34) cannot directly be used. However, from these 

design curves the tuning range can be determined by noting the frequency range for 

which the simulated value of kE is greater than the minimum required value of kE. It is 

evident that in all cases the tuning range for a nominally 90o through-line is greater than a 

nominally 270o line for an equal kE value, and that increasing kE increases the tuning 

range.  

Finally, the interresonator coupling gap g12 and the length of the through 

transmission line were fine-tuned in order to maximize the filter’s tuning range by 

maximizing the range over which kE was greater than kEmin. It was found that due to the 

strong frequency dependence of kE, the low end of the filter’s tuning range was limited 

due to low values of kE and QU, whereas there was no limit on the high end of the filter’s 

tuning range because both kE and QU were both much larger at these frequencies. The 

transmission line length was increased to 38 mm to further improve the lower limit of the 
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filter’s tuning range, at the expense of slight asymmetry of the filter’s transfer function at 

the upper end of its tuning range where the transmission line is significantly longer than 

the quarter wavelength required for a symmetric transfer function.  

This design procedure is convenient in that it approaches the design of each design 

parameter individually, based on the design principles presented in this chapter. Each of 

these parameters can be evaluated without performing EM simulations of the entire filter, 

and minimal fine-tuning of the entire circuit is required at the end of this process. This is 

in contrast to the design procedures presented in [18], [24], which manually optimize the 

circuit without the guidance of clear design principles. 

Using this design process, Filters A and B were designed with the same external 

coupling coefficient in order to have the same bandwidth (gEXT = 0.15 mm, for a 3-dB 

bandwidth of approximately 5% at 1.5 GHz) and Filters C and D were designed with a 

smaller external coupling coefficient for a narrower bandwidth (gEXT = 0.25mm, for a 

fractional bandwidth of approximately 2.5% and 3.5%, respectively, at 1.5 GHz). The 

final dimensions of all filters are shown Fig. 2.16. 

The procedure for designing tunable absorptive bandstop filters with the minimum 3-

dB bandwidth for a given tuning range can be summarized as follows: 

1. Select resonators and tuning elements to cover desired frequency range, choosing 

a resonator topology for which the sign of kE1kE2k12 is negative so that a 90o 

through-line can be used. 

2. Extract k12-versus-frequency and Qu-versus-frequency curves, and choose k12 to 

be equal to 1/Qu near the lower end of the desired tuning range. 

3. Plot kE,min calculated from (2.29) using frequency-dependent values of Qu and k12, 

choosing the through-line to be 90o (or 270o, as dictated by the coupling signs) 

near the center of the desired tuning range. 

4. Extract kE-versus-frequency curves, and choose the lowest value of kE which is 

larger than the kE,min curve over the desired frequency range.  

5. If necessary, fine-tune k12 and θ in order to maximize the filter’s tuning range by 

using simulated kE and calculated kEmin curves, as in Fig. 2.14. 
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2.4 Experimental Validation 

The filters were fabricated on 0.787-mm thick Rogers RT/Duroid 5880 substrate (r 

= 2.2, tanδ  = 0.0009), and measured using a Keysight N5230C PNA. The varactors were 

biased between 4 and 22 V using a Keysight N6705B voltage source. A photograph of 

Filters A, B, and D is shown Fig. 2.17.  

 

Fig. 2.17. Photograph of fabricated filters. 

 

Fig. 2.18. Simulated and measured response of Filter B when tuned to 1.6 GHz. 
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Fig. 2.18 shows the measured frequency response of Filter B tuned to 1.6 GHz, 

illustrating its high-attenuation stopband and well-matched, low-loss passband. It has less 

than 0.2 dB passband insertion loss up to 3 GHz. As expected, the filter is able to achieve  

very high attenuation in its stopband (over 90 dB), although the bandwidth at high levels 

of attenuation is limited. Fig. 2.20 shows the measured attenuation plotted versus offset 

from the filter’s center frequency. The filter has a 4.9% 3-dB bandwidth, 1.8% 10-dB 

bandwidth, 0.15% 30-dB bandwidth and 0.0015% 70-dB bandwidth. The measured 

attenuation is limited by the noise floor of the network analyzer, which is also plotted in 

Fig. 2.20.  

In order to verify the design principles of Section II and the design procedure of 

Section III, the measured responses of each of the filters when tuned over their entire 

tuning ranges are shown in Fig. 2.21. As expected from the theory in Section II.D, Filter 

B has a wider tuning range than Filter A due to its use of a nominally 90o instead of 270o 

through-line (1.45:1 versus 1.27:1).  Additionally, Filter B also has a wider tuning range 

than Filter C due to its larger bandwidth (1.45:1 versus 1.24:1). The high-attenuation 

tuning range of each filter is smaller than designed because the quality factors of the 

varactors used were much lower than specified in the datasheets. The extracted quality 

factor of the varactors varied from 34 to 87 between 1 and 2 GHz, compared to the QU of 

77 to 220 specified in the datasheet. When the extracted value of varactor QU and the 

slight fabrication dimensional errors are taken into account, the measured results match 

simulation very well in Fig. 2.21.  

The performance of the four-pole filter (Filter D) is compared to that of the wide-

bandwidth two-pole filter (Filter B) in Fig. 2.22. Their 10-dB bandwidths are identical, 

and the four-pole filter has increased selectivity as expected. However, as noted in 

Section II.F, the maximum attenuation of Filter D is maintained over a narrower tuning 

range than Filter B (1.9 to 2.3 GHz, as compared to 1.59 to 2.3 GHz) because a smaller 

value of kE is needed to obtain the same 10-dB bandwidth. Additionally, Filter D had a 

higher level of passband insertion loss than did Filter B (0.55 dB compared to 0.2 dB at 3 

GHz) due to the longer lengths of transmission lines used.  

The two bias voltages required to tune Filter B are shown in Fig. 2.23. The two bias 

voltages are nearly identical across the whole tuning range. Also shown in Fig. 2.23 is the  
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Fig. 2.19. Measured response of Filter B, showing that it can provide > 90 dB of stopband 
rejection over a 1.5 to 2.3 GHz tuning range. 

 

Fig. 2.20. Measured attenuation in stopband of filter. 

frequency offset between the two resonators across its tuning range. It can be seen that at 

and below the lower limit of the filter’s high-attenuation tuning range (~1.585 GHz), the 

frequency offset is zero and the resonators are synchronously tuned. Above this lower 

limit, the resonators are asynchronously  
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Fig. 2.21. Measured transmission responses of all filters tuned across their frequency ranges. 
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Fig. 2.22. Comparison of two- and four-pole filters. The four-pole filter exhibits greatly 
increased selectivity, but does not maintain high attenuation over as large of a frequency range as 
the two-pole filter. 

 

Fig. 2.23. Plot of varactor bias voltages versus center frequency, and resonator frequency 
offset versus center frequency. At and below the lower limit of the filter’s high-attenuation tuning 
range, the resonator offset is zero and the resonators are synchronously tuned. Above this lower 
limit, the resonators are asynchronously tuned to achieve large stopband attenuation. 

tuned in order to realize high levels of stopband attenuation. This is in agreement with the 

analysis of Section II, in which it was asserted that the frequency offset between the 

resonators was zero (B = 0) at the limits of the filter’s tuning range, and that the 

resonators would be asynchronously tuned (B ≠ 0) between the upper and lower limits of  
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Fig. 2.24. Effect of error in bias voltage on filter attenuation. Measurements are when filter 
is tuned to 1.7 GHz, with nominal varactor biases of 9.4 V, 12.5 V, and 21.9 V. 

the filter’s tuning range. The maximum frequency offset between the resonators is 30 

MHz, or 1.4% at 2.1 GHz. 

Lastly, the sensitivity to variations in tuning voltage is examined. Although the 

filters are able to achieve extremely high levels of stopband attenuation when correctly 

tuned, errors in tuning voltage will degrade this response. Fig. 2.24 plots the maximum 

stopband attenuation versus tuning voltage error for 1.7, 1.9, and 2.3 GHz center 

frequencies. The sensitivity of stopband rejection to error in tuning voltage decreases as 

the filter’s center frequency is increased. This is to be expected, since a varactor’s 

capacitance becomes less sensitive to change in bias voltage as its bias voltage is 

increased, due to the nonlinear C-V curve of the varactor. It can be noted that at its most 

sensitive state (1.7 GHz), the maximum attenuation is greater than 50 dB when the tuning 

voltage error is less than 7 mV. If this voltage error is split between the two varactors, 

then the required precision for the tuning voltage is 3.5 mV. Considering that the 

maximum tuning voltage is 22 V, 3.5 mV equates to 13 bits of precision. Using the 

capacitance versus voltage curves of the varactors, this 3.5 mV precision can alternatively 

be interpreted as a capacitance precision of 0.55 fF.    
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2.5 Conclusion 

In this chapter, a detailed analysis of absorptive bandstop filters has been performed, in 

which theory and simulations are used to derive and demonstrate their operating 

principles, design considerations, performance tradeoffs, and limitations.  

A simple but general step-by-step design procedure has been proposed for the first time, 

taking into account non-ideal effects such as frequency-dependent couplings and quality 

factors. The theory and design principles derived are generic and not specific to a given 

technology, and thus can be used to design a wide variety of absorptive bandstop filters. 

Several varactor-tuned microstrip filters have been designed to demonstrate the design 

principles and tradeoffs derived in the chapter. A comparison is made between filters 

with different coupling structures and bandwidths to illustrate their effects on tuning 

range, and the performance of a two-pole filter is compared to that of a four-pole filter to 

show its increased selectivity. The filters designed and demonstrated are able to achieve 

very high levels of stopband isolation (> 90 dB), over as wide as a 1.45:1 tuning range. 
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  TUNABLE MILLIMETER-WAVE BANDSTOP FILTERS 3.

3.1 Introduction 

Recent advances in millimeter-wave components such as antennas, LNAs, and 

power amplifiers, have made functional radar and communication systems possible at Ka 

through W-band frequencies. An important characteristic of robust communications 

systems is the ability to operate in the presence of strong, unpredictable interfering 

signals, but this often requires the use of dynamic filtering to prevent sensitive front-end 

components such as high-gain LNAs from saturating. There are multiple ways to achieve 

this, but one promising method is to place a tunable narrowband, high-isolation bandstop 

filter in front of an otherwise wideband receiver. Key characteristics of such a filter are 

low-loss in the passband, high levels of isolation in the stopband, high selectivity (narrow 

passband to stopband transition), and wide tuning range. This chapter proposes both Ka-

band and W-band bandstop filters which exhibits these qualities. 

3.2 Tunable W-Band Bandstop Filter 

3.2.1 Concept 

The simplest two-pole bandstop filter configuration consists of two parallel 

resonators in shunt configuration coupled to a source-to-load transmission line at an 

interval of an odd multiple of 90-degree length of transmission line. This topology relies 

on the constituent resonators’ reactance to reflect incident signals in the filter’s stopband. 

When losses in the resonator are considered, the maximum achievable amount of 

stopband isolation is limited, and depends the quality factor of the resonators used and 

the bandwidth of the filter.  

Although tunable resonators with relatively high quality factors have been 

demonstrated, it is still usually not possible for tunable bandstop filters to achieve very 



42 
 

 

 

 

high levels of attenuation (>50 dB) with narrow bandwidths (< 3% fractional bandwidth). 

One technique to overcome the limitations of limited resonator quality factor is to add a 

small amount of interresonator coupling between the two resonators.  By following the 

design principles outlined in Chapter 2, it is possible to achieve theoretically infinite 

attenuation even with finite-quality-factor resonators (see Fig. 3.1). This type of filter has 

been referred to as “absorptive” bandstop filters in literature [23], [45].  

 
Fig. 3.1. Comparison of reflective and absorptive bandstop filters. Q = 75 in these 

simulations. 
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Fig. 3.2. Conceptual drawing of proposed W-band tunable bandstop filter. The top element is 

a MEMS electrostatic actuator, the middle element is the cavity substrate, and the bottom element 
is the signal substrate. 

It is interesting to note that with this topology, the maximum attenuation of the filter 

is not limited by the quality factor of the resonators, but the minimum bandwidth is. The 

external coupling must be at least �2/𝑄𝑄 , which limits the minimum possible 3-dB 

fractional bandwidth to 2/Q [96].   

3.2.2 Design 

In order to implement a high-isolation tunable bandstop filter at W-band frequencies, 

we propose a two-pole absorptive bandstop filter based on evanescent-mode cavity 
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resonator technology. Evanescent-mode cavity resonators are widely-documented in 

literature [71], [74], [97], and are resonant cavities which are capacitively loaded by 

inserting a post in the center of the cavity which forms a parallel-plate capacitance 

between the tip of the post and the ceiling of the cavity. If the ceiling of the cavity can be 

moved, such as by a piezoelectric or MEMS electrostatic actuator, this loading 

capacitance can be changed and thus the frequency of resonance can be tuned. A 

conceptual drawing of the proposed bandstop filter is shown in Fig. 3.2. 

 
Fig. 3.3. Signal-side of cavity substrate. WMS = 155 μm, WP = 60 μm, ds2 = 710 μm 
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Fig. 3.4. Cavity-side of cavity assembly. b = 1.68 mm, a = 60 μm, LS = 340 μm, WC = 500 

μm, WS = 180 μm, ds1 = 330 μm. 

The evanescent-mode resonators are realized with gold-plated wet-etched silicon 

cavities each containing a conical post in the center. This structure approximates a short 

length of coaxial transmission line loaded with a capacitance, and has been proven to 

yield tunability and high Q at frequencies up to 80 GHz [83]. The source to load coupling 

is realized with a 270 degree microstrip transmission line on a high-resistivity silicon 

substrate, with apertures in the ground plane which implement the external coupling by 

allowing a portion of the transmission line’s magnetic field to couple with the magnetic 

field of the cavity at resonance. The interresonator coupling is created by introducing an 

iris between the two resonators, coupling the magnetic fields of the two resonators.  

The strength of the external coupling is determined by both the width and length of 

the coupling aperture, and can be extracted from the S-parameters obtained from full-

wave EM simulations according to [98]. The size of the coupling apertures was chosen to 

be 0.18 mm x 0.34 mm, yielding a coupling coefficient Kext = 0.13 at 95 GHz in order to 

realize a 1.5% 3 dB fractional bandwidth notch.   

The apertures in the ground plane present series inductance to the through 

transmission line, which can seriously degrade the passband performance of the filter. 

This effect can be mitigated by adding capacitive patches to the transmission line directly 
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over the ground plane apertures [55]. However, this combination of series inductance and 

shunt capacitance adds a significant phase shift to the through-line which must be taken 

into account when designing the through transmission line. Using 3D EM simulations to 

determine the actual phase of the through-line including the phase shift from the coupling 

apertures, the distance between the two coupling apertures was chosen to be 0.71 mm so 

that the total phase shift between coupling slots (center to center) was 270 degrees at 95 

GHz.  

It was observed through 3D EM simulations that above 100 GHz, a significant 

amount of power was leaked to parasitic propagating surface modes. To mitigate this 

problem and reduce passband insertion loss, the substrate on either side of the microstrip 

line was etched away, preventing the propagation of these spurious modes.  

The inter-resonator coupling is realized with an inductive iris, which is essentially a 

section of below-cutoff waveguide which allows the magnetic fields of the resonators to 

couple with each other at resonance. Increasing the width of the coupling iris increases 

the strength of the coupling, as does reducing the spacing between the resonators. 

Because the resonator spacing was fixed after choosing the length of the through 

transmission line, the only free variable was the width of the coupling iris. The resonator 

quality factor was estimated to be 400 from HFSS simulations, and thus the desired 

interresonator coupling value was 1/𝑄𝑄𝑈𝑈 =  0.0025. The coupling iris width was chosen 

to be 0.5mm in order to attain this coupling value. 

3.2.3 W-Band Bandstop Filter Fabrication and measurements 

The 200-µm high-resistivity silicon substrate used for the signal substrate was 

bonded to a 300-µm silicon substrate using a gold intermediate layer, and the cavities 

were wet-etched using a TMAH and Triton X-100 solution [99]. The cavity and 

transmission lines were metalized and patterned with a 1 µm layer of sputtered gold.  

The tuner’s bias electrodes were created by wet-etching cavities in the backside of 

the tuner substrate, which were then electroplated with a thick layer of copper. The  
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Fig. 3.5. Fabrication steps. (a) Etch signal substrate to suppress surface waves. (b) Bond 
etched substrate to cavity substrate (gold-gold thermocompression bonding). (c) Etch cavities 
using gold layer as etch stop. (d) Metalize and pattern cavities and microstr 

corrugated diaphragm was created by etching circular corrugations in the silicon substrate, 

metalizing the corrugations, then etching the silicon from under the diaphragm using 

XeF2 dry-release process to leave a flexible, free-standing diaphragm.  

After release, the tuner was aligned and bonded to the cavity structure using gold-to-

gold thermocompression bonding. SEM images of the fabricated device are shown in Fig. 

3.6. 
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Fig. 3.6. SEM images of fabricated device. (top left) Corrugated tuner diaphragm. (top right) 
Cavities with capacitive posts and coupling apertures. (bottom) Photograph of assembled filter. 

The assembled structures were measured using an Agilent E8361 precision network 

analyzer with a millimeter-wave extension head and Cascade Infinity RF probes, and the 

filters were appropriately biased using Keithley 2440 power supplies. In all 

measurements, TRL calibration was performed to bring the measurement reference plane 

to the tips of the measurement probes. 
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Fig. 3.7. Measured response of the W-band bandstop filter, exhibiting > 70 dB notch depth 

and < 3.25 dB passband insertion loss up to 109 GHz. 

Fig. 3.7 shows the measured response of a filter tuned to 96 GHz. Its notch depth is 

greater than 70 dB, and the passband insertion loss varies from 1.7 dB at 71 GHz to 3.25 

dB at 109 GHz. The relatively high passband return loss (~8 dB) is due to parasitic 

reactances caused by the CPW to microstrip transition required to measure the device 

with RF probes. From simulations, the return loss of the filter itself would be better than 

15 dB across the passband if the effects of the transition were removed. 

The measured responses of two assembled filters are shown in Fig. 3.8. The two 

filters are identical in all respects except for the initial gap between the tuning diaphragm 

and the post tip. The first filter has a capacitive gap which ranges from 3-10 µm, and the 

second filter has a gap which ranges from 6-13 µm. The first filter has an analog tuning 

range of 75-103 GHz with an applied bias of 0-90 V. The second filter tunes from 96-108 

GHz with 0-80 V applied bias. Below 90 GHz, the filters are not able to obtain deep 

notches because the through-line is no longer 270 degrees and the phase relationship  
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Fig. 3.8. Performance of the measured filters. (a) Filter with 3-10 µm tuning gap covering 
75-103 GHz. (b) Filter with 6-13 µm tuning gap covering 96-108 GHz. 

which is required for absorptive operation is no longer present. The unloaded quality 

factor of the resonators was extracted to be 290 and the filters had a 1.5% 3-dB fractional 

bandwidth (calculated after deembedding the passband insertion loss) at 95 GHz.  
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3.3 Ka-band Tunable Bandstop Filter 

3.3.1 Concept 

The Ka-band filter was designed to be intrinsically-switched, so that the tunable 

notch could be deactivated if necessary to leave a low-loss passband. A schematic 

diagram illustrating a resonator with intrinsically-switched coupling is shown in Fig. 3.9. 

The structure consists of a resonator with two external coupling elements, separated by a 

transmission line of electrical length θ [19].  

 
Fig. 3.9. (top) Topology of an intrinsically-switched resonator. (bottom) Equivalent circuit. 

This structure can be represented by a resonator with a slightly offset center 

frequency and only a single (but frequency-dependent) coupling with transmission lines 

of lengths θ1 and θ2 preceding and following the coupled resonator. If K2 = -K1, the 

effective coupling coefficient and phase lengths are given by 

𝐾𝐾0 = 𝐾𝐾1√2 − 2cos 𝜃𝜃  (3.1) 

𝜃𝜃2 = 𝜃𝜃1 =
𝜃𝜃
2

. (3.2) 

If the resonator is tunable, then the resonator can be tuned to the frequency at which 

θ is 360o which yields a coupling coefficient of zero, isolating the resonator from the 

through-line and creating an all-pass response.  
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The preceding concepts are combined to create a 20-40 GHz intrinsically-switched 

absorptive bandstop filter.  

3.3.2 Design 

The external coupling elements are implemented as ground-plane coupling apertures 

on either side of the cavity. From (3.3) it is evident that the total coupling of the 

intrinsically-switched topology coupling is greater than that of a single coupling element 

for values of θ between 60o and 300o. Through full-wave electromagnetic simulations, the 

coupling aperture size was chosen to be 0.85 mm x 0.25 mm to yield a total external 

coupling coefficient of 0.23 at 30 GHz and a 3-dB fractional bandwidth of approximately 

5%.  

The interresonator coupling is realized with a below-cutoff waveguide iris which 

allows the magnetic fields of the resonators to couple with each other. The simulated 

quality factor of the resonators is approximately 400, and thus the desired interresonator 

coupling coefficient is 0.0025. A cavity spacing of 3.3 mm and a coupling iris width of 

1.6 mm yields this coupling coefficient at 30 GHz. 

The filter is designed to have an intrinsically-switched all-pass state when the 

resonators are tuned 43 GHz, requiring a transmission line between the coupling elements 

which is 360o at 43 GHz. This has a phase length of approximately 250o at 30 GHz, the 

center of the filter’s tuning range, which must be absorbed into the nominally-90o length 

of transmission line used in the absorptive filter. A 90o through-line cannot absorb the 

250o provided by the intrinsic-switching through-lines, so the next longer possible line 

length of 90o + 360o = 450o must be used. Therefore an additional 450o - 250o = 200o of 

transmission line must be added between the intrinsically-switched resonators. This  
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Fig. 3.10. Dimensions of (top) signal-side of substrate, and (bottom) cavity side of substrate. 

phase length is obtained by choosing the spacing of the resonators to be 3.3 mm. The 

final dimensions of the filter are shown in Fig. 3.10.  

3.3.3 Ka-Band Filter Measurements 

The filter was fabricated using same process as in Fig. 3.5. SEM images and a 

photograph of the assembled filter are shown in Fig. 3.6. 

The assembled filter was measured using an Agilent E8361 precision network 

analyzer with Cascade Infinity measurement probes. The effects of the probes and the 

CPW-to-microstrip transitions were removed using TRL calibration. Fig. 3.12 shows the 

filter when tuned to 30 GHz, as well as the filter in its all-pass state. The filter has > 60 

dB notch depth with a 4.5% 3-dB fractional bandwidth, and has a passband with < 1.1 dB 

insertion loss up to 42 GHz. In its all-pass state, the filter has less than 1.1 dB of insertion 

loss and better than 15 dB return loss up to 42 GHz, and less than 2 dB insertion loss and  
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Fig. 3.11. (top) SEM images of (left) the corrugated diaphragm tuners and (right) the cavities. 

(bottom) Photograph of the assembled filter. 

 
Fig. 3.12. Measured response of the filter when tuned to 30 GHz (black traces) and in its 

intrinsically-switched all-pass state (red traces) 

greater than 9 dB return loss up to 45 GHz. The intrinsically-switched resonators add 

~0.5 dB of insertion loss at 43 GHz due to a slight mismatch in coupling strengths due to 

fabrication uncertainties. 

Fig. 3.13 shows the filter when tuned across its full tuning range. The filter tunes 

from 22 – 43 GHz with very high stopband attenuation from 27 – 34.5 GHz. This tuning  
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Fig. 3.13. Measured response of the filter when tuned across its entire tuning range. 

range was achieved by biasing the electrostatic tuners with 0-80 V, corresponding to 

approximately 14 μm of deflection of the tuner’s membranes. 

3.4 Conclusion 

High-isolation, widely tunable bandstop filters are demonstrated in the Ka and W 

bands. The filters combine the narrow bandwidths made possible by high-Q cavity 

resonators with the high-isolation characteristics of absorptive bandstop filters. These 

filters cover 22-43 GHz and 75-108 GHz, and produce notch depths of > 70 dB with 

narrow (4.5% and 1.5%, respectively) 3-dB bandwidths. The high performance of these 

filters and their potential for low-cost batch fabrication using mature MEMS fabrication 

processes make these filters attractive candidates for enabling robust Ka- and W-band 

communication systems which can operate in the presence of strong dynamic interferers. 
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    A 0.95/2.45 GHZ SWITCHED BANDPASS FILTER USING 4.
COMMERICALLY-AVAILABLE RF MEMS TUNING 

ELEMENTS 

4.1 Introduction 

Radio-frequency (RF) software-defined radio chipsets are becoming increasingly 

available for a wide variety of bands including, for example, the industrial, scientific, and 

medical (ISM) bands. Robust operation of such a system often requires high-performance, 

multi-functional RF filters to enable adaptive preselection of the signal of interest while 

suppressing undesired interferers and noise. Fulfilling these requirements and ensuring 

high-quality transmission of the desired signal within a certain ISM bandwidth, 

miniaturized highly-selective bandpass filters (BPFs) with broadband switching/tuning 

capabilities need to be developed. This article describes the work of the first place award 

of the student design competition “Tunable RF Microelectromechanical Systems (MEMS) 

Filters” of the IEEE Microwave Theory and Techniques Society that was held in the 2015 

International Microwave Symposium (IMS 2015) in Phoenix, Arizona. It addresses the 

RF design and implementation of a switched-frequency BPF using commercially-

available RF MEMS capacitors. 

4.2 Switched Filter Specifications 

The main objectives of the “Tunable RF MEMS Filters” IMS 2015 student design 

competition include the RF design and practical realization of a compact, low-loss, two-

state switchable microwave BPF that is able to operate at two alternative ISM bands 

(0.95 and 2.45 GHz) with a constant bandwidth of at least 100 MHz at each band. In 

particular, when operating at the low ISM band (centered at 0.95 GHz), the filter is 
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required to provide over 30 dB of rejection for frequencies between 0.5─0.8 GHz and 

1.1─3.5 GHz while featuring a minimum insertion loss in its 0.9─1.0 GHz passband. 

Likewise, when operating at the high ISM band (centered at 2.45 GHz), a rejection 

beyond 30 dB needs to be obtained for frequencies between 0.5─2.3 GHz and 2.6─3.5 

GHz, with minimum insertion loss for frequencies between 2.4─2.5 GHz. WS1041 

digitally-tunable capacitors from WiSpry, Inc. were provided to the participating teams to 

be used as tuning elements. Conceptual drawings of the desired filtering transfer 

functions are illustrated in Fig. 4.1. 
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(a)                                                                                (b) 

Fig. 4.1. A conceptual illustration of the expected filtering transfer functions of the BPF for 
(a) the low ISM state (centered at 0.95 GHz), and (b) the high ISM state (centered at 2.45 
GHz).Filter Design 

4.2.1 Proposed Concept: Intrinsically-Switched Parallel-Cascaded BPFs 

A number of different approaches can be taken in order to realize the specified two-

state switchable BPF. For example, a tunable filter with 0.95-2.45 GHz tuning range 

could be implemented. Though filters with such wide tuning ranges have been 

demonstrated [39], [71], [100], the highly-selective filtering transfer function and 

absolute bandwidth required would be very difficult to preserve over such a wide 

frequency range. A switched-filter bank utilizing series RF switches (e.g. [101]) is an 

obvious choice, but is not within the scope of this competition due to the requirement of 

using WiSpry WS1041 tunable capacitors as tuning/switching elements. Therefore, a 

filter design approach based on parallel-cascaded intrinsically-switched BPFs [19] is 
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proposed. It consists of two intrinsically-switched BPFs centered at 0.95 GHz and 2.45 

GHz, as illustrated in  

2.45-GHz 
Intrinsically-Switched 

Microstrip BPF

0.95-GHz 
Intrinsically-Switched 
Lumped-Element BPF

Microcontroller

DC Power Supply

Input Output

RF Path
DC Path

   

Low ISM-band

Eliminated 
High ISM-band

  

High ISM-band

Eliminated 
Low ISM-band

 
(a)                                                                        (b)                                         (c) 

Fig. 4.2. (a) Schematic diagram of the proposed filter architecture and conceptual drawings 
of (b) the low ISM-band and (c) the high ISM-band filtering transfer functions. 

Fig. 4.2 (a). To create the overall response, either of the two BPFs is intrinsically 

switched off by strongly detuning some of its resonators [102]. Note that with the 

conceived filter design approach, both BPFs can be individually designed at arbitrary 

center frequencies featuring independently-specified bandwidths. 

Switching of the BPF architecture is realized by means of commercially available RF 

MEMS capacitors (WS1041) from WiSpry. They are single-chip, fully-integrated tunable 

capacitor arrays that feature four internal high-quality-factor (high-Q), high-linearity, 

digitally tunable capacitors which can be used in series, shunt or mixed configurations. 

Each of the four internal capacitors exhibits a 4-bit, 0.2─1.5 pF capacitance tuning range 

with a 0.05-pF resolution. Two supply voltages of 3.3 V and 1.8 V are required for 

operation. Tuning of the WiSpry capacitors is achieved through a digital serial control 

interface which needs to be generated by an auxiliary digital subsystem.  

In order to fulfill the requirements of small physical size and low insertion loss, a 

hybrid integration scheme was employed for realizing the proposed filter cascade 

architecture. Note that a lumped-element design approach and a microstrip-line filtering 

topology were used for the materialization of the 0.95-GHz and the 2.45-GHz BPFs, 
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respectively. In this manner, the overall form factor of the filter architecture can be 

minimized while preserving a low passband insertion loss.  

4.2.2 0.95-GHz Lumped-Element BPF Design 

A four-pole, quasi-elliptic BPF topology was selected for the low ISM band filter as 

it presented a good compromise between passband insertion loss, stopband rejection, and 

complexity. Due to the large size of microstrip resonators at 0.95 GHz, a lumped-element 

realization was employed. The coupling matrix diagram (CMD) in Fig. 4.3(a) and its 

corresponding coupling matrix (CM) in (4.1) were used for the design of the 0.95-GHz 

BPF with a fractional bandwidth of 12%, a passband return loss of 20 dB, and two 

symmetric TZs. 
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(a)                                                  (b) 

Fig. 4.3. (a) CMD (black circles: resonant nodes; white circles: source (S) and load (L); 
static resonators: 1 and 2; tunable resonators: 3 and 4; solid lines: direct couplings; dashed line: 
cross coupling) of the four-pole quasi-elliptic BPF and (b) schematic of the designed 0.95-GHz 
lumped-element BPF. The optimized component values are: L1 = 12 nH, L2 = 8 nH, Le = 20 nH, 
Lm= 0.2 nH, C1 = W2 = 2.2 pF, C2 = W1 = 1.9 pF, C3 = 0.3 pF, C4 = 0.2 pF. 
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[𝑀𝑀Low−Band] =

⎣
⎢
⎢
⎢
⎡
𝑀𝑀SS 𝑀𝑀S1 ⋯ 𝑀𝑀S4 𝑀𝑀SL
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⋮ ⋮ ⋱ ⋮ ⋮

𝑀𝑀4S 𝑀𝑀41 ⋯ 𝑀𝑀44 𝑀𝑀4L
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⎥
⎥
⎥
⎤

=

⎣
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⎢
⎢
⎢
⎡

0 0.123 0 0 0 0
0.123 0 0.107 0 −0.012 0

0 0.107 0 0.089 0 0
0 0 0.089 0 0.107 0
0 −0.012 0 0.107 0 0.123
0 0 0 0 0.123 0 ⎦

⎥
⎥
⎥
⎥
⎤

          (4.1) 

A realistic implementation scheme of the aforementioned CMD is illustrated in the 

schematic circuit of Fig. 4.3(b). In order to realize the desired switching functionality, the 

third and fourth LC resonators of the BPF are made tunable by employing the WS1041 

capacitors, noted as W1 and W2 in Fig. 4.3(b), while the first and second LC resonators 

(L1, C1 and L2, C2) are static. By detuning two of the four resonators, around 25 dB of 

rejection can be obtained as compared to approximately 15 dB of rejection if only one of 

the resonators is detuned. Detuning the remaining (third and fourth) resonators would 

further complicate design, while yielding little improvement in rejection. Two of the four 

capacitors within each WS1041 chip are used in a parallel configuration, yielding a total 

capacitance tuning range of 1.2─3.85 pF including an intrinsic shunt parasitic 

capacitance of 0.4 pF at each terminal of the capacitor bank. The resonator inductances 

are chosen to yield a center frequency of 0.95 GHz. 

The inter-resonator and external coupling elements are realized with lumped-element 

admittance inverters. Note that capacitive inter-resonator couplings are utilized in this 

design because the required coupling capacitance values (C3 and C4 in Fig. 4.3(b)) are 

more realistic at the designed frequency than the equivalent coupling inductance values 

(0.2─0.3 pF versus 100─800 nH). Furthermore, the external coupling is realized 

inductively (Le in Fig. 4.3(b)) so that the upper stopband can be approximated as an open 

circuit, which simplifies the process of cascading the two filters. In order to realize the 

negative coupling coefficient M14, the inductors L1 of the first and fourth resonators are 

placed in close proximity to each other so that a weak mutual inductance (Lm) is created 

between them. The spacing between the inductors for realizing Lm was specified through 

full-wave EM simulations, and the final values of the filter components were obtained 



61 
 

 

 

 

through post-layout simulations. The EM-simulated resonant frequency of the tunable LC 

resonator is plotted versus the total loading capacitance in Fig. 4.4(a). As can be seen, the 

third and fourth resonators can be detuned from 0.95 to 0.6 GHz. 

The EM-simulated “On”- and “Off”-state frequency responses of the 0.95-GHz BPF 

are plotted in Fig. 4.4(b). In the “On” state, all of the filter’s resonators are synchronously 

tuned and the BPF has approximately 2 dB of insertion loss and 20 dB return loss in the 

passband. In the “Off” state (maximum detuned state of the filter), the bandpass response  

 

(a)                                                                                             (b) 

Fig. 4.4. (a) EM-simulated resonant frequencies versus loading capacitances for a single 
tunable LC resonator and a single microstrip resonator using the WiSpry tunable capacitor and (b) 
EM-simulated frequency responses of the 0.95-GHz lumped-element and the 2.45-GHz 
microstrip BPFs when tuned to the “On” and “Off” states. “DR” in (b) indicates the detuned 
resonances of the filter resonators. 

is eliminated and approximately a 25 dB out-of-passband rejection is achieved for 

frequencies from 0.5─3.5 GHz 

4.2.3 2.45-GHz Microstrip BPF Design 

As a design compromise between filter performance and occupied physical area, a 

fourth-order microstrip BPF design based on a high-permittivity, low-loss Rogers 

RT/Duroid 6010 substrate (εr = 10.2, dielectric tanδ = 0.0023) was chosen. The BPF is 

composed of four highly-miniaturized hairpin-line resonators and is illustrated in Fig. 

4.5(a). It realizes the CMD illustrated in Fig. 4.5(a), which possesses an elliptic-type 
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transfer function. Note that in this configuration the third and fourth resonators are 

capacitively loaded with the WS1041 capacitors which enable frequency tuning, while 

the first and second resonators are unloaded. The detailed geometries of both the loaded 

and the unloaded hairpin-line resonators are illustrated in Fig. 4.5(b). 
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(a)                                                                          (b) 

Fig. 4.5. (a) Layout and CMD (black circles: resonant nodes; white circles: source (S) and 
load (L); static resonators: 1’ and 2’; tunable resonators: 3’ and 4’; solid lines: direct couplings; 
dashed line: cross coupling) of the designed 2.45-GHz microstrip BPF and (b) layout of the 
loaded (left) and unloaded (right) hairpin-line resonators. Dimensions are all in millimeters. 
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⎤

 

          (4.2) 

The analyses of the individual resonators as well as the final filter design were 

performed in ANSYS high-frequency structural simulator (HFSS) in which conductor 

loss, dielectric loss, and radiation loss have been taken into consideration. The EM-

simulated resonant frequency of a single WS1041-loaded hairpin-line resonator is plotted 

versus the loading capacitance in Fig. 4.4(a), showing a tuning range of 2.45─1.8 GHz. 

Employing the geometrical configuration in Fig. 4.5(a), the 2.45-GHz BPF was designed 

using the CM in (4.2) to have a fractional bandwidth of 4.9%, a passband return loss of 

20 dB, and two TZs located at 2.3 and 2.6 GHz. The inter-resonator coupling coefficients 
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are determined by the separation of two adjacent resonators, while the external couplings 

are controlled by the tapping position of the microstrip lines on the first and fourth 

resonators. The extraction of these matrix parameters was performed in HFSS using the 

design methodology in [92]. 

The EM-simulated frequency response of the 2.45-GHz filter when tuned to the “On” 

and “Off” states is plotted in Fig. 4.4(b). In the “On” state, the filter has approximately 

2.3 dB of insertion loss and 16 dB return loss in the passband. In the “Off” state, when 

the tuning capacitors are set to their maximum values and the bandpass response is 

eliminated, the worst-case rejection from 0.5─3.5 GHz is calculated to be around 25 dB. 

4.2.4 RF Design of the BPF Cascade 

The standard filter synthesis and design procedures assume a 50-Ω characteristic 

impedance for both the source and the load of the filter. Away from the designed 

frequency, however, the input/output impedances of each BPF are reactive, and as such a 

reactance is introduced at the source/load of either of the two filters. This in turn results 

in passband degradation when the individual filters are parallel-cascaded as shown in Fig. 

4.1(a). In order to overcome this problem, the filter design need to be modified so that the 

input/output impedances are complex-conjugate matched to the reactive source/load 

impedances. However, this process becomes complicated when the two filters must be 

simultaneously matched to each other. Alternatively, a matching network can be designed 

and inserted in between the two filters to transform the complex impedance that each 

filter presents at the source or the load of the other filter into an open circuit. 

In this design, the input/output impedances of the 0.95-GHz BPF are nearly open-

circuited at 2.45 GHz due to the use of inductive external couplings (Le), presenting 

negligible reactance to the input and the output of the 2.45-GHz BPF. The input/output 

impedances of the 2.45-GHz BPF are heavily-reactive at 0.95 GHz, but they can easily be 

transformed into an open circuit by simply inserting a section of 50-Ω microstrip line 

between these two filters, as illustrated in the overall filter layout in Fig. 4.6(b). Note that 

different lengths of microstrip lines are required for the source and load because the input 

and output impedances of the 2.45-GHz BPF are different when two of its resonators are 
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detuned to their “Off” states. The physical lengths of the microstrip impedance-

transforming lines are 49.2 and 41.3 mm (in terms of electrical lengths, θ1 = 154° and θ2 

= 121°, at 0.95 GHz). 
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Fig. 4.6. (a) Combined resonator coupling topology of the 0.95/2.45-GHz switched-
frequency BPF and (b) Front view of the filter layout, where dimensions are all in millimeters. 

The input/output microstrip lines of the 2.45-GHz BPF need to be well separated so 

as not to degrade the out-of-passband rejection levels. All four WS1041-loaded tunable 

resonators are controlled by a microcontroller (MCU)-based digital subsystem at the core 

of which is a 16-bit MSP430 MCU from Texas Instruments (TI). Other critical 

components in the digital circuit include a TI 6-bit bidirectional level-shifter which 

interfaces the microcontroller to the WS1041, and a TI low-dropout regulator, all of 

which are listed in Table 4.1 together with other lumped components labeled in Fig. 
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4.6(b). The lumped inductors and capacitors utilized are Coilcraft 0908SQ series [15] and 

Johanson Technology R07S series [16], respectively. 

Table 4.1. Summary of the Components Labeled in Fig. 4.6(b) 

Component Value Compone
nt Value 

L1 12.1 nH C4 0.2 pF 
L2 8.1 nH C5 47 pF 
L3 8.2 nH C6 10 μF 
C1 2.0 pF C7 1 μF 
C2 1.7 pF R1 150 Ω 
C3 0.3 pF R2 100 KΩ 

Others Description Part Number 
T TI 6-Bit Bidirectional Level-Shifter  TXB0106 
M TI 16-bit Low-Power Microcontroller MSP430G2553 
R TI Low-Dropout Voltage Regulator LP2966 
S Omron SPST Switch B3U-1000P 

LED1, 2 Light-emitting diode (LED) LG L29K 
W1─W4 WiSpry Digitally-Tunable Capacitor WS1041 

4.3 Measured Performance of the 0.95/2.45-GHz Switched-Frequency BPF 

Fig. 4.7 shows a photograph of the manufactured filter, whose total volume is around 

16 cm3 including the two subminiature A (SMA) connectors. The measured and EM-

simulated frequency responses of the filter cascade are depicted in Fig. 4.8(a)─(d). As can 

be seen, good agreement is obtained between the RF-measured and EM-simulated plotted 

curves for all reconfigurable states. In particular, it can be observed that in the low ISM-

band state, the filter exhibits a mid-band insertion loss of around 2.4 dB and provides 

greater than 26 dB of rejection across its entire stopband. Furthermore, in the high ISM-

band state, the filter exhibits a mid-band insertion loss of 3.9 dB and provides greater 

than 23 dB of rejection across its entire stopband. Compared to the simulated results, the 

measured mid-band insertion losses for the low and high ISM-passbands are 0.4 dB and 

1.6 dB higher, respectively, and the measured passband return losses are on average 5─10 

dB worse. These effects can be attributed to 1) manufacturing tolerances of the microstrip 

circuit, 2) additional losses from radiation, SMA connectors, and surface/edge roughness 

of the microstrip lines, and 3) component tolerances of the lumped inductors and  
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Fig. 4.7. Photograph of the manufactured filter. 

capacitors. These parasitic effects also yield slight discrepancies of the S11 and S21 

parameters for frequencies out of the desired passbands. A parasitic resonance due to the 

self-resonance of the inductor L3 can be observed around 2.7─2.8 GHz in each measured 

state, degrading the attenuation at the adjacent frequencies to a certain extent. 

4.4 Conclusion 

In this article, the RF design and the practical realization of a compact, multi-state 

BPF that is capable of switching its passband between 0.95 and 2.45 GHz were 

developed within the scope of the IMS2015 Student Design Competition. The proposed 

filtering architecture is based on a hybrid implementation composed of a 0.95-GHz 

fourth-order lumped-element BPF and a 2.45-GHz fourth-order microstrip BPF that are 

arranged in a parallel configuration and realize a quasi-elliptic filtering transfer function. 

Switching functionality is achieved by integrating RF MEMS digitally tunable capacitors 

from WiSpry in two of the resonators of each parallel-connected BPF that can in turn be 

detuned and effectively switch off the operation of each BPF. The highly miniaturized 

filter occupies a volume of only 16 cm3 including all associated digital circuitry. The 

filter provides an innovative solution to the competition criteria, while being subject to 

the constraints of the competition. It offers an attractive solution over conventional  
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                                                   (a)                                                                                          (b)

 

(c)                                                                                       (d) 

Fig. 4.8. (a) RF-measured and EM-simulated frequency responses of the filter: (a) both 
passbands on, (b) lower passband on and higher passband off, (c) lower passband off and higher 
passband on, and (d) both passbands off. The “SR” in each state indicates the self-resonance of 
the inductor L3. 

widely-tunable filters as it is able to switch over a very wide (~2.6:1) frequency range 

while maintaining a nearly-constant absolute bandwidth, and low insertion loss. The 

proposed filter architecture received the first place in the student design competition, and 

its obtained RF performance makes it an excellent candidate for multifunctional ISM-

band radio communication systems. 
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   CONSTANT-BANDWIDTH TUNABLE BANDSTOP FILTERS 5.

5.1 Introduction 

Tunable bandstop filters have been the focus of many research endeavors in recent 

years due to their ability to suppress signals at will by many orders of magnitude with a 

high degree of selectivity. Tunable bandstop filters can be cascaded with bandpass filters 

in order to add additional isolation to that already provided by the bandpass filter ([103], 

[104]), or can be used without a preselect bandpass filter at the front end of a receiver 

chain in order to realize a very wideband receiver with the ability to reject undesired 

signals, such as image frequencies or jammers. 

Though many excellent examples of tunable bandstop filters have been demonstrated, 

almost all are plagued by large variations in bandwidth when tuned over wide frequency 

ranges. Only a short survey of published tunable bandstop filters is needed to see this. In 

[56], a bandstop filter which has a 0.65 to 1.65 GHz tuning range and a 1.2% to 3.2% 

fractional bandwidth (FBW)  is presented. An 8.6-11.3% FBW is seen in [105], a 

bandstop filter with a 1.3 to 2.3 GHz tuning range. The filter in [86] experiences a 4.0% 

to 5.9% FBW over an 8.9 to 11.3 GHz tuning range, and the filter in [26] 1.6-4.2% FBW 

with slightly over an octave tuning range. 

The reason for the variation in fractional bandwidth over tuning range is related to the 

coupling structures which connect the resonators of the filters to the source and load. The 

FBW of a 1st order lossless bandstop filter consisting of a shunt parallel resonator coupled 

to a source-to-load transmission line with an external coupling element of magnitude K0 

can be shown to depend only on the external coupling [19]: 

𝑗𝑗𝐵𝐵3𝑑𝑑𝑑𝑑 =
𝐾𝐾02

2
 (5.1) 
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Though factors such as finite unloaded quality factor and lengths of transmission lines 

other than 90o complicate analytical expressions for the bandwidths of higher-order 

bandstop filters, they are still primarily determined by the strength of their external 

coupling. Typical microwave coupling structures used to realize external coupling in 

bandstop filters include coupled microstrip lines, lumped capacitors or inductors, and 

apertures in cavities. Coupling structures that rely on a certain geometry to provide the 

desired coupling coefficient, such as coupled sections of microstrip lines or apertures in 

cavities, have frequency variation because the electrical size of the structure increases as 

frequency is increased. Lumped element coupling structures such as capacitors or 

inductors have frequency-dependent reactances which lead to changes in coupling 

magnitude. 

It is usually even more challenging to maintain a constant absolute bandwidth (ABW) 

across a wide tuning range, because ABW is equal to FBW∙f0, where f0 is the center 

frequency of the filter. Even with a perfectly-constant FBW, the ABW of a filter will 

double when tuned over an octave tuning range. To maintain constant ABW, the FBW 

must decrease linearly with frequency (i.e. the external coupling coefficient must be 

inversely proportional to the square root of frequency.) 

Several methods for addressing the problem of bandwidth variation have been 

presented. In [8] and [11], lumped-element absorptive bandstop filters are implemented 

with inductive admittance inverters which, when combined with capacitively-tuned 

resonators, provide fairly constant ABW over more than an octave tuning range. Due to 

the use of lumped-element inductors and capacitors, however, this method is only 

applicable for frequencies less than approximately 2 GHz.  

Another method for maintaining constant ABW is to realize the external coupling with 

an electrically-long section of coupled transmission line. The length of coupling section 

can be optimized to blend electric and magnetic coupling, and the opposite frequency 

dependence of these two types of coupling can partially compensate for each other, 

yielding a fairly constant bandwidth. Examples of this method can be found in [18] and 

[106]. This method works well, as [18] demonstrated a 92% center frequency tuning 

range with only 24% variation in 3-dB bandwidth. However, this method is only 
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applicable to microstrip or other electrically-long resonators which can use both electric 

and magnetic coupling.  

A third method for realizing constant-bandwidth filters is to utilize tunable coupling 

elements, so that the coupling can be reduced at higher frequencies in order to maintain 

constant ABW. In [19] and [107], microstrip resonators loaded with varactors on each 

end are used. By differentially tuning the varactors, the voltage and current distributions 

on the resonator can be modified, which tunes the external coupling coefficient and the 

filter’s bandwidth. [107] demonstrates the ability to tune the 3-dB bandwidth from 70 to 

140 MHz, and can maintain a constant 100 MHz 3-dB bandwidth over a 1.2 to 1.6 GHz 

center frequency tuning range. The filter in [19] has a 3-dB bandwidth which can be 

tuned from 26 to 143 MHz, and can be held constant over a 0.67 to 1.0 GHz tuning range. 

In [25], substrate-integrated-waveguide cavity resonators are coupled to a through-line 

with varactors, which allows the filter to maintain a constant 83 MHz 3-dB bandwidth 

across an 0.77 to 1.25 GHz tuning range. Using tunable coupling elements allows tunable 

filters to maintain constant bandwidth, but it increases control complexity due to the 

additional tuning elements, and also decreases the filter’s linearity and adds additional 

loss to the resonators.  

Until recently, there was no way to passively control the bandwidth variation of 

high-Q evanescent-mode cavity resonators. The lumped element coupling method of [8] 

is not compatible with this type of resonator, particularly at high frequencies where 

lumped-element components are very lossy. The electric field is concentrated into a very 

small portion of resonator’s volume, while the magnetic field is fairly evenly distributed 

throughout the volume of the resonator, and thus it is difficult to simultaneously realize 

both electric and magnetic coupling, and the method used by [106] cannot be used. 

Tunable coupling elements can be used, as in [25], but it is often preferable to avoid the 

additional tuning elements introduced by tunable coupling.  

A passively-compensated coupling method for evanescent-mode bandstop filters was 

recently presented by the authors in [108], which for the first time allowed control over 

bandwidth for bandstop filters of this technology. This paper introduced a method for 

passively compensating the frequency variation of the filter’s coupling coefficients, and 

showed a constant-ABW filter with only 27% variation in its 3-dB absolute bandwidth 
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over an octave center-frequency tuning range – an 80% improvement compared to the 

typical method of coupling for these filters. Our work in this chapter builds on this work 

by investigating this new bandwidth control method in greater detail, explaining its 

method of operation and evaluating design considerations for this method such as the 

relationship between tuning range and bandwidth variation, and the effects of coupling 

sign and transmission line length on bandwidth variation. It is shown that in addition to 

providing greatly reduced bandwidth variation, this coupling method also reduces the 

phase variation of the transmission line between the two resonators of a two-pole 

bandstop filter, which serves to reduce the variation in the shape of the filter’s transfer 

function. The coupling method is used to design four filters with tuning ranges centered 

around 4.5 GHz: a two-pole constant FBW filter with an octave tuning range and a 1.16% 

to 1.3% 3-dB bandwidth; a two-pole constant ABW filter with an octave tuning range 

and a 50.3 to 56.5 MHz 3-dB bandwidth (12% variation - a 55% improvement over the 

filter in [108]); a two-pole constant ABW with a 50% tuning range and a 52 to 54 MHz 

MHz 3-dB bandwidth; and a constant ABW octave-tunable 4-pole filter which can 

maintain a 50 MHz 10-dB bandwidth which is constant to within the measurement limits 

of the network analyzer used to characterize the filters.  

Section 5.2 of this chapter revisits the coupling concept introduced in [108] and 

examines its design space, presenting design principles and design tradeoffs. Section 5.3 

details the design of constant-bandwidth evanescent-mode cavity based filters using the 

new coupling method. Section 5.4 presents the measured results of the designed filters, 

and Section 5.5 concludes the work.  

5.2 Constant Bandwidth Coupling Concept 

The coupling topology studied in this work is shown in Fig. 5.1 This circuit was first 

introduced in [19] in order to realize intrinsically-switchable bandstop filters, and was 

proposed in [108] for the purpose of constant-bandwidth filters.  

It can be shown [19] that the circuit of Fig. 5.1(a), consisting of a resonator coupled 

twice to a through line of length θ0 with coupling elements kE1 and kE2, is equivalent to 

the circuit of Fig. 5.1(b), which comprises a resonator coupled to a through-line with only  
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Fig. 5.1. (a) Twice-coupled resonator topology for constant bandwidth. (b) Equivalent circuit 
of (a). 

a single coupling element kE, followed and preceded by transmission lines of lengths θ1 

and θ2. There is also a slight resonant frequency offset between the resonators in Fig. 

5.1(a) and (b), but this frequency offset can be neglected since we are using widely-

tunable resonators which can compensate for any slight frequency offset. The equations 

relating the expressions in the equivalent circuit to those of the original circuit are: 

 
𝑘𝑘𝐸𝐸 = �𝑘𝑘𝐸𝐸1

2 + 𝑘𝑘𝐸𝐸2
2 + 2𝑘𝑘𝐸𝐸1𝑘𝑘𝐸𝐸2cos (𝜃𝜃0) (5.2) 

 

𝜃𝜃1 =
1
2
�𝜋𝜋 − arg�−

𝑘𝑘𝐸𝐸1
𝑘𝑘𝐸𝐸2

+ 𝑒𝑒−𝑗𝑗𝑗𝑗0

𝑘𝑘𝐸𝐸1
𝑘𝑘𝐸𝐸2

+ 𝑒𝑒𝑗𝑗𝑗𝑗0
�� (5.3) 

 𝜃𝜃2 = 𝜃𝜃0 − 𝜃𝜃1 (5.4) 
If the two coupling elements kE1 and kE2 have roughly the same frequency 

dependence but one is a fraction of the other, e.g. 

𝑘𝑘𝐸𝐸2 ≈ 𝑟𝑟𝑘𝑘𝐸𝐸1 (5.5) 
where r is a constant, then (5.2) can be approximated as  

𝑘𝑘𝐸𝐸 = 𝑘𝑘𝐸𝐸1𝐹𝐹 (5.6) 

𝐹𝐹 = �1 + 𝑟𝑟2 + 2𝑟𝑟cos (𝜃𝜃0) (5.7) 
We now see that the total equivalent coupling coefficient is equal to one of the 

original coupling coefficients multiplied by a shaping factor F which, because the 

electrical length of the transmission line θ0 is proportional to frequency, has a  
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Fig. 5.2. Frequency variation of the shaping factor F which modifies the frequency 
dependence of the coupling apertures. 

sinusoidal-like frequency dependence. The frequency dependence of the shaping factor F 

is plotted in Fig. 5.2. It can be seen that when the two coupling coefficients have the same 

sign (i.e. r is positive), F has a negatively-sloped frequency dependence for 0o < θ0 < 180o 

and a positive frequency dependence for 180o < θ0 < 360o. Conversely, when the two 

coupling coefficients have opposite sign (that is, r is negative), the opposite trend is 

observed: F has a positive frequency dependence for 0o < θ0 < 180o and a negative 

frequency dependence for 180o < θ0 < 360o. The regions where F has negative frequency 

dependence (0o < θ0 < 180o when the coupling coefficients have the same sign, and 180o 

< θ0 < 360o when they have opposite signs) can be used to at least partially compensate 

for the positive frequency dependence inherent in the original coupling structure. 

To see how this method can realize constant coupling coefficients for constant-FBW 

filters and coupling coefficients which decrease with frequency for constant-ABW filters, 

we will apply this method to a frequency-dependent coupling coefficient and investigate 

how the various design parameters affect the frequency variation of the composite 

coupling coefficient. In the rest of the figures in Section 5.2, kE1 is defined such that it  
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Fig. 5.3. Frequency variation of coupling coefficient for various values of coupling ratio r. θ0 
= 180o at 2 Hz in this figure. 

 

Fig. 5.4. Frequency variation of coupling coefficient for various values of transmission line 
θ0. r = 0.3 in this figure. 

has a nominal value of 1 at the resonator’s minimum tuned frequency and increases by 

50 % over an octave tuning range: 

𝑘𝑘𝐸𝐸1 = 1 + 0.5(
𝑓𝑓0
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

− 1) (5.8) 
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We will see in Section 5.3 that this frequency dependence is fairly accurate 

approximation of practical coupling coefficients.  

The effect that changing r, the ratio of the two coupling elements, has on the variation 

of coupling coefficient is shown in Fig. 5.3. It can be seen that when r is zero, the 

composite coupling coefficient kE is the same as that of a single coupling element, 

increasing by 50% over an octave tuning range. As r is increased, the coupling is 

increased at lower frequencies and reduced at higher frequencies, reaching a value of zero 

at the frequency at which θ0 is 180o when r = 1. This can be understood intuitively, 

because two coupling structures of equal magnitude separated by a 180o transmission line 

should cancel each other out, resulting in a net zero coupling coefficient.  
The dependence of coupling variation on the length of transmission line θ0 separating 

the coupling elements is plotted in Fig. 5.4. The values of θ0 stated are defined at 2 Hz. It 

can be seen that for lengths of θ0 less than 170o, the coupling coefficient has a concave-

down shape, whereas it is concave-up for lengths of θ0 greater than 170o. For the specific 

frequency dependence of the coupling coefficient used in this example, a transmission 

line of length 170o at 2 Hz and r = 0.28 results in a nearly-constant coupling coefficient as 

needed for constant FBW, and a transmission line of length 180o at 2 Hz and coupling 

ratio r = 0.6 causes the coupling coefficient to decrease with frequency as required for 

constant ABW. 

5.2.1 BW Variation vs. T-Line length and Tuning Range 

The shaping factor F has a negative slope with respect to frequency over a wide 

range of frequencies, and thus is able to reduce the amount of coupling variation over 

wide tuning ranges. However, it can be seen that the slope of F is much more linear over 

narrow ranges of θ0 (in the neighborhood of θ0 = 90o when r is positive and θ0 = 270o 

when r is negative), and it is thus expected that this method will be even more effective 

when utilized over narrow tuning ranges. In general, the amount of reduction in 

bandwidth variation is a nonlinear function of the tuning range over which the bandwidth 

variation is optimized. To show this, the transmission line length θ0 and coupling ratio r 

were optimized in order to provide minimum possible bandwidth variation for a variety  
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Fig. 5.5. Frequency variation of absolute bandwidth for different tuning ranges. 

 

Fig. 5.6. Minimum possible FBW variation as a function of center frequency tuning range. 

of tuning ranges, using the model for coupling coefficient defined in equation (5.8). The 

resulting ABW variation is shown in Fig. 5.5. As expected, for all tuning ranges the 

bandwidth variation is significantly reduced compared to the uncompensated case.  
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Fig. 5.7. Minimum possible ABW variation as a function of center frequency tuning range. 

However, as the tuning range decreases, the bandwidth variation reduces 

dramatically and can be come nearly constant for small tuning ranges. Fig. 5.6 and Fig. 

5.7 plot the minimum possible bandwidth variation (FBW and ABW, respectively) versus 

tuning range. The bandwidth variations are defined as: 

∆𝐹𝐹𝑗𝑗𝐵𝐵 = 100 ∙ �
max (𝐹𝐹𝑗𝑗𝐵𝐵)
min (𝐹𝐹𝑗𝑗𝐵𝐵)

− 1� (5.9) 

∆𝐴𝐴𝑗𝑗𝐵𝐵 = 100 ∙ �
max (𝐴𝐴𝑗𝑗𝐵𝐵)
min (𝐴𝐴𝑗𝑗𝐵𝐵)

− 1� (5.10) 

Fig. 5.6 and Fig. 5.7 show the degree to which the proposed method can reduce 

bandwidth variation. For example, over an octave (2:1) tuning range, the proposed 

method can reduce the FBW variation from 150% to just 3.5%, and can reduce the ABW 

variation from 350% to just 12%. Reducing the tuning range by 50% to 1.5:1 greatly 

reduces the amount of bandwidth variation. In this case the FBW variation can be 

reduced to approximately 0.7%, and the ABW variation can be reduced to approximately 

2%.  

The figures also show the difference between utilizing coupling elements of the same 

sign, which requires a transmission line which is ~180o at fmax, and utilizing coupling  
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Fig. 5.8. Frequency variation of coupling coefficient for 180o and 360o transmission lines. 

elements of opposite sign, which requires a transmission line which is ~360o at fmax. It is 

evident that significantly less bandwidth variation can be obtained when coupling 

elements of the same sign are used.  This is because compared to a nominally 180o 

transmission line, the nominally 360o transmission line experiences twice as much 

variation in phase over a given frequency tuning range, and the shaping factor F is 

therefore more non-linear and less effective at compensating for the linear frequency 

dependence of the coupling element. Because of this it is always desired, if possible, to 

use coupling elements of the same sign so that a <180o transmission line can be used. 

This might not always be possible however, especially at high frequencies or when using 

high-permittivity substrates (such as [109] and [82]) which could make it physically 

impossible to realize a transmission line which is less than 180o between the coupling 

elements. Fig. 5.8 shows the frequency dependence of the coupling coefficient when a 

360o transmission line is used compared to that of the 180o structure. 

5.2.2 Phase Variation 

A two-pole absorptive bandstop filter (e.g. [23]) implemented using the coupling 

topology of Fig. 5.1(a) has the structure shown in Fig. 5.9(a). A transmission line of  
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Fig. 5.9. (a) Topology of a two-pole bandstop filter using the constant-bandwidth coupling 
structure of Fig. 5.1(a). (b) Topology from (a) using equivalent circuit for coupling structure from 
Fig. 5.1(b) 

length θ3 must be inserted between the two resonators in order to provide a 90o phase 

between the resonators, as is required for a symmetric bandstop response [94]. Replacing 

the twice-coupled resonators in Fig. 5.9(a) with their equivalent circuits (Fig. 5.1(b)) 

yields the circuit of Fig. 5.9(b), showing that the phase contributed by the constant-

coupling structure must be taken into account when selecting the length of transmission 

line θ3. If equation (5.5) is substituted into equation (5.3), the equation for θ1 can be 

reformulated as follows:  

𝜃𝜃1 =
1
2
�𝜋𝜋 − arg �−

𝑟𝑟 + 𝑒𝑒−𝑗𝑗𝑗𝑗0

𝑟𝑟 + 𝑒𝑒𝑗𝑗𝑗𝑗0
�� (5.11) 

while equation (5.4) for θ2 remains the same. We see that the equivalent lengths of 

transmission line which define the coupling reference plane depend not only on the 

length of transmission line in the coupling section, but also on the ratio of the two 

coupling values. If we examine the frequency variation of θ1 and θ2 for different values of  
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Fig. 5.10. Frequency variation of phase lengths θ1 and θ2 from Fig. 5.9.  

 

Fig. 5.11. Frequency variation of total phase between resonators, equal to θ3 (the physical 
transmission line added between the resonators) + 2θ1 (the phase contributed by the coupling 
structure) 

r (plotted in Fig. 5.10), we notice that for 0o < θ0 < 180o, the effective phase length closest 

to the larger of the two coupling apertures (θ1 as shown in Fig. 5.9(b) when |r| < 1,) has, 



81 
 

 

 

 

for some frequencies, a negative slope versus frequency. In fact, θ1 always becomes zero 

when θ0 is equal to 180o.  

This negative phase-versus-frequency slope is very useful, as it can reduce the 

frequency variation of the phase length between the two resonators. The total phase 

between the resonators, equal to the sum of this additional transmission line length θ3 and 

twice the length θ1, has less phase variation over a given tuning range than a single length 

of TEM transmission line would. This is shown in Fig. 5.11. It can be seen that for a 

coupling ratio of r = 0, which is the case of only a single coupling aperture, the total 

phase between the resonators changes by 100% over an octave tuning range (63.6o to 

127.3o) as expected because θ1 is 0 and all of the phase between the resonators is 

provided by the TEM transmission line θ3. As r is increased the variation in phase 

decreases, and can be as little as 38% (68.5o to 94.7o for r = 0.6). This reduction in phase 

variation is beneficial, as it helps the filter to maintain a symmetric transfer function 

when tuned over a wide frequency range. 

5.3 Constant Bandwidth Filter Design 

Tunable evanescent-mode cavity resonators were chosen as the technology for the 

filters in this work due to their well-known high unloaded quality factors and wide tuning 

ranges. This kind of resonator consists of a substrate-integrated waveguide cavity loaded 

with a capacitive post which is connected to the bottom of the cavity. A small gap is left 

between the post and the top of the cavity, which approximates a parallel-plate capacitor 

and gives a method for tuning the frequency of the resonator if the ceiling of the cavity 

can be displaced by an actuator, such as a piezoelectric disc [81] or an electrostatically-

actuated MEMS diaphragm [80]. The features and design of these resonators will not be 

further discussed here because of the abundance of information available in open 

literature [72], [77], [110].  

Five filters were designed in order to validate the efficacy of the method described in 

Section II. Filter A is a 1.25% constant FBW filter with a 3-6 GHz tuning range. Filter B 

is a 53 MHz constant ABW filter with a 3-6 GHz tuning range. Filter C is a 53 MHz 

constant ABW filter with a 3.5-5.5 GHz tuning range in order to demonstrate that much  
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Fig. 5.12. Exploded view of the designed two-pole constant-bandwidth filters. 

less bandwidth variation can be obtained over a smaller tuning range. Filter D is a 4-pole 

filter consisting of a back-to-back cascade of two Filter C’s. Filter E is an uncompensated 

filter which does not use the presented constant-bandwidth coupling method, but instead 

uses a single coupling element. This filter allows for a fair evaluation of the performance  
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Fig. 5.13. Frequency variation of the coupling coefficients kE1 for various lengths L1. 

 

Fig. 5.14. Frequency variation of the coupling coefficients kE2 for various lengths L2. 

gained by using the constant-bandwidth coupling structure. To improve the performance 

of the filter (namely, to increase the amount of stopband rejection), an absorptive 

bandstop filter design is used [23]. By choosing the external coupling coefficient greater 

than �2/𝑄𝑄𝑈𝑈, and the interresonator coupling coefficient 𝑘𝑘12 ≈ 1/𝑄𝑄𝑈𝑈 , where QU is the 
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unloaded quality factor the constituent resonators, the filter can achieve theoretically 

infinite stopband attenuation even with finite-QU resonators. 

5.3.1 External Coupling  

The filter proposed in this work uses a coupling structure in which the microstrip 

feeding line is transferred to a coplanar waveguide (CPW) transmission line embedded in 

the ground plane, which is shared with the cavity. This structure is shown Fig. 5.12. The 

magnetic field of this section of CPW couples with the magnetic field of the cavity, 

realizing the desired external coupling. The strength of the coupling depends on both the 

length and width of the section of CPW line embedded in the cavity’s ground plane. To 

increase the coupling coefficient, radially-oriented stubs can also be added to this section 

of CPW line in order to increase the area of the CPW section inside the cavity. Fig. 5.13 

shows the frequency dependence of the coupling coefficient kE1 produced by this 

coupling structure for various lengths of the CPW section and angles of radial stubs (L1 

and φ in Fig. 5.16). can be seen that the coupling coefficient is roughly linear with respect 

to frequency and increases by about 50% over an octave tuning range, which justifies the 

model used for the coupling coefficients used in Section 5.2.  

The required value of kE2 is much smaller than kE1, so a narrower and shorter length 

of CPW coupling line was used. This is the dimension L2 in Fig. 5.16. The frequency 

dependence of this coupling element is shown in Fig. 5.14 for different lengths of CPW. 

5.3.2 Polarity of External Coupling Structures 

As can be seen from Fig. 5.2, the relative sign of the external coupling elements must 

be known in order to design a constant-bandwidth coupling structure. If a cavity using the 

coupling structure just described is excited with a signal from the left side of the structure 

and the excitation is de-embedded such that the reference plane is in the middle of the 

coupling section, as shown in Fig. 5.15, the magnetic field in the cavity aligns with the 

magnetic field of the transmission line and is oriented in an counter-clockwise direction. 

However, if the coupling section is placed on the opposite side of the cavity and the same 

excitation is applied, again de-embedding the reference  
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(a) 

 
 (b) 

Fig. 5.15. Current density on the microstrip line (green arrows) and magnetic field inside the 
cavity (black arrows) when the incident signal propagates (a) from the outside of the cavity to the 
inside, and (b) from the inside of the cavity to the outside. Because the magnetic field has the 
opposite direction in the two cases, the sign of the coupling for the two cases is opposite. 

plane to the center of the coupling element, the magnetic field in the cavity has the 

opposite orientation. From this we see that two coupling structures with exactly the same 

shape can yield opposite sign of coupling depending on the direction of signal 

propagation across the coupling section with respect to the orientation of the cavity. 

It is then evident that if one wishes to use a nominally-180o transmission line in the 

coupling structure in order to minimize bandwidth variation, the two coupling elements 

must provide the same polarity of coupling and thus the coupling sections must be 

oriented such that the direction of signal propagation across each element is the same: 

either from inside of the cavity to outside the cavity, or outside the cavity to the inside. 

To accomplish this the transmission line between the coupling elements is looped around 

the smaller coupling section, so that for both coupling elements a signal launched from 

the input will propagate from the inside of the cavity to the outside. 
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With the knowledge of the frequency-dependent couplings values kE1 and kE2 and the 

length of transmission line between them, equation (5.2) was used to optimize the 

structure in order to minimize the change in coupling coefficient for Filter A, and 

absolute bandwidth for Filters B-D across the filters’ tuning ranges. The final dimensions 

of L1 and L2 are shown in Fig. 5.16.    

5.3.3 Interresonator Coupling 

Interresonator coupling between evanescent-mode cavity resonators is typically 

realized by a coupling iris consisting of a below-cutoff section of substrate-integrated 

waveguide. When this is used to realize an absorptive bandstop filter, a 270o length of 

transmission line between the resonators is needed in order to achieve destructive signal 

interference and provide very high levels of stopband attenuation ([45], [53]). It would be 

preferable to be able to use a 90o length of transmission line, as this would result in less 

passband insertion loss but more importantly would yield a wider tuning range over 

which the filter is able to achieve high stopband rejection, because the required phase 

relationship between the interresonator coupling and the transmission line can be upheld 

over a wider tuning range. This requires the interresonator coupling to take on the 

opposite sign.  

The method used in this filter is derived from the methods for achieving negative 

interresonator coupling presented in [46] and [111]. An array of vias is used to connect 

the top and bottom conductors of the coupling iris section together, and a slot is cut into 

the copper of the upper conducting layer. This slot blocks the current flowing on the top 

conductor, and re-routes it onto the bottom conductor through the vias. This effectively 

reverses the direction of the current in the coupling section, which in turn yields a 

coupling value which is opposite of that from the original coupling iris. The 

interresonator coupling dimensions, such as the spacing between the vias and the width of 

the coupling iris, were determined through full-wave electromagnetic simulations in 

order to yield the coupling required for the absorptive bandstop filter (𝑘𝑘12 ≈ 1/𝑄𝑄𝑈𝑈). The 

final dimensions are listed in Fig. 5.16. 
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(a) 

 

(b) 
Fig. 5.16. Layout of Filters A, B, and C. Dimensions are shown below (in millimeters) and 

in Table 5.1 1. 𝑎𝑎 = 1.9,𝑏𝑏 = 13.8,𝑑𝑑4 = 0.2,𝑑𝑑5 = 0.5,𝑑𝑑6 = 1,𝑑𝑑7 = 1.5,𝑑𝑑8 = 1.5,𝑔𝑔3 =
0.15,𝑤𝑤3 = 0.86. 
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Fig. 5.17. Layout of 4-pole, comprising two cascaded Filter C’s. 

Table 5.1. Summary of dimensions of the designed filters in millimeters. 

Filter 𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 𝒅𝒅𝟑𝟑 𝒈𝒈𝟏𝟏 𝒈𝒈𝟐𝟐 𝒍𝒍𝟏𝟏 𝒍𝒍𝟐𝟐 

A 0.71 2.0 10.2 0.21 0.24 2.35 14.0 

B 1.8 1.11 6.9 0.19 0.23 3.3 13.7 

C 1.8 1.29 7.0 0.19 .23 3.13 14.3 

 φ 𝒘𝒘𝟏𝟏 𝒘𝒘𝟐𝟐 𝒘𝒘𝟒𝟒 𝒘𝒘𝟓𝟓 𝒘𝒘𝟔𝟔  

A 0o 1.0 1.9 1.4 2.0 ---  

B 63o 1.33 2.2 1.83 2.61 1.5  

C 63 1.33 2.2 1.83 2.61 1.5  
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5.4 Fabrication and Measurements 

The filters were fabricated using a commercial PCB milling, laminating, and plating 

system. The signal and cavity substrates were made out Rogers 5880, and were laminated 

together using Rogers 2929 bondply material. 12.7 mm diameter piezoelectric disks 

(Piezo Systems T216-A4NO-273X) were used as the tuning elements. The disks  

 

Fig. 5.18. Photograph of the fabricated filters 

were copper plated and attached on top of the cavities using low-temperature solder paste. 

The fabricated filters are shown in Fig. 5.18. A ± 200 V voltage source was used to bias 

the piezoelectric discs.  

5.4.1 Constant FBW Filter 

Fig. 5.19 shows the measured response of Filter A when tuned to 4.8 GHz. The filter 

has over 70 dB of stopband rejection due to the absorptive filter design, and the passband 

is low-loss and well-matched, with better than 15 dB of passband return loss and less than 

0.5 dB of insertion loss up to 7 GHz.  
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Fig. 5.19. Measured response of Filter A when tuned to 4.8 GHz. 

 

Fig. 5.20. S-parameters of Filter A when tuned across its octave tuning range. 
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Fig. 5.21. Measured 3- and 10-dB fractional bandwidths of Filter A, compared to that of the 
uncompensated Filter E. 

 

Fig. 5.22. Measured S-Parameters of Filters B and C (constant absolute bandwidth filters 
with 2:1 and 1.5:1 tuning ranges, respectively). 
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Fig. 5.23. Measured 3- and 10-dB bandwidths of Filters B and C (constant absolute 
bandwidth filters with 2:1 and 1.5:1 tuning ranges) and the uncompensated Filter E. 

 

Fig. 5.24. Measured S-Parameters of 4-pole constant absolute bandwidth filter, with notches 
synchronousely tuned in order to maintain maximum stopband attenuation. 
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Fig. 5.25. Measured bandwidth versus center frequency for the 4-pole filter in two states: A) 
both notches are synchronously tuned in order to provide maximum attenuation, and B) the 
notches are asynchronously tuned in order to maintain a constant 20-dB bandwidth. 

 

Fig. 5.26. Measured response of 4-pole filter when tuned to different levels of stopband 
ripple and increased bandwidth. 
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The performance of Filter A when tuned across its octave tuning range is shown in 

Fig. 5.20. It tunes from 3.2 – 6.4 GHz, maintaining over 60 dB of stopband rejection for 

all tuning states.  

In order to investigate the relative improvement gained by the constant-bandwidth 

coupling method, the 3-dB and 10-dB bandwidths of both the uncompensated filter 

(Filter E) and the constant FBW filter (Filter A) were measured across their tuning ranges, 

and are shown in Fig. 5.21. The uncompensated filter’s 3-dB and 10-dB bandwidths vary 

from 1.25% to 2.3% (an 84% variation) and 0.43% to 1.16% (a 170% variation), 

respectively. The constant FBW filter has greatly reduced bandwidth variation, however, 

with a 1.16% to 1.3% 3-dB bandwidth (a 12% variation) and a 0.5% to 0.6% 10-dB 

bandwidth (a 20% variation). Compared to the uncompensated filter, the constant-FBW 

filter has an 86% reduction in 3-dB FBW variation and an 88% reduction in 10-dB FBW 

variation. 

5.4.2 Constant ABW Filters 

The two filters optimized for constant absolute bandwidth, one over a 2:1 tuning range 

(Filter B) and the other over a 1.5:1 tuning range (Filter C), were measured. Their S-

parameters are plotted in Fig. 5.22.  

The measured ABW of both filters, along with that of Filter E, are shown in Fig. 5.23. 

The 3-dB and 10-dB bandwidths of the uncompensated Filter E are 39 to 142 MHz (a 264% 

variation) and 14.4 to 71 MHz (a 393% variation), respectively. The filter optimized for 

constant bandwidth over a 2:1 tuning range (Filter B) experiences much less bandwidth 

variation, and has a 50.3 to 56.5 MHz 3-dB bandwidth (a 12.3% variation), and a 20 to 

25.8 MHz 10-dB bandwidth (a 29% variation). Compared to the uncompensated filter, 

Filter B realizes a 95% reduction in 3-dB bandwidth variation, and a 93% reduction in 

10-dB bandwidth variation.  

The filter optimized for a 1.5:1 tuning range experiences even less bandwidth variation, 

and has a 52 to 54 MHz 3-dB bandwidth (a 3.8% variation), and a 21.8 to 24 MHz 10-dB 

bandwidth (a 10% variation).  
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Note that because the unloaded quality factors of the resonators change across the 

filter’s tuning range, it is impossible to simultaneously minimize the 3-dB and 10-dB 

bandwidths. In these designs, the filters were optimized for constant 3-dB bandwidth, but 

the filters could be similarly optimized for minimum 10-dB bandwidth variation. 

5.4.3 4-Pole Filter 

The 4-pole constant absolute bandwidth filter was measured with the notches of each 

stage synchronously tuned in order to provide maximum attenuation. The measured 3- 

and 10-, and 20-dB bandwidths were measured and are plotted in Fig. 5.25. As in the case 

of the two-pole filters, it maintains fairly constant ABW across its octave tuning range.  

Compared to the two-pole filters, the 4-pole offers an additional degree of freedom 

in reconfigurability, as it consists of two cascaded absorptive notch sections, and the 

center frequency of each notch can be controlled independently. This allows the filter to 

produce a variety of transfer functions, as shown in Fig. 5.26. The notches can be tuned 

to the same frequency in order to provide maximum attenuation, or they can be 

asynchronously tuned in order to provide a Chebyshev frequency response. By 

asynchronously tuning the notches, the bandwidth of the filter can also be tuned slightly, 

and it is possible to use this bandwidth tunability to compensate for any residual 

bandwidth variation present after applying the constant-bandwidth method presented in 

this chapter. Using this method, the filter was again tuned from 3 to 6 GHz while 

asynchronously tuning the notches in order to maintain a constant 50 MHz 10-dB 

bandwidth. The 10-dB bandwidth is maintained nearly perfectly constant, and is only 

limited by the accuracy with which the two notches are tuned. The 3- and 10-dB 

bandwidths are plotted in Fig. 5.25. In order to maintain constant 10-dB bandwidth, the 

stopband ripple varied from a minimum of -55 dB at 4 GHz to a maximum of -15 dB at 

5.5 GHz. 
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5.4.4 Insertion Loss of Filters 

Because the constant bandwidth coupling method requires additional lengths of 

transmission lines, it also has higher passband insertion loss compared to the 

uncompensated design. The passband insertion loss of all filters is shown in Fig. 5.27.  

 

Fig. 5.27. Comparison of the insertion loss of the filters. 

The uncompensated filter has 0.33 dB of insertion loss at 6 GHz, which as expected is 

lower than all of the other filters.. Filters A and C have approximately 0.1 dB more 

insertion loss than Filter E at 6 GHz, and Filter D has roughly 0.2 dB more insertion loss 

than Filters A and C. 

5.4.5 Comparison to State-of-the-Art 

In order to compare the relative effectiveness of this method of achieving constant 

bandwidth, Table 5.2 compares the results of the filters demonstrated in this chapter to 

other demonstrates of constant-bandwidth tunable bandstop filters. 
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5.5 Conclusion 

In this chapter a new coupling method which was recently introduced in [108] was 

investigated in greater detail. It is shown that the coupling method can partially 

compensate for the frequency dependence inherent to practical coupling structures, 

yielding a nearly-constant coupling coefficient or a coupling coefficient which decreases  

Table 5.2. Comparison of our work to existing state-of-the-art constant-absolute-bandwidth 
tunable bandstop filters. 

Ref. Technology 
Tuning 

Range 

ABW 

Variation 

[8] Lumped-element 2.75 : 1 ~20%* 

[11] Lumped-element 2.42 : 1 ~40%* 

[18] Microstrip 1.93 : 1 24%* 

[106] Microstrip 1.27 : 1 10%† 

Filter B 3-D cavity 2.0 : 1 12.3%* 

Filter C 3-D cavity 1.5 : 1 3.8%* 

* = 3-dB bandwidth        † = 20-dB bandwidth 

with respect to frequency, in order to have constant ABW. Several design tradeoffs are 

investigated, and it is shown that less bandwidth variation can be obtained for narrower 

tuning ranges than for larger tuning ranges. To validate the theory and design principles, 

several filters were designed, fabricated and measured: a constant FBW filter with a 1.16% 

to 1.3% 3-dB bandwidth; a constant ABW filter with an octave tuning range and a 50.3 to 

56.5 MHz 3-dB bandwidth; a constant ABW with a 50% tuning range and a 52 to 54 

MHz 3-dB bandwidth; and a constant ABW 4-pole filter which can maintain a constant 

50 MHz 10-dB bandwidth. 
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 HIGH-Q, WIDELY-TUNABLE BALANCED-TO-UNBALANCED 6.
(BALUN) FILTERS 

6.1 Introduction 

Differential circuits are extremely common in today’s communication systems, 

which have stringent requirements on crosstalk, noise immunity, linearity, and other 

kinds of signal degradation. In order to allow differential circuits to interface with single-

ended circuits, balanced-to-unbalanced transformers (baluns) are commonly used. An 

ideal balun has a single-ended input and generates a differential output, consisting of two 

outputs which are equal in magnitude and 180o out of phase. Because practical baluns 

add size and loss to a circuit, it would be beneficial to integrate them with other devices if 

possible to reduce size and loss. Bandpass filters are commonly placed either 

immediately before or after baluns in a receiver chain, and thus a significant amount of 

research effort has recently been devoted to developing filters with integrated balun 

functionality. Fig. 6.1 illustrates the concept of replacing a filter/balun cascade with a 

balun filter – a bandpass filter with a single-ended input and a balanced output. 

 
Fig. 6.1. (a) A commonly-encountered situation in microwave systems: a bandpass filter 

followed by a balun. (b) An integrated balun filter which combines the functionality of both the 
bandpass filter and the balun. SE denotes the single-ended port, and BAL denotes the balanced 
port. 
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Fig. 6.2. The most common method of implementing a balun filter. The 180o phase 
difference between the balanced output ports is achieved by utilizing positive interresonator 
coupling in one path to the output, and using negative coupling in the other path. 

 

Fig. 6.3. A less common topology for realizing balun filters. The 180o phase difference is 
realized by coupling the last resonator to two different outputs, using positive/negative external. 
coupling  

In order for a filter to realize an ideal differential output, it must contain two paths 

from input to output which are equal in magnitude but are 180o out of phase. If using 

coupled resonators to construct the filter, the 180o phase shift can be realized by reversing 

the sign of one of the coupling elements in one of the output paths. A common way that 

this is accomplished is shown in Fig. 6.2, in which a three-pole balun filter is realized by 

replacing the third resonator with two resonators, each of which is coupled to the second 

resonator with coupling elements which are equal in magnitude but opposite in sign. 

Examples of filters implemented in this way can be found in [112]–[115] This 
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configuration does provide the behavior of a filter cascaded with a balun, but it is 

unnecessarily large as it contains a redundant resonator (4 resonators are required to 

realize a 3rd order filter response), and the amplitude and phase balance at the output are 

strongly dependent on how well resonators 3+ and 3- are matched in resonant frequency 

and quality factor. 

A better configuration is shown in Fig. 6.3, in which the 180o phase difference 

between the output ports is simply realized by coupling the last resonator to two separate 

output ports, with external coupling elements which are equal in magnitude but opposite 

in sign. No redundant resonators are needed in this configuration, and the amplitude and 

phase balance does not depend on any resonator parameters such as resonant frequency 

or 𝑄𝑄𝑈𝑈 , but only on the amplitude/phase balance between 𝑄𝑄𝐸𝐸,𝐿𝐿
+  and 𝑄𝑄𝐸𝐸,𝐿𝐿

− . Examples of 

balun filters implemented with this topology can be found in [116], [117] 

Despite the need for balun filters with tunable center frequencies, very few such 

devices have been demonstrated because of the difficulty in maintaining amplitude and 

phase balance between the two output ports over a wide tuning range. To the best of the 

authors’ knowledge, [118], [119] are the only tunable balun filters published to date. The 

tunable balun filter in [118] uses two split-ring microstrip resonators to realize the filter. 

The positive/negative external coupling of Fig. 6.3 is realized by tapping opposite ends of 

the split-ring resonator, where the voltages have opposite polarity. The filter is tuned with 

varactor diodes, and has a 1.7:1 tuning range while maintaining < 0.5 dB and < 5o of 

amplitude and phase imbalance. The filter in [119] uses essentially the same topology as 

[118], but uses a magnetically-tunable permalloy thin film as the tuning element. The 

filter has a 1.04:1 tuning range, and also has < 0.5 dB and < 5o of amplitude and phase 

imbalance. 

In this paper, we introduce for the first time a tunable balun filter implemented with 

high-Q evanescent-mode cavity resonators. The balun functionality is achieved by means 

of a new differential coupling structure which implements the positive/negative external 

coupling of Fig. 6.3. Evanescent-mode cavity resonators have a number of advantages 

over tunable planar resonators, such as higher unloaded quality factors, higher linearity, 

and in some cases wider tuning ranges. The new design proposed and demonstrated in 
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this paper has state-of-the-art performance with respect to other tunable balun filters, with 

< 0.2 dB and < 0.9o of in-band amplitude and phase imbalance across a 3.2 to 6.1 GHz 

tuning range. 

6.2 Differential Coupling Structure 

External coupling in evanescent-mode cavity resonator based filters is usually 

implemented by creating a slot in the ground plane of the cavity, which is the shared 

ground plane of the feeding transmission line. This aperture allows the magnetic field of 

the transmission line to couple with that of the cavity. The transmission line is short-

circuited with a via just following the coupling aperture, in order to create maximum 

current and thus maximum magnetic field at the aperture.  

 
Fig. 6.4. The standard method for realizing external coupling to evanescent-mode cavity 

resonators in single-ended operation.  

The direction of the magnetic field inside the cavity corresponds to the direction of 

the transmission line’s magnetic field, which is determined by the direction of the 

transmission line’s current with respect to the coupling aperture. By changing the 

direction of current across the coupling aperture, external couplings with opposite 

polarities can be realized. 

Based on this concept, a differential coupling structure which consists of a U-shaped 

loop of microstrip transmission line crossing over a coupling aperture is proposed. The 

structure, shown in Fig. 6.5, is a compact realization of the two external coupling 

elements of Fig. 6.3, which utilizes a single coupling aperture to realize two coupling 

elements which have opposite polarities. This can be seen by examining the field 
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distributions in Fig. 2. If the resonator is excited from the right-hand port as shown in Fig. 

6.5(a), the direction of current flow in the microstrip line (assuming that the length of the 

feed-line is negligible) is oriented radially outwards with respect to the cavity and 

coupling aperture, and thus induces a counter-clockwise magnetic field in the cavity. 

However, if the resonator is excited from the left-hand port, then the current flow is 

oriented radially inward with respect to the cavity, and it induces a clockwise-oriented 

magnetic field in the cavity. Because identical excitations from each of the two ports 

excite opposite-polarity voltages and currents in the cavity, the two ports are coupled to 

the resonator with opposite coupling polarity. This implements the differential coupling 

concept of Fig. 6.3. 

  
Fig. 6.5. The proposed differential coupling structure for evanescent-mode cavity resonators. 

An identical stimulus from either port will exciting the opposite polarity of magnetic field inside 
the cavity, and conversely a given resonator field distribution will induce currents 180o out of 
phase at the two output ports. 

6.3 Design 

To demonstrate this concept, an octave-tunable three-pole bandpass filter was 

designed. Using standard coupled-resonator design procedures (e.g. [92]), the filter was 

designed to have a 2.4% fractional bandwidth with 15 dB return loss at the center of its 

tuning range. The external quality factor resulting from the differential coupling structure 

is somewhat different than that from the single-ended coupling structure, stemming from 

the fact that the single-ended coupling structure is grounded with a via, which creates 

maximum magnetic field at the coupling aperture, whereas the differential coupling 

structure is not via-grounded and thus its magnetic field  
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Fig. 6.6. Exploded view of the proposed 3-pole balun filter. 

 

Fig. 6.7. Final dimensions of the designed balun filter. 𝑎𝑎 = 2 𝑚𝑚𝑚𝑚, 𝑏𝑏 = 13.6 𝑚𝑚𝑚𝑚,𝑑𝑑1 =
1.35 𝑚𝑚𝑚𝑚,𝑑𝑑2 = 1.05 𝑚𝑚𝑚𝑚, 𝑙𝑙1 = 4.2 𝑚𝑚𝑚𝑚, 𝑙𝑙2 = 5.6 𝑚𝑚𝑚𝑚,𝑤𝑤1 = 0.78 𝑚𝑚𝑚𝑚,𝑤𝑤2 = 0.7 𝑚𝑚𝑚𝑚,𝑤𝑤3 =
8.5 𝑚𝑚𝑚𝑚.  

is weaker. Fig. 6.8 plots the dependence of the external quality factors from the two 

coupling structures versus the length of the coupling aperture. QE is calculated using the 
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reflected group delay method [92]. In order to use this method for calculating the QE of 

the differential port, the group delay of the differential reflection coefficient Sdd22  

 
Fig. 6.8. Simulated external quality factors for the single-ended and differential coupling 

structures.  

(equation (6.3)) is used. The required QE for the prescribed bandwidth and transfer 

function is 60, and thus the lengths of the coupling apertures for the single-ended and 

differential structures were chosen to be 4.2 mm and 5.6mm, respectively. An exploded 

view of the filter is shown in Fig. 6.6, and all final dimensions are shown in Fig. 6.7. 

6.4 Experimental Validation 

The filters were fabricated using a commercial PCB milling, laminating, and plating 

system. The signal and cavity substrates were made out Rogers 5880, and were laminated 

together using Rogers 2929 bondply material. 12.7 mm diameter piezoelectric disks 

(Piezo Systems T216-A4NO-273X) were used as the tuning elements. The disks  
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Fig. 6.9. Photograph of the fabricated filters 

were metalized with thin silver membranes and attached on top of the cavities using 

electrically-conductive silver epoxy. The fabricated filters are shown in Fig. 6.9. Though 

not shown, a copper-plated lid was placed on top of the transmission-line substrate in 

order to increase stopband rejection by preventing parasitic coupling between the input 

and output microstrip lines. 

3-port S-parameter measurements were conducted with a Keysight N5230C PNA, 

using a ± 200 V voltage source to bias the piezoelectric discs, and the mixed-mode S-

parameters were calculated from these measurements. Fig. 6.10 shows the measured 

input reflection coefficient (S11), differential transmission response (Sds21), common-

mode rejection (Scs21), and differential output reflection coefficient (Sdd22) across the 

filter’s tuning range. The mixed-mode S-Parameters are calculated as follows [117]: 

𝑆𝑆𝑑𝑑𝑟𝑟21 =
1
√2

(𝑆𝑆21 − 𝑆𝑆31) (6.1) 

𝑆𝑆𝑐𝑐𝑟𝑟21 =
1
√2

(𝑆𝑆21 + 𝑆𝑆31) (6.2) 

𝑆𝑆𝑑𝑑𝑑𝑑22 =
1
2

(𝑆𝑆22 − 𝑆𝑆23 − 𝑆𝑆32 + 𝑆𝑆33) (6.3) 
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Fig. 6.10. Measured mixed-mode S-parameters of the filter without the package lid attached. 

 

Fig. 6.11. Measured mixed-mode S-parameters of the filter with the package lid attached. 

The filter tunes from 3.2 to 6.1 GHz, and its insertion loss varies from 3.9 dB to 1.8 

dB (after deembedding the loss of the connectors and microstrip feed lines), its 3-dB 

fractional bandwidth varies from 2.0% to 2.7%. The in-band input return loss varies from 

12 to 17 dB of across the tuning range. Because of its tight amplitude and phase balance, 
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the filter provides greater than 40 dB of common-mode rejection within its passband for 

all tuning states. When the filter is not packaged, the out-of-band common-mode and 

differential-mode rejection are limited by coupling between the input and output ports 

through the air. As seen in Fig. 6.10, the out-of-band common-mode rejection varies from 

50 to 70 dB in the 3 to  6 GHz range, and the out-of-band differential-mode rejection 

varies from 60 to 80 dB across the same frequency range. The use of a package prevents 

this parasitic source-to-load coupling and significantly improves both the out-of-band 

common- and differential-mode rejection, as seen in Fig. 6.11. With the package, both the 

common-mode and differential-mode rejection are greater than 90 dB in the 3 to 6 GHz 

range, which represents a 30 to 40 dB improvement in common-mode rejection, and a 10 

to 20 dB improvement in differential-mode rejection. 

Two common figures of merit for baluns and balun filters are the amplitude and 

phase imbalance between the two ports which comprise the differential output. The 

amplitude imbalance, defined as |𝒅𝒅𝒅𝒅(𝑺𝑺𝟐𝟐𝟏𝟏/𝑺𝑺𝟑𝟑𝟏𝟏)| , measures the balance between the 

magnitudes of the two output ports. Phase imbalance, defined as |∠𝑺𝑺𝟐𝟐𝟏𝟏/𝑺𝑺𝟑𝟑𝟏𝟏 − 𝟏𝟏𝟏𝟏𝟏𝟏°|, 

measures how much the phase difference between the two output ports deviates from the 

ideal value of 180o. The amplitude and phase balance of the filter in its 5.3 GHz tuning 

state are shown in Fig. 6.12. It can be seen that within the filter’s 10-dB bandwidth, the 

amplitude imbalance is less than 0.024 dB and the phase imbalance is less than 0.2o. To 

the best of the authors’ knowledge, this represents lower amplitude and phase imbalance 

than any other published balun bandpass filters, whether static or tunable.  

The filter’s maximum measured amplitude and phase balance within its 10-dB 

bandwidth are plotted for several tuning states across its tuning range in Fig. 6.11. 

Amplitude and phase imbalance measurements are not necessary outside of the filter’s 

passband since common-mode rejection is achieved by means of the filter’s stopband. 

The amplitude and phase imbalance vary somewhat across the filter’s tuning range, but in 

all cases the amplitude imbalance is less than 0.2 dB, and the phase imbalance is less than 

0.9o. This represents state of the art performance, and the filter demonstrated in this work 

has less amplitude and phase imbalance than the two existing examples of tunable 

filtering baluns in open literature, while at the same time possessing a wider tuning range. 
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Table 6.1 presents a comparison of our work to prior state-of-the-art tunable and 

fixed balun filters. 

 

 

Fig. 6.12 Measured amplitude and phase balance within the 10-dB bandwidth of the filter 
when tuned to 5.3 GHz. The measurements are taken with the package lid attached. 

 

Fig. 6.13 Measured amplitude and phase balance within the 10-dB bandwidth of the filter for 
several tuning states across its tuning range. The measurements are taken with the package lid 
attached.  
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Table 6.1. Summary of the work demonstrated in this chapter compared to existing state-of-
the-art tunable and fixed balun filters. 

Ref. f0 (GHz) Amplitude Imbalance Phase Imbalance Tunability 

[118] 0.62 – 1.04 < 0.5 dB < 5o Tunable 

[119] 1.49 – 1.55 < 0.5 dB < 5o Tunable 

This 
work 3.2 – 6.1 < 0.2 dB < 0.9o Tunable 

[117] 1.75 < 0.25 dB < 1.1o Fixed 

[120] 12.5 < 0.35 dB < 2o Fixed 

[116] 2.4 < 0.09 dB < 0.25o Fixed 

This 
work 5.28 < 0.024 dB < 0.2o Fixed 

6.5 Conclusion 

In this chapter, we have introduced and demonstrated a new differential coupling 

method for evanescent-mode cavity resonators which allows high-performance tunable 

balun filters to be developed. To demonstrate the concept, a 3-pole tunable balun filter 

using high-Q evanesecent-mode cavity resonators was design and measured. The filter 

shows state-of-the-art performance compared to other published tunable balun filters, 

with less than 0.2 dB and 0.9o of amplitude and phase imbalance across its 3.5 to 6.2 GHz 

tuning range. Additionally, in its 5.3 GHz tuning state, the filter has state-of-the-art 

performance when compared to any published static or tunable balun filter, with less than 

0.024 dB and 0.2o of amplitude and phase imbalance within its 10-dB bandwidth. 
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 A TUNABLE BANDSTOP FILTER WITH AN ULTRA-BROAD 7.
UPPER PASSBAND 

7.1 Introduction  

In wideband communication systems, it is often necessary to block strong jamming 

signals which fall within the band of interest. One such example is the ultra-wideband 

(UWB) communication standard, which spans 3.1 to 10.6 GHz frequency range. 

Interference from WLAN systems in the 5 to 6 GHz range, as well as many other sources 

of interference, can severely degrade the sensitivity of  an unprotected UWB receiver 

[121]. Another example is a receiver designed for intercepting an adversary’s wireless 

communications without prior knowledge of the frequency of the transmission. In this 

case the receiver would need to be very wideband, but would suffer from the same 

interference problems as UWB systems. In both of these cases a tunable bandstop filter 

could be used to selectively reject interfering signals. However, unless the bandstop filter 

has a low-loss passband which extends up to the maximum frequency of the receiver, the 

bandstop filter itself will degrade the performance of the receiver. It can be challenging to 

design bandstop filters with very broad upper passbands for two main reasons. First, all 

practical resonators have spurious resonances which create additional stopbands at finite 

frequencies. Secondly, the coupling structures used to couple resonators to the filter’s 

through-line often introduce large parasitics, which can degrade the filter’s passband even 

at frequencies below the first spurious resonance of the resonator.  

For example, the first spurious mode of a half-wave microstrip resonator is 2𝑓𝑓0 , 

where 𝑓𝑓0  is the resonator’s fundamental resonant frequency. Grounded quarter-wave 

resonators have spurious-free ranges up to 3𝑓𝑓0, and adding capacitive loading or using 

structures such as stepped-impedance resonators can further increase this spurious-free 

range [122]. Additionally, some methods have been proposed for suppressing spurious  
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Fig. 7.1. Diagram of a two-pole bandstop filter which utilizes the proposed broadband 
external coupling method. 

modes to enable even wider upper passbands [21]. However, tunable microstrip-based 

filters have limited performance in terms of quality factor and linearity, and thus are not 

suitable for all applications. Evanescent-mode cavity resonators [81] are an attractive 

alternative to varactor-tuned microstrip filters due to their wide tunability, high unloaded 

quality factor, and high linearity. They can also possess very large spurious-free ranges of 

up to 40:1. However, the upper passband of an evanescent-mode bandstop filter is 

typically limited by the reactances introduced by the external coupling structure [55]. 

This coupling is usually implemented through a coupling aperture in the resonator’s 

ground plane, which is shared between the microstrip feeding transmission lines and the 

cavity resonator itself. The aperture introduces a large inductance in the ground path of 



112 
 

 

 

 

the microstrip through-line, which eventually causes high levels of reflection and limits 

the upper passband of the filter. A new coupling structure which mitigates this problem 

was introduced in [56], which routes the microstrip line through the cavity instead of 

coupling through an aperture. This structure avoided many of the parasitics associated 

with the typical coupling apertures, and enabled a 0.65 to 1.65 GHz tunable filter to have 

a 3-dB passband extending up to 11.1 GHz. Despite the filter’s exceptional performance, 

the design is relatively difficult to accurately manufacture with standard printed circuit 

board (PCB) milling machines. This fabrication inaccuracy, along with the small but still-

present parasitics associated with the coupling structure, prevent this design from being 

extended to higher operating frequencies. This paper introduces a new coupling structure 

which improves upon the design of [56] by reducing parasitics and fabrication 

complexity, enabling the implementation of a 3 to 6 GHz tunable bandstop filter with a 3-

dB upper passband extending up to 28.5 GHz. 

7.2 Broadband Coupling Structure 

The proposed coupling structure is similar in concept to the one in [56], in that it 

consists of a section of transmission line routed through the cavity resonator instead of 

the more traditional method of using a coupling aperture. A diagram of the proposed 

coupling structure is shown in Fig. 7.2. To realize the external coupling, the microstrip 

transmission line which serves as the input to the filter is transferred to a coplanar 

waveguide (CPW) transmission line which is embedded in the ground plane of the cavity. 

The magnetic fields of this section of CPW line extend into the cavity and couple with its 

magnetic fields, allowing the desired coupling between the through-line and cavity to be 

realized. This structure does not have any of the resonant apertures that the traditional 

method does, which allows the filter to have a well-matched passband extending up to 

very high frequencies as long as the dimensions of the microstrip and CPW lines are 

chosen so that they are both have 50-Ω characteristic impedances. The proposed structure 

can be fabricated simply and accurately using any standard multi-layer PCB process. In 

contrast, the structure of [56] required copper features to be patterned at a specified depth  
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Fig. 7.2. The microstrip through-line is connected to a short section of CPW line embedded 
in the ground plane of the resonator.  

 

Fig. 7.3. Dependence of external coupling coefficient on the length of the CPW line. 
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inside of a cavity routed into the substrate, a process which is difficult to perform 

accurately and is not compatible with standard PCB fabrication processes. 

One notable source of parasitics is the via which connects the microstrip line to the 

CPW line. This presents a small series inductance to the signal path, but the effect of this 

series inductance can be compensated by adding a small shunt capacitance. This shunt 

capacitance can be realized by decreasing the impedance of the transmission line near the 

via - in this case, by adding a circular patch to the microstrip line at the location of the via. 

The strength of the coupling realized with this structure is determined by the width 

and length of the section of CPW line inside the cavity, as well as the distance between 

the CPW line and the cavity’s center post. The dependence of this structure’s coupling 

coefficient on the length of the CPW line is shown in Fig. 7.3.  

7.3 Experimental Results 

Using the coupling structure presented in Section II, a two-pole tunable bandstop 

filter was designed, as shown in Fig. 7.1. The filter was designed to have a 3 to 6 GHz 

tuning range, with a 1.6% 3-dB fractional bandwidth at 4.5 GHz. In order to increase the 

stopband rejection, the two resonators were coupled together with a small amount of 

interresonator coupling in order to implement an absorptive bandstop filter design [23]. 

The filter was fabricated using a standard PCB milling, laminating, and plating system. 

The signal and cavity substrates were made out Rogers 5880, and were laminated 

together using Rogers 2929 bondply material. Commercially-available piezoelectric disks, 

metalized with thin silver membranes and attached on top of the cavities using 

electrically-conductive silver epoxy, were used as the tuning elements. The fabricated 

filter is shown in Fig. 7.4. 

The measured S-parameters of the filter when tuned across its 3 to 6 GHz tuning 

range are shown in Fig. 7.5, demonstrating that the filter can achieve more than 60 dB of 

stopband rejection over an octave tuning range, with a 1.25% to 2.3% 3-dB bandwidth. 

Passband insertion loss and return loss are both very low within the filter’s tuning range, 

at less than 0.37 dB and better than 20 dB, respectively. The broadband frequency 

response of the filter is shown in Fig. 7.6. It can be seen that the filter’s return loss is  
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Fig. 7.4. Photograph of the fabricated filter. 

 

Fig. 7.5. Measured response of the filter demonstrating its octave tuning range. 

better than 10 dB up to 24.2 GHz, and better than 7.5 dB up to 29.5 GHz. A close-up 

view of the filter’s insertion loss is shown in Fig. 7.7. The insertion loss is less than 1 dB 

up to 17.3 GHz, less than 2 dB up to 24.9 GHz, and less than 3 dB up to 28.5 GHz. With  
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Fig. 7.6. Measured wideband response of the filter, showing its broad upper passband. 

 

Fig. 7.7. Close-up view of the filter’s measured insertion loss. The 3-dB passband extends up 
to 28.5 GHz. 

the specific geometry of resonator used, the first spurious mode of the resonator occurs 

around 19 GHz. However, these spurious modes are very weakly coupled, and add less 

than 1 dB of insertion loss to the passband.  
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7.4 Conclusion 

In this paper, a new broadband external coupling mechanism for evanescent-mode 

cavity resonators has been developed and demonstrated. This structure improves upon the 

design [56] by simplifying the fabrication procedure and reducing parasitics, which 

allows it to operate up to higher frequencies. A 3 to 6 GHz tunable bandstop filter with a 

3-dB passband extending to 28.5 GHz is demonstrated. This represents a 156% 

improvement over the filter in [56], which had an 11.1 GHz upper passband.  
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 SUMMARY AND FUTURE WORK 8.

8.1 Dissertation Summary 

This dissertation has presented a number of advances in the field of tunable 

microwave filters. Two main topics have been the focus of this dissertation: addressing 

the current limitations of tunable filters, and introducing new concepts and technologies 

to enable tunable filters with higher performance and versatility than previously possible. 

The dissertation first addresses some of the limitations of bandstop filters utilizing 

lossy resonators by improving the understanding of tunable absorptive bandstop filters. 

This class of filter allows bandstop filters to achieve theoretically infinite stopband 

attenuation with finite-𝑄𝑄𝑈𝑈  resonators. A unified design approach is developed for 

optimally designing these filters with respect to certain design criteria such as bandwidth 

and tuning range. A new method is also presented for addressing bandwidth variation, 

one of the key challenges inherent to tunable filters. This bandwidth compensation 

method for the first time enables tunable bandstop filters implemented with evanescent-

mode cavity resonators to maintain nearly constant absolute bandwidth over wide tuning 

ranges, and it is shown that this method can reduce bandwidth variation over an octave 

tuning range by up to 95%. In order to address the fact that most tunable bandstop filters 

have limited upper passbands, a new broadband external coupling structure is developed. 

This structure is used to implement a 3 to 6 GHz tunable bandstop filter with an upper 3-

dB passband which extends to 28.5 GHz. 

The rest of the dissertation is devoted to introducing new enabling concepts and 

technologies for tunable filters. A new silicon micromachining fabrication process is 

developed which, in conjunction with the absorptive bandstop filter design principles 

developed earlier, is used to develop 22 to 43 GHz and 74 to 105 GHz tunable bandstop 

filters which have narrow bandwidths and provide up to 75 dB of stopband rejection. The 
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Ka-band filter represents state-of-the-art with respect to tuning range, bandwidth, and 

stopband rejection, and the W-band filter is the first-ever demonstrated tunable bandstop 

filter at W-band frequencies.  

Lastly, a new differential coupling structure is introduced for the purpose of realizing 

tunable balanced-to-unbalanced (balun) filters with evanescent-mode cavity resonators. 

The demonstrated tunable balun filter shows state-of-the-art performance with respect to 

amplitude and phase imbalance at its differential output when compared to other tunable 

balun filters.  

8.2 Contributions 

The specific contributions of this dissertation are as follows. 

•  Chapter 2: A detailed theoretical and practical analysis of absorptive bandstop 

filters is presented. This chapter fills in many of the knowledge gaps associated with 

this type of filter by investigating and optimizing the sensitivity of the filters to 

process variations, the tradeoffs between selectivity and tuning range, the relative 

benefits and drawbacks of higher-order absorptive filters, and presents a clear design 

procedure for realizing such filters. Several absorptive filters realized with varactor-

tuned microstrip resonators are designed and implemented to demonstrate the design 

process and design tradeoffs. The filters are able to achieve greater than 90 dB of 

stopband rejection despite using low-Q (< 100) resonators. 

•  Chapter 3: Using the design methodology set forth in Chapter 2 along with a 

newly-developed silicon micromachining fabrication process, two state-of-the-art 

millimeter wave tunable bandstop filters are presented: one in the K to Ka bands, and 

the other in the W-band. The Ka band filter is the highest-performance tunable 

bandstop filter in its frequency range, tuning from 22 to 43 GHz and providing up to 

70 dB of stopband attenuation with a 3-dB bandwidth of less than 5%. The W-band 

filter, which tunes from 74 to 105 GHz, is the first-ever tunable bandstop filter 

demonstrated at W-band frequencies. It also provides up to 70 dB of stopband 

rejection, with a 1.5% 3-dB fractional bandwidth at 95 GHz. Both filters use 
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electrostatically-actuated MEMS diaphragm tuners, which are actuated with less than 

90 V. 

•  Chapter 4: An intrinsically-switched dual-band filter is implemented using 

commercially-available RF MEMS digitally tunable capacitors. The design is highly 

integrated, with all power management and digital control circuitry contained on the 

same board as the filter. The filter consists of two 4-pole filters placed in parallel-

cascade, and the intrinsic switching mechanism is realized by strongly detuning two 

of the resonators in the filter to be switched off. The filter has low insertion loss due 

to the fact that there are no switching elements in the direct signal path, and the 

tuning elements (RF MEMS capacitors) are very low loss and do not significantly 

affect the resonator quality factor when not in use. 

•  Chapter 5: A new type of coupling method compatible with evanescent-mode 

cavity resonators is presented which, for the first time, allows tunable evanescent-

mode bandstop filters to have nearly constant bandwidth when tuned over wide 

tuning ranges. This is passive, and does not require any additional tuning elements to 

achieve constant bandwidth. Several filters are designed and implemented using this 

coupling method to demonstrate its efficacy. It is shown that when using this method 

to achieve constant fractional bandwidth, the 3-dB fractional bandwidth variation of 

an octave-tunable bandstop filter can be reduced by up to 86%. The filter 

demonstrated has a 1.16% to 1.3% 3-dB fractional bandwidth, whereas a filter which 

uses the traditional coupling method instead of the new constant-bandwidth method is 

shown to have a 1.25% to 2.3% fractional bandwidth. The method is also used to 

realize a constant absolute bandwidth filter, which has a 50.3 to 56.5 MHz 3-dB 

bandwidth. Compared to the uncompensated filter which has a 39 to 142 MHz 

bandwidth, this represents a 95% reduction in 3-dB bandwidth variation. 

•  Chapter 6: A novel differential coupling structure is introduced which enables the 

first-ever implementation of a balanced-to-unbalanced (balun) filter utilizing 

evanescent-mode cavity resonators to be developed. A 3-pole, 3.2 to 6.1 GHz tunable 

bandpass balun filter is demonstrated using this new coupling structure. In addition to 

the wide tunability and low insertion loss enabled by the high-Q cavity resonators, the 
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filter has state-of-the-art amplitude and phase imbalance at its differential output. The 

amplitude and phase imbalances are less than 0.2 dB and 0.9o across the entire tuning 

range, yielding a common-mode rejection of better than 40 dB in band and 90 dB out 

of band for all tuning states. At 5.3 GHz, its best tuning state with respect to 

imbalance, the filter has less than 0.024 dB and 0.2o of amplitude and phase 

imbalance within its 10-dB bandwidth, allowing the filter to have greater than 60 dB 

of common-mode rejection within its passband.. This represents state-of-the-art 

performance with respect to existing published static balun filters. 

• Chapter 7: A broadband external coupling structure for tunable bandstop filters 

implemented with evanescent-mode cavity resonators is introduced. This new 

coupling structure enables a 3 to 6 GHz tunable bandstop filter with a 3-dB passband 

extending up to 28.5 GHz to be developed. This filter has the widest fractional upper 

passband demonstrated to date for a filter with a center frequency greater than 2 GHz. 

8.3 Future Work 

8.3.1 Fully-Balanced Tunable Filters 

In Chapter 6 a differential coupling structure for evanescent-mode cavity resonators 

was introduced. The coupling structure performs a function identical to that of its single-

ended counterpart, but with a differential output. The natural extension of the work in 

Chapter 6 is to implement this coupling structure at both the input and the output of a 

filter, thus creating a fully-differential filter. This concept is shown in Fig. 8.1, and an 

example of such a filter is shown in Fig. 8.2, which is created by implementing the 

differential coupling structure at the input and the output of the filter from Chapter 6. 

Other filtering transfer functions can also be realized with this technique. In fact, any 

filter which can be realized with evanescent-mode cavity resonators can be converted into 

either a balanced-to-unbalanced or a fully balanced filter by simply replacing the 

appropriate external coupling elements with the differential coupling element.  
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Fig. 8.3 shows the simulated performance of the filter of Fig. 8.2, as well as the 

performance of a 4-pole filter implemented using the same technology. In order to 

simulate the realistic performance of the filters, the simulations were adjusted so that the  

 

Fig. 8.1. Coupling diagram for proposed fully-differential filter. The core of the filter (that is, 
the resonators and all interresonator couplings) is identical to that of a single-ended filter, and 
differential inputs and outputs are realized by means of the coupling structure of Chapter 6. 

 
Fig. 8.2. Example of a tunable 3-pole fully-differential filter implemented by utilizing 

differential coupling structures at both the input and the output of the filter. 
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Fig. 8.3. Simulated response of the filter from Fig. 8.2 

amplitude and phase balance matched the measured values from Chapter 6. It can be seen 

that the common-mode to differential-mode conversion (Scd21) is below -40 dB - roughly 

the same as the measured performance of the filter in Chapter 6. The common-mode to 

common-mode transmission response (Scc21) is even more strongly suppressed, and is less 

than -80 dB.  

8.3.2 Future Directions for Tunable Filters 

The field of tunable microwave filters has matured greatly in the past decade. Many 

of the practical issues related to the RF performance of tunable filters has been addressed. 

For example, in this dissertation we have presented ways to address the limitations of 

bandstop filters using finite quality factor resonators, as well as a new method for 

achieving constant bandwidth over wide tuning ranges. Numerous other similar examples 

exist in literature. Although the perfect tunable filter certainly does not exist, filters with 

the high performance needed for many systems exist, and are ready to be implemented 

into reconfigurable radio systems. Some of the primary challenges that remain are related 

to practically integrating these filters into systems, such packaging, reliability, 

manufacturability, and how to sense and control the frequency of the filter. 
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A.    CALCULATION OF COUPLING COEFFICIENTS 

A.1 Calculating External Coupling 

The methods for calculating the external coupling coefficients for bandpass filters 

are well documented, and can be found in references such as [92]. However, these 

methods do not work for calculating the external coupling coefficients for bandstop-

configured resonators. One method for calculating external coupling has been described 

in [91], but it is somewhat cumbersome to use. In this section we will develop an 

alternative method for calculating the external coupling coefficient of bandstop-

configured resonators. 

 

Fig A.1. (a) Coupling diagram of a single bandstop-configured resonator coupled to a 
source-to-load through-line. (b) Circuit representation of (a). (c) Reduced circuit of (b), with 
admittance inverter and resonator admittance replaced by inverted admittance. (d) Conversion of 
(c) to an equivalent S-parameter matrix. 

A diagram of a single bandstop-configured resonator (that is, coupled to a source-to-

load through-line with a coupling value of 𝑘𝑘𝐸𝐸) is shown in Fig A.1(a). Fig A.1(b) shows 

the equivalent circuit of this configuration, consisting of a parallel-RLC resonator 
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connected to the through-line with admittance inverter with characteristic admittance JE. 

The expressions in Fig A.1(b) are defined in equations (A.1)-. Since an admittance 

inverter of value J transforms an admittance Y into J2/Y, the circuit can be further 

reduced as shown in Fig A.1(c), with 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟′  defined in equation (A.6).  

𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟 =
1
𝑍𝑍𝑅𝑅

�
1
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−
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𝐽𝐽𝐸𝐸 = 𝑘𝑘𝐸𝐸/�𝑍𝑍0𝑍𝑍𝑅𝑅 (A.2) 

𝑍𝑍𝑅𝑅 = �𝐿𝐿/𝐶𝐶 (A.3) 

𝜔𝜔0 = 1/√𝐿𝐿𝐶𝐶 (A.4) 
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The S-Parameters of a single shunt admittance can easily be calculated, which yields 

a transmission coefficient of 

𝑆𝑆21 =
2

2 + 𝑘𝑘𝐸𝐸2
1
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(A.7) 

Since 𝜔𝜔0  can be readily identified from simulation, S21 depends on only two 

unknown variables: 𝑘𝑘𝐸𝐸 and 𝑄𝑄𝑈𝑈. The values of 𝑘𝑘𝐸𝐸 and 𝑄𝑄𝑈𝑈 can be determined by recording 

the value of S21 at two values of 𝜔𝜔. 

If we designate the value of S21 at 𝜔𝜔 = 𝜔𝜔0 to be 𝐿𝐿0, that is 

𝑆𝑆21|𝜔𝜔=𝜔𝜔0 =
2

2 + 𝑘𝑘𝐸𝐸2𝑄𝑄𝑈𝑈
= 𝐿𝐿0, (A.8) 

then we can solve for 𝑘𝑘𝐸𝐸: 

𝑘𝑘𝐸𝐸 = �
2(1 − 𝐿𝐿0)
𝐿𝐿0𝑄𝑄𝑈𝑈

 (A.9) 

Substituting equation (A.9) into (A.7) eliminates the unknown variable 𝑘𝑘𝐸𝐸 from the 

equation, and allows us to form a new expression for the magnitude of S21 from which 

𝑄𝑄𝑈𝑈 can easily be extracted: 
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𝐿𝐿02[𝜔𝜔2𝜔𝜔02 + 𝑄𝑄𝑈𝑈2(𝜔𝜔2 − 𝜔𝜔02)2]
𝜔𝜔2𝜔𝜔02 + 𝐿𝐿02𝑄𝑄𝑈𝑈2(𝜔𝜔2 − 𝜔𝜔02)2  (A.10) 

If the magnitude of S21 is 𝐿𝐿𝐴𝐴  at a frequency 𝜔𝜔1 ≠ 𝜔𝜔0 , then rearranging equation 

(A.10) and solving for 𝑄𝑄𝑈𝑈 yields 

𝑄𝑄𝑈𝑈 =
𝑓𝑓0𝑓𝑓1
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(A.11) 

Equation (A.11) can now be used to calculate 𝑄𝑄𝑈𝑈 using the measured or simulated 

values of S21 at 𝑓𝑓0 and another frequency 𝑓𝑓1 ≠ 𝑓𝑓0. After 𝑄𝑄𝑈𝑈 has thus been calculated, the 

external coupling 𝑘𝑘𝐸𝐸 can be calculated using equation (A.9). It is important to use the 

magnitudes of 𝐿𝐿0  and 𝐿𝐿𝐴𝐴 , and not their values in decibels. Fig A.2 illustrates the 

measurements which are required to calculate 𝑄𝑄𝑈𝑈 and 𝑘𝑘𝐸𝐸 using the method just described. 

 

Fig A.2. Illustration of which frequencies and attenuation levels should be used when using 
the proposed method to calculate 𝑄𝑄𝑈𝑈 and 𝑘𝑘𝐸𝐸. 

It should be noted that this method does not take into account non-ideal effects such 

as passband insertion loss and asymmetry of the transfer function to due mismatch in the 

passband. Insertion loss can be approximately taken into account by subtracting the 

passband insertion loss from the measured attenuation levels 𝐿𝐿0 and 𝐿𝐿𝐴𝐴, as shown in Fig 

A.2. If there is a high level of reflection in the passband, the accuracy of this method can 
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be improved by calculating 𝑄𝑄𝑈𝑈  and 𝑘𝑘𝐸𝐸  more than once and then averaging, using 

frequencies for 𝑓𝑓1 both above and below 𝑓𝑓0.  

A.2 Polarity of External Coupling Structures 

It is often necessary to know the relative polarity of the external coupling elements 

used to connect resonators to the source or load, particularly in bandstop filters. For 

example, in Chapter 2 it is shown that when designing two-pole absorptive bandstop 

filters, the relative signs of all couplings and transmission lines must be chosen such that 

the sign of the quantity kE1kE2k12sinθ is negative. Thus the relative signs of the two 

external coupling elements kE1,2 must be known.  

For a filter realized with a given resonator technology, all of the resonators generally 

use the same external coupling structure. This could be edge-coupled microstrip lines, 

coupling apertures in a ground plane, direct-tap coupling, or any number of other 

coupling methods. One would expect that for a given filter, all resonators using the same 

coupling structure would have the same relative polarity, but somewhat surprisingly this 

is not always the case.  

Consider the filter of Fig A.3, which consists of two evanescent-mode cavity 

resonators coupled to a source-to-load microstrip transmission line by coupling apertures 

in the ground plane which is shared between the resonators and the microstrip line. Each 

of the resonators is excited individually, while shorting out the other resonator and 

deembeding the reference plane of the excitation up to the middle of the coupling 

aperture. It can be seen that the electric and magnetic fields in two resonators have 

opposite polarities, which indicates that the two external coupling elements have opposite 

sign. This is because the coupling apertures rely on magnetic field coupling, which 

causes the magnetic field of the cavity to align with the magnetic field of the microstrip 

line. Because the magnetic field of the cavity has opposite direction on either side of the 

post due to its circular pattern, the polarity of coupling realized by a given coupling 

aperture depends on which side of the cavity the aperture is located.  

In the configuration of Fig A.3, the two coupling apertures are located on opposite 

sides of their respective cavities. For the left cavity, the transmission line crosses over the 
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coupling aperture from the inside of the cavity to the outside, whereas on the right cavity, 

the transmission line crosses over the coupling aperture from the outside of the cavity to 

the inside. As a result the two coupling apertures realize opposite polarities of coupling. 

However, in the configuration of Fig A.4, the two coupling apertures are located on 

same relative sides of their respective cavities. In both cavities, the transmission line 

crosses over the coupling aperture from the outside of the cavity to the inside, and thus 

both cavities have the same sign of external coupling. This is reflected in the orientation 

of the electric fields, which both have the same polarity. 

 

Fig A.3. An external coupling scheme for a two-pole evanescent-mode filter in which the 
two external coupling elements have opposite polarities. 
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Fig A.4. An external coupling scheme for a two-pole evanescent-mode filter in which the 
two external coupling elements have the same polarity. 

As another demonstration, a filter utilizing edge-coupled /4 microstrip resonators is 

shown in Fig A.5. Similar to the previous example, the resonators are excited separately 

by shorting out one resonator at a time, and deembedding the excitation to a phase of 0o 

at the live resonator’s coupling reference plane. The two resonators have opposite electric 

field polarities under identical excitations, again showing that the two external coupling 

elements have opposite signs. 
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Fig A.5. An external coupling scheme for a two-pole /4 microstrip filter in which the two 
external coupling elements have opposite polarities. 

A.3 Interresonator Coupling 

When designing filters with cross-coupling, it is important to know the relative 

polarity of the interresonator coupling. For example, when designing a cross-coupled 

filter with transmission zeroes, a coupling with opposite polarity with respect to the rest 

of the coupling must be negative. Conversely, when designed a self-equalized filter with 

improved group-delay flatness, all of the couplings must be the same sign. It is also 

important to know the sign of the coupling coefficient when designing absorptive 

bandstop filters, as the required length of source-load transmission line depends on the 

sign of the interresonator coupling.  In some simple cases, such as in filters implemented 

with lumped elements, the sign of the coupling can be analytically determined. For other 

technologies, such as microstrip resonators or 3-D cavities, full-wave EM simulations 

often must be performed in order to evaluate the sign of the coupling. This often proves 

difficult, however, as the coupling reference plane must be known in order to properly 

deembed the simulation results and accurately evaluate the phase of the coupling 
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structure. In the following analysis, a simple method for determining the polarity of 

interresonator coupling through eigenmode simulations will be proposed. It will be 

shown that the coupling polarity can be determined by examining the polarity of the 

resonator voltages for the two eigenfrequencies of a coupled resonator pair. 

Consider the circuit of Fig A.6: 

 
Fig A.6. Circuit diagram of two parallel L-C resonators coupled to each other with an 

admittance inverter, which can represent either positive or negative interresonator coupling. 

It consists of two identical (and synchronously tuned) resonators coupled by an 

admittance inverter whose value is J = B, represented with a pi-network equivalent circuit. 

This inverter can be implemented as a T-network, with identical results. This can 

represent either capacitive (B = 𝜔𝜔𝐶𝐶𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜) or inductive (B = -1/ωLcoup) coupling. It can be 

shown that if B < 0, the admittance inverter provides a -90o phase shift, while it provides 

a +90o phase shift if B > 0. The resonator node voltages are designated as V1 and V2. 

Performing nodal analysis, the relationship between V1 and V2 can be determined: 

𝑉𝑉2 = 𝑉𝑉1
𝑗𝑗𝑗𝑗

1
𝑗𝑗𝜔𝜔𝐿𝐿𝑅𝑅

+ 𝑗𝑗𝜔𝜔𝐶𝐶𝑅𝑅
= 𝑉𝑉1

𝜔𝜔𝐿𝐿𝑅𝑅𝑗𝑗
𝜔𝜔2𝐿𝐿𝑅𝑅𝐶𝐶𝑅𝑅 − 1

. (A.12) 

We will investigate the case in which B = − 1
𝜔𝜔𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

, representing an inductive 

admittance inverter which provides a -90o insertion phase if Lcoup > 0 and a +90o phase 

shift if Lcoup < 0.  

Substituting B = − 1
𝜔𝜔𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

into (A.1) yields: 
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𝑉𝑉2 = 𝑉𝑉1
𝐿𝐿𝑅𝑅

𝐿𝐿𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜(1− 𝜔𝜔2𝐿𝐿𝑅𝑅𝐶𝐶𝑅𝑅)
. (A.13) 

The two eigenfrequencies of the circuit of Fig A.6 under the condition 𝑗𝑗 = − 1
𝜔𝜔𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

are well known, and can be obtained through even/odd mode analysis of the circuit to be 

𝜔𝜔1,2 = �
𝐿𝐿𝑅𝑅 ± 𝐿𝐿𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜

±𝐿𝐿𝑅𝑅𝐿𝐿𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜𝐶𝐶𝑅𝑅
 =

1

�[𝐿𝐿𝑅𝑅||(±𝐿𝐿𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜)]𝐶𝐶𝑅𝑅
 (A.14) 

Evaluating (A.2) at the frequencies listed in (A.3) yields: 

𝑉𝑉2 = −𝑉𝑉1 when 𝜔𝜔 =
1

�[𝐿𝐿𝑅𝑅||𝐿𝐿𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜]𝐶𝐶𝑅𝑅
. (A.15) 

𝑉𝑉2 = +𝑉𝑉1 when 𝜔𝜔 =
1

�[𝐿𝐿𝑅𝑅||(−𝐿𝐿𝑐𝑐𝑜𝑜𝑢𝑢𝑜𝑜)]𝐶𝐶𝑅𝑅
. (A.16) 

With a positive mutual inductance (that is B = − 1
𝜔𝜔𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

, and Lcoup is positive), the 

eigenfrequency of (A.5) is lower than that of (A.4). If Lcoup is negative, the 

eigenfrequency of (A.4) is the lower of the two eigenfrequencies but the voltage 

polarities stated in (A.4) and (A.5) remain the same. From this we can conclude that 

when the interresonator coupling element provides a -90o phase shift (usually considered 

to be negative coupling), the resonator voltages have the same polarity at the lower 

eigenmode frequency. Conversely, when the coupling element provides a +90o phase 

shift (positive coupling), the resonator voltages have opposite polarity at the lower 

eigenmode frequency. Thus we can determine the polarity of a given interresonator 

coupling structure by performing an eigenmode simulation of the coupled resonator 

structure and observing the relative polarity of the resonator voltages at the lower 

eigenfrequency.  

To demonstrate this concept further, eigenmode simulations of two coupled 

resonator structures have been performed. The first structure consists of two evanescent-

mode cavity resonators coupled together with an inductive iris, as shown in Fig A.7. The 

coupling iris can be modeled as an inductive Pi-network [123] which corresponds to the 

configuration of Fig A.6, with Lcoup > 0. This Pi-network provides a -90o phase shift, 

which results in negative coupling. Thus the resonator voltages should have the same 

polarity at the lower eigenfrequency, as stated in section A.3. The electric and magnetic 
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fields corresponding to the lower eigenfrequency, obtained using Ansys HFSS 

eigenmode simulator, are shown in Fig A.7(a). It is clear that as predicted, both 

resonators have voltages of the same polarity. 

 

Fig A.7. Electric and magnetic fields at the lower eigenfrequency for two types of 
interresonator coupling in evanescent-mode cavity resonators. (a) The standard method of 
interresonator coupling. The inductive coupling iris provides negative coupling, and thus the 
resonator voltages have the same polarity. (b) An alternative coupling topology which produces 
positive coupling, and thus the resonator voltages have opposite polarity. 

 

In [108], a new interresonator coupling structure which realizes positive coupling 

was introduced. The structure (shown in Fig A.7(b)) consists of the same coupling iris as 

Fig A.7(a), with the addition of an array of vias which connect the top of the coupling iris 

to the bottom and a meandered slot cut into the top of the coupling iris between the vias. 

This slot blocks the flow of current along the top of the coupling iris, and instead routes it 

through the vias to the bottom of the iris. This effectively reverses the flow of current in 

the coupling section, which reverses the polarity of the coupling. The electric and 

magnetic fields corresponding to the lower eigenfrequency of this coupling structure are  
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Fig A.8. Electric field distribution for two configurations of coupled /4 microstrip 

resonators at their lower eigenfrequencies. (a) The resonator voltages have the same polarity, and 
thus this configuration provides negative interresonator coupling. (b) The resonator voltages have 
the opposite polarity, and thus this configuration provides positive interresonator coupling. 

shown in Fig A.7(b). It can be seen that in this case, the resonator voltages have opposite 

polarity, which corresponds to positive coupling as explained in section A.3 

The second coupled resonator structure investigated is shown in Fig A.8(a). It 

consists of two quarter-wave microstrip resonators, each grounded on one end with a via. 

The grounded ends of the microstrip lines are placed close to each other, creating 

interresonator coupling which is primarily magnetic in nature. In the configuration of Fig 

A.8(a), where the resonators’ grounding vias are symmetrically oriented, the mutual 

inductance between the resonators is positive. This provides a -90o phase shift, which 

corresponds to negative interresonator coupling. This is reflected in the relative polarity 

of the electric fields of the two resonators, which as expected have the same polarity at 

the lower eigenfrequency. 

If the orientation of the vias in the coupling section is reversed, as shown in Fig 

A.8(b), then there is effectively a negative mutual inductance between the resonators. 
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This results in positive coupling, and as a result the resonator voltages have opposite 

polarity at the lower eigenfrequency. 
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B.    Non-Magnetic Non-Reciprocal Devices 

Non-reciprocal devices, such as circulators and isolators, are very common 

components in microwave systems. They are often used as isolators to shield amplifiers 

from highly-reflective loads such as additional amplifier stages or detuned antennas, and 

as multiplexers to combine transmitters and receivers onto the same antenna. One such 

application is duplexing transmitter and receiver onto the same antenna is that of single-

channel, full-duplex transceivers, as described in [124]. This design, which is designed to 

be able to both transmit and receive simultaneously at the same center frequency, uses a 

circulator to combine the transmitter and receiver onto the same antenna, while providing 

a small amount (around 15 dB) of isolation between transmitter and receiver. An analog 

signal cancellation circuit is then used to achieve an additional ~90 dB of isolation 

between transmitter and receiver, allowing the radio to receive weak (-100 dBm) signals 

while simultaneously transmitting strong (+20 dB) signals.  

Circulators and isolators typically achieve their non-reciprocity through the use of 

magnetically-biased ferrite materials. These materials are often bulky, preventing them 

from being integrated on-chip into integrated circuits, and can be very expensive due to 

the manual fine-tuning that is often required to manufacture them. Their isolation is also 

limited, usually no greater than 20 to 30 dB. Because of these limitations, there has been 

a great deal of research interest in developing non-ferrite-based circulators and isolators. 

Non-linear and non-reciprocal semiconductor devices such as transistors have been used 

to realize non-ferrite circulators and isolators [125]. These devices can easily be 

integrated on-chip due to the small-size and ease of integration of modern microwave 

transistors. However, they suffer from severe non-linearities and high levels of noise 

which are both inherent to semiconductor devices. Other approaches have exploited 

nonlinear optical effects to achieve nonreciprocity [126]–[128], but these require the 
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complexities associated with converting microwave signals to/from the optical domain, 

and also suffer from non-linearities. Yet another recently proposed idea uses time-varying 

transmission lines, whose characteristic impedance is modulated by a low-frequency 

travelling wave [129]–[131]. This approach achieves very wide bandwidths (up to two 

octaves), but suffers from limited isolation (< 20 dB) and is physically large, as it is 

several wavelengths long.  

As an alternative to these methods, a promising non-magnetic circulator based on 

parametrically-modulated coupled resonators was recently presented in [132], [133]. A 

schematic diagram of the circulator in [132] is shown in Fig B.1, consisting of three 

resonators, each of which is coupled to each other. The resonant frequency of each 

resonator is modulated at a frequency much lower than the RF frequency, with a phase 

progression of 120o applied to each successive resonator. The result is a narrowband 

circulator which achieves good amounts of isolation (up to 60 dB) between isolated ports. 

Though the results demonstrated in [132], [133] have a number of drawbacks (namely, 

high levels of insertion loss), the concept is promising and warrants further investigation. 

As preliminary work, the device in [132] has been replicated at a higher frequency, 

and several two-port non-reciprocal filters of varying order and bandwidth have been 

designed and simulated. Fig B.1 shows both the conceptual diagram and the schematic of 

the replicated circulator. The resonators’ capacitors are represented as equation-based 

devices in Keysight ADS, and their capacitance is controlled by a sinusoidal voltage 

source. Harmonic balance simulations allow the circuit to be simulated. It is found that by 

varying the value of the coupling capacitors, the bandwidth of the circulator changes. As 

bandwidth is increased, however, insertion loss increases because a stronger capacitance 

modulation is required and more of the RF signal is converted to different frequencies.  
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Fig B.1. Conceptual diagram of the non-magnetic circulator presented in [132].  

 

Fig B.2. Simulated performance of the circuit in Fig B.1 for different bandwidths. 

Fig B.3 shows conceptual diagrams for two 4-pole non-reciprocal filters which have 

different bandwidths, as dictated by their coupling values.  

Resonators are implemented as lossless parallel LC resonators, and coupling 

elements are implemented as ideal admittance inverters. It can be seen that different 

transfer functions can be realized with different bandwidths and different transmission 

and isolation characteristics.  
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Fig B.3. A diagram of a 4-pole non-reciprocal filter. 

 
Fig B.4. Simulated performance of two different instances of the 4-pole filter of Fig B.3 

For example, the first filter has a 15% 3-dB fractional bandwidth, and achieves 

greater than 10 dB of reverse isolation (S12) over the entire passband, making the usable 

bandwidth of this filter/isolator 15%. The second filter, however, has a much narrower 3-

dB bandwidth of approximately 3%, providing nearly 30 dB of isolation over the 

passband. Filters / isolators such as these, if combined into 3-port circulators, have the 

potential to not only replace circulators as power combiners in full-duplex receivers, but 

also to replace the RF filters in such systems due to their highly-selective frequency 

responses. 

In order to fully explore the potential of this new class of non-reciprocal filter, a 

number of key questions must be answered. 

• Can low insertion loss be achieved? It appears that there are multiple factors 

competing against each other with regard to insertion loss. It is well-known 

that a filter’s insertion loss increases as its bandwidth decreases. However, 

simulations of the circuit in Fig B.1 show that as the bandwidth of the non-
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reciprocal filter is increased, its insertion loss increases as well even with 

lossless resonators (Fig B.2). This is because as the bandwidth is increased, 

the resonators’ frequencies must be modulated more heavily, which increases 

intermodulation products and actually converts significant amounts of signal 

power from the fundamental frequency to the sidebands which result from 

intermodulation. Thus in order to achieve low insertion loss, resonators with 

high quality factors must be utilized. This, however, introduces another 

question: 

• Can this concept be implemented with high quality-factor resonators? In 

[132], [133], the resonators utilized were either lumped-element or microstrip 

resonators tuned by varactor diodes. These types of resonators are well-suited 

to this application because varactor diodes can be tuned very quickly, and 

thus can be modulated at the high frequencies required for this application 

(15 MHz in [132]). Even higher modulation frequencies will be required in 

order to scale this design up to higher frequencies of interest. For example, 

the design in [133] centered at 2.2 GHz requires the resonators to be 

modulated at 400 MHz. However, varactor diodes have relatively low quality 

factors (Q < 100), and thus are unable to realize circulators with low levels of 

insertion loss. The measured circulator presented in [133] has roughly 10 dB 

of insertion loss, for a center frequency of 130 MHz.  

It is clear that resonators with high quality factors must be used, but 

existing high-Q tunable resonators have much lower tuning speeds than those 

required for this application. Evanescent-mode cavity resonators are widely-

tunable and have high quality factors, but their tunings speeds are usually on 

the order to 10’s of microseconds to milliseconds [54], and thus cannot be 

modulated at MHz frequencies, as required. Other high-Q tunable resonators 

technologies, such as YIG resonators, have similar tuning speeds. Thus, in 

order to realize circulators of this type, a new type of tunable resonator which 

has a high unloaded quality factor but very fast tuning speed (< 100 ns) needs 

to be developed. 
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• Can the intermodulation products which result from the modulation of the 

resonators be reduced? All nonlinear circuits produce intermodulation 

distortion when excited with more than one signal. However, because the 

resonators in this circulator are being modulated, relatively large 

intermodulation terms will be generated even with a single-tone input. In 

[133], the output spectrum of their proposed circulator for a single-tone input 

is shown. The circulator achieves high levels (~ 55 dB) of non-reciprocity at 

its center frequency, but the intermodulation products created by the 

resonator modulation are orders of magnitude (30-40 dB) larger than the non-

reciprocal attenuation, and thus they will spoil the performance of the 

circulator unless they are reduced or filtered out. 
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