1,023 research outputs found

    Efficient block-adaptive parallel-cascade quadratic filters

    Get PDF
    Journal ArticleAbstract-This brief presents computationally efficient block-adaptive algorithms for quadratic filters employing parallel-cascade realizations of the system model. Parallel-cascade realizations implement higher order Volterra systems using a parallel connection of multiplicative combinations of lower order systems. Such realizations are modular and therefore well-suited for very large scale integrate circuit implementation. They also permit efficient approximations of truncated Volterra systems. Mixed frequency- and time-domain realizations of the least-mean-square (LMS) adaptive filter, as well as that of a normalized LMS adaptive filter, are presented in this brief. The adaptive normalized LMS parallel-cascade quadratic filter has the advantages of computational simplicity and superior performance over its direct form, and unnormalized adaptive parallel-cascade counterparts

    Filtering Random Graph Processes Over Random Time-Varying Graphs

    Get PDF
    Graph filters play a key role in processing the graph spectra of signals supported on the vertices of a graph. However, despite their widespread use, graph filters have been analyzed only in the deterministic setting, ignoring the impact of stochastic- ity in both the graph topology as well as the signal itself. To bridge this gap, we examine the statistical behavior of the two key filter types, finite impulse response (FIR) and autoregressive moving average (ARMA) graph filters, when operating on random time- varying graph signals (or random graph processes) over random time-varying graphs. Our analysis shows that (i) in expectation, the filters behave as the same deterministic filters operating on a deterministic graph, being the expected graph, having as input signal a deterministic signal, being the expected signal, and (ii) there are meaningful upper bounds for the variance of the filter output. We conclude the paper by proposing two novel ways of exploiting randomness to improve (joint graph-time) noise cancellation, as well as to reduce the computational complexity of graph filtering. As demonstrated by numerical results, these methods outperform the disjoint average and denoise algorithm, and yield a (up to) four times complexity redution, with very little difference from the optimal solution

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Learning algorithms for adaptive digital filtering

    Get PDF
    In this thesis, we consider the problem of parameter optimisation in adaptive digital filtering. Adaptive digital filtering can be accomplished using both Finite Impulse Response (FIR) filters and Infinite Impulse Response Filters (IIR) filters. Adaptive FIR filtering algorithms are well established. However, the potential computational advantages of IIR filters has led to an increase in research on adaptive IIR filtering algorithms. These algorithms are studied in detail in this thesis and the limitations of current adaptive IIR filtering algorithms are identified. New approaches to adaptive IIR filtering using intelligent learning algorithms are proposed. These include Stochastic Learning Automata, Evolutionary Algorithms and Annealing Algorithms. Each of these techniques are used for the filtering problem and simulation results are presented showing the performance of the algorithms for adaptive IIR filtering. The relative merits and demerits of the different schemes are discussed. Two practical applications of adaptive IIR filtering are simulated and results of using the new adaptive strategies are presented. Other than the new approaches used, two new hybrid schemes are proposed based on concepts from genetic algorithms and annealing. It is shown with the help of simulation studies, that these hybrid schemes provide a superior performance to the exclusive use of any one scheme

    Relationships between digital signal processing and control and estimation theory

    Get PDF
    Bibliography: leaves 83-97.NASA Grant NGL-22-009-124 and NSF Grant GK-41647.Alan S. Willsky

    Adaptive Notch Filter for Single and Multiple Narrow-Band Interference

    Get PDF
    In this project, the adaptive notch filter for single and Multiple narrow-band interference is implemented using simplified LMS algorithm. Performances of the LMS adaptive algorithms is evaluated and analysed through simulation on the computer using Matlab. The algorithm are then written in C programme and implemented using Texas Instrument Tool which consist of TMS320C54x EMV board and Code Composer Studio
    • …
    corecore