1,470 research outputs found

    Yaw Rate and Sideslip Angle Control Through Single Input Single Output Direct Yaw Moment Control

    Get PDF
    Electric vehicles with independently controlled drivetrains allow torque vectoring, which enhances active safety and handling qualities. This article proposes an approach for the concurrent control of yaw rate and sideslip angle based on a single-input single-output (SISO) yaw rate controller. With the SISO formulation, the reference yaw rate is first defined according to the vehicle handling requirements and is then corrected based on the actual sideslip angle. The sideslip angle contribution guarantees a prompt corrective action in critical situations such as incipient vehicle oversteer during limit cornering in low tire-road friction conditions. A design methodology in the frequency domain is discussed, including stability analysis based on the theory of switched linear systems. The performance of the control structure is assessed via: 1) phase-plane plots obtained with a nonlinear vehicle model; 2) simulations with an experimentally validated model, including multiple feedback control structures; and 3) experimental tests on an electric vehicle demonstrator along step steer maneuvers with purposely induced and controlled vehicle drift. Results show that the SISO controller allows constraining the sideslip angle within the predetermined thresholds and yields tire-road friction adaptation with all the considered feedback controllers

    Low computational complexity model reduction of power systems with preservation of physical characteristics

    Get PDF
    A data-driven algorithm recently proposed to solve the problem of model reduction by moment matching is extended to multi-input, multi-output systems. The algorithm is exploited for the model reduction of large-scale interconnected power systems and it offers, simultaneously, a low computational complexity approximation of the moments and the possibility to easily enforce constraints on the reduced order model. This advantage is used to preserve selected slow and poorly damped modes. The preservation of these modes has been shown to be important from a physical point of view and in obtaining an overall good approximation. The problem of the choice of the socalled tangential directions is also analyzed. The algorithm and the resulting reduced order model are validated with the study of the dynamic response of the NETS-NYPS benchmark system (68-Bus, 16-Machine, 5-Area) to multiple fault scenarios

    Review of Small-Signal Modeling Methods Including Frequency-Coupling Dynamics of Power Converters

    Get PDF

    Hybrid Integrator-Gain Systems:Analysis, Design, and Applications

    Get PDF

    Stability results for constrained dynamical systems

    Get PDF
    Differential-Algebraic Equations (DAE) provide an appropriate framework to model and analyse dynamic systems with constraints. This framework facilitates modelling of the system behaviour through natural physical variables of the system, while preserving the topological constraints of the system. The main purpose of this dissertation is to investigate stability properties of two important classes of DAEs. We consider some special cases of Linear Time Invariant (LTI) DAEs with control inputs and outputs, and also a special class of Linear switched DAEs. In the first part of the thesis, we consider LTI systems, where we focus on two properties: passivity and a generalization of passivity and small gain theorems called mixed property. These properties play an important role in the control design of large-scale interconnected systems. An important bottleneck for a design based on the aforementioned properties is their verification. Hence we intend to develop easily verifiable conditions to check passivity and mixedness of Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) DAEs. For linear switched DAEs, we focus on the Lyapunov stability and this problem forms the basis for the second part of the thesis. In this part, we try to find conditions under which there exists a common Lyapunov function for all modes of the switched system, thus guaranteeing exponential stability of the switched system. These results are primarily developed for continuous-time systems. However, simulation and control design of a dynamic system requires a discrete-time representation of the system that we are interested in. Thus, it is critical to establish whether discrete-time systems, inherit fundamental properties of the continuous-time systems from which they are derived. Hence, the third part of our thesis is dedicated to the problems of preserving passivity, mixedness and Lyapunov stability under discretization. In this part, we examine several existing discretization methods and find conditions under which they preserve the stability properties discussed in the thesis
    • …
    corecore