86 research outputs found

    Virtual Resonant Emission and Oscillatory Long-Range Tails in van der Waals Interactions of Excited States: QED Treatment and Applications

    Get PDF
    We report on a quantum electrodynamic (QED) investigation of the interaction between a ground state atom with another atom in an excited state. General expressions, applicable to any atom, are indicated for the long-range tails which are due to virtual resonant emission and absorption into and from vacuum modes whose frequency equals the transition frequency to available lower-lying atomic states. For identical atoms, one of which is in an excited state, we also discuss the mixing term which depends on the symmetry of the two-atom wave function (these evolve into either the gerade or the ungerade state for close approach), and we include all nonresonant states in our rigorous QED treatment. In order to illustrate the findings, we analyze the fine-structure resolved van der Waals interaction for nD-1S hydrogen interactions with n=8,10,12 and find surprisingly large numerical coefficients.Comment: 6 pages; RevTe

    Hydrogen molecular ions for improved determination of fundamental constants

    Full text link
    The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions H + 2 and HD + for an independent determination of several fundamental constants is analyzed. While these molecules had been proposed for metrology of nuclear-to-electron mass ratios, we show that they are also sensitive to the radii of the proton and deuteron and to the Rydberg constant at the level of the current discrepancies colloquially known as the proton size puzzle. The required level of accuracy, in the 10 --12 range, can be reached both by experiments, using Doppler-free two-photon spectroscopy schemes, and by theoretical predictions. It is shown how the measurement of several well-chosen rovibrational transitions may shed new light on the proton-radius puzzle, provide an alternative accurate determination of the Rydberg constant, and yield new values of the proton-to-electron and deuteron-to-proton mass ratios with one order of magnitude higher precision

    Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons

    Get PDF
    The very high precision of current measurements and theory predictions of spectral lines in few-electron atoms allows us to efficiently probe the existence of exotic forces between electrons, neutrons and protons. We investigate the sensitivity to new spin-independent interactions in transition frequencies (and their isotopic shifts) of hydrogen, helium and some heliumlike ions. We find that present data probe new regions of the force-carrier couplings to electrons and neutrons around the MeV mass range. We also find that, below few keV, the sensitivity to the electron coupling in precision spectroscopy of helium and positronium is comparable to that of the anomalous magnetic moment of the electron. Finally, we interpret our results in the dark-photon model where a new gauge boson is kinetically mixed with the photon. There, we show that helium transitions, combined with the anomalous magnetic moment of the electron, provide the strongest indirect bound from laboratory experiments above 100 keV.United States. Department of Energy (Grant DE-SC0012567

    Muonic hydrogen and the proton radius puzzle

    Full text link
    The extremely precise extraction of the proton radius by Pohl et al. from the measured energy difference between the 2P and 2S states of muonic hydrogen disagrees significantly with that extracted from electronic hydrogen or elastic electron-proton scattering. This is the proton radius puzzle. The origins of the puzzle and the reasons for believing it to be very significant are explained. Various possible solutions of the puzzle are identified, and future work needed to resolve the puzzle is discussed.Comment: Minor modifications, some references added, to appear in Annu. Rev. Nucl. Part. Sci. Vol 63 (2013). 60 pages, 5 figures, 1 tabl

    Atomic Physics Constraints on the X Boson

    Get PDF
    Recently, a peak in the light fermion pair spectrum at invariant q)2 ≈ (16.7MeV)2 has been observed in the bombardment of 7Li by protons. This peak has been interpreted in terms of a protophobic interaction of fermions with a gauge boson (X boson) of invariant mass ≈16.7MeV which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which is a problem because of the short range of the interaction (11.8 fm), which is commensurate with a nuclear halo. Here we analyze the X boson in terms of its consequences for both electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms of low and intermediate nuclear charge numbers

    Natural line profile asymmetry

    Full text link
    The paper discusses the line profile asymmetry of the photon scattering process that arises naturally in quantum electrodynamics (QED). Based on precision spectroscopic experiments conducted on hydrogen atoms, we focus our attention on the two-photon 1s−2s1s-2s transition. As one of the most precisely determined transition frequencies, it is a key pillar of optical frequency standards and is used in determining fundamental physical constants, testing physical principles, and searching constraints on new fundamental interactions. The results obtained in this work show the need to take into account the natural line profile asymmetry in precision spectroscopic experiments

    Atomic Physics Constraints on the X Boson

    Get PDF
    Recently, a peak in the light fermion pair spectrum at invariant q^2 approximately equal to 16.7 Me^2. has been observed in the bombardment of Li-7 by protons. This peak has been interpreted in terms of a protophobic interaction of fermions with a gauge boson (X boson) of invariant mass of approximately 16.7 MeV which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which is a problem because of the short range of the interaction 11.8 fm, which is commensurate with a "nuclear halo". Here, we analyze the X boson in terms of its consequences for both electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms of low and intermediate nuclear charge numbers.Comment: 8 pages; RevTe
    • …
    corecore