71,193 research outputs found

    Alternative Adaptive Filter Structures for Improved Radio Frequency Interference Cancellation in Radio Astronomy

    Full text link
    In radio astronomy, reference signals from auxiliary antennas that receive only the radio frequency interference (RFI) can be modified to model the RFI environment at the astronomy receivers. The RFI can then be canceled from the astronomy signal paths. However, astronomers typically only require signal statistics. If the RFI statistics are changing slowly, the cancellation can be applied to the signal correlations at a much lower rate than is required for standard adaptive filters. In this paper we describe five canceler setups; precorrelation and postcorrelation cancelers that use one or two reference signals in different ways. The theoretical residual RFI and added noise levels are examined and are demonstrated using microwave television RFI at the Australia Telescope Compact Array. The RFI is attenuated to below the system noise, a reduction of at least 20 dB. While dual-reference cancelers add more reference noise than single-reference cancelers, this noise is zero-mean and only adds to the system noise, decreasing the sensitivity. The residual RFI that remains in the output of single-reference cancelers (but not dual-reference cancelers) sets a nonzero noise floor that does not act like random system noise and may limit the achievable sensitivity. Thus, dual-reference cancelers often result in superior cancellation. Dual-reference precorrelation cancelers require a double-canceler setup to be useful and to give equivalent results to dual-reference postcorrelation cancelers.Comment: 11 pages created using emulateap

    COSMOSOMAS Observations of the CMB and Galactic Foregrounds at 11 GHz: Evidence for anomalous microwave emission at high Galactic Latitude

    Full text link
    We present observations with the new 11 GHz radiometer of the COSMOSOMAS experiment at the Teide Observatory (Tenerife). The sky region between 0 deg <= RA <= 360 deg and 26 deg <= DEC 49 deg (ca. 6500 square degrees) was observed with an angular resolution of 0.9 deg. Two orthogonal independent channels in the receiving system measured total power signals from linear polarizations with a 2 GHz bandwidth. Maps with an average sensitivity of 50 microK per beam have been obtained for each channel. At high Galactic latitude (|b|>30deg) the 11 GHz data are found to contain the expected cosmic microwave background as well as extragalactic radiosources, galactic synchrotron and free-free emission, and a dust-correlated component which is very likely of galactic origin. At the angular scales allowed by the window function of the experiment, the dust-correlated component presents an amplitude \Delta T aprox. 9-13 microK while the CMB signal is of order 27 microK. The spectral behaviour of the dust-correlated signal is examined in the light of previous COSMOSOMAS data at 13-17 GHz and WMAP data at 22-94 GHz in the same sky region. We detect a flattening in the spectral index of this signal below 20 GHz which rules out synchrotron radiation as being responsible for the emission. This anomalous dust emission can be described by a combination of free-free emission and spinning dust models with a flux density peaking around 20 GHz.Comment: 17 pages, 10 tables, 20 figures. Details on the COSMOSOMAS experiment can be found at http://www.iac.es/project/cmb/cosmosomas

    Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS

    Full text link
    We present predicted full-sky maps of submillimeter and microwave emission from the diffuse interstellar dust in the Galaxy. These maps are extrapolated from the 100 micron emission and 100/240 micron flux ratio maps that Schlegel, Finkbeiner, & Davis (1998; SFD98) generated from IRAS and COBE/DIRBE data. Results are presented for a number of physically plausible emissivity models. We find that no power law emissivity function fits the FIRAS data from 200 - 2100 GHz. In this paper we provide a formalism for a multi-component model for the dust emission. A two-component model with a mixture of silicate and carbon-dominated grains (motivated by Pollack et al., 1994}) provides a fit to an accuracy of about 15% to all the FIRAS data over the entire high-latitude sky. Small systematic differences are found between the atomic and molecular phases of the ISM. Our predictions for the thermal (vibrational) emission from Galactic dust at \nu < 3000 GHz are available for general use. These full-sky predictions can be made at the DIRBE resolution of 40' or at the higher resolution of 6.1 arcmin from the SFD98 DIRBE-corrected IRAS maps.Comment: 48 pages, AAS LaTeX, 6 figures, ApJ (accepted). Data described in the text, as well as 4 additional figures, are available at http://astro.berkeley.edu/dus

    GPI PSF subtraction with TLOCI: the next evolution in exoplanet/disk high-contrast imaging

    Full text link
    To directly image exoplanets and faint circumstellar disks, the noisy stellar halo must be suppressed to a high level. To achieve this feat, the angular differential imaging observing technique and the least-squares Locally Optimized Combination of Images (LOCI) algorithm have now become the standard in single band direct imaging observations and data reduction. With the development and commissioning of new high-order high-contrast adaptive optics equipped with integral field units, the image subtraction algorithm needs to be modified to allow the optimal use of polychromatic images, field-rotated images and archival data. A new algorithm, TLOCI (for Template LOCI), is designed to achieve this task by maximizing a companion signal-to-noise ratio instead of simply minimizing the noise as in the original LOCI algorithm. The TLOCI technique uses an input spectrum and template Point Spread Functions (PSFs, generated from unocculted and unsaturated stellar images) to optimize the reference image least-squares coefficients to minimize the planet self-subtraction, thus maximizing its throughput per wavelength, while simultaneously providing a maximum suppression of the speckle noise. The new algorithm has been developed using on-sky GPI data and has achieved impressive contrast. This paper presents the TLOCI algorithm, on-sky performance, and will discuss the challenges in recovering the planet spectrum with high fidelity.Comment: 13 pages, 8 figures, to appear in Proceedings of SPIE 914

    Sparsity and adaptivity for the blind separation of partially correlated sources

    Get PDF
    Blind source separation (BSS) is a very popular technique to analyze multichannel data. In this context, the data are modeled as the linear combination of sources to be retrieved. For that purpose, standard BSS methods all rely on some discrimination principle, whether it is statistical independence or morphological diversity, to distinguish between the sources. However, dealing with real-world data reveals that such assumptions are rarely valid in practice: the signals of interest are more likely partially correlated, which generally hampers the performances of standard BSS methods. In this article, we introduce a novel sparsity-enforcing BSS method coined Adaptive Morphological Component Analysis (AMCA), which is designed to retrieve sparse and partially correlated sources. More precisely, it makes profit of an adaptive re-weighting scheme to favor/penalize samples based on their level of correlation. Extensive numerical experiments have been carried out which show that the proposed method is robust to the partial correlation of sources while standard BSS techniques fail. The AMCA algorithm is evaluated in the field of astrophysics for the separation of physical components from microwave data.Comment: submitted to IEEE Transactions on signal processin

    Sparse component separation for accurate CMB map estimation

    Get PDF
    The Cosmological Microwave Background (CMB) is of premier importance for the cosmologists to study the birth of our universe. Unfortunately, most CMB experiments such as COBE, WMAP or Planck do not provide a direct measure of the cosmological signal; CMB is mixed up with galactic foregrounds and point sources. For the sake of scientific exploitation, measuring the CMB requires extracting several different astrophysical components (CMB, Sunyaev-Zel'dovich clusters, galactic dust) form multi-wavelength observations. Mathematically speaking, the problem of disentangling the CMB map from the galactic foregrounds amounts to a component or source separation problem. In the field of CMB studies, a very large range of source separation methods have been applied which all differ from each other in the way they model the data and the criteria they rely on to separate components. Two main difficulties are i) the instrument's beam varies across frequencies and ii) the emission laws of most astrophysical components vary across pixels. This paper aims at introducing a very accurate modeling of CMB data, based on sparsity, accounting for beams variability across frequencies as well as spatial variations of the components' spectral characteristics. Based on this new sparse modeling of the data, a sparsity-based component separation method coined Local-Generalized Morphological Component Analysis (L-GMCA) is described. Extensive numerical experiments have been carried out with simulated Planck data. These experiments show the high efficiency of the proposed component separation methods to estimate a clean CMB map with a very low foreground contamination, which makes L-GMCA of prime interest for CMB studies.Comment: submitted to A&

    The Precision Array for Probing the Epoch of Reionization: 8 Station Results

    Full text link
    We are developing the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21cm emission from the early Universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a 4-antenna array in the low-RFI environment of Western Australia and an 8-antenna array at our prototyping site in Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (CC_\ell) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the cosmic variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at =100\ell=100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the level of the fluctuations in 21cm emission associated with reionization.Comment: 13 pages, 14 figures, submitted to AJ. Revision 2 corrects a scaling error in the x axis of Fig. 12 that lowers the calculated power spectrum temperatur
    corecore