2,619 research outputs found

    Fast non-recursive extraction of individual harmonics using artificial neural networks

    Get PDF
    A collaborative work between Northumbria University and University of Peradeniya (Sri Lanka). It presents a novel technique based on Artificial Neural Networks for fast extraction of individual harmonic components. The technique was tested on a real-time hardware platform and results obtained showed that it is significantly faster and less computationally complex than other techniques. The paper complements other publications by the author (see paper 1) on the important area of “Power Quality” of electric power networks. It involves the application of advanced techniques in artificial intelligence to solve power systems problems

    Generalised gravitational burst generation with Generative Adversarial Networks

    Get PDF
    We introduce the use of conditional generative adversarial networks forgeneralised gravitational wave burst generation in the time domain.Generativeadversarial networks are generative machine learning models that produce new databased on the features of the training data set. We condition the network on fiveclasses of time-series signals that are often used to characterise gravitational waveburst searches: sine-Gaussian, ringdown, white noise burst, Gaussian pulse and binaryblack hole merger. We show that the model can replicate the features of these standardsignal classes and, in addition, produce generalised burst signals through interpolationand class mixing. We also present an example application where a convolutional neuralnetwork classifier is trained on burst signals generated by our conditional generativeadversarial network. We show that a convolutional neural network classifier trainedonly on the standard five signal classes has a poorer detection efficiency than aconvolutional neural network classifier trained on a population of generalised burstsignals drawn from the combined signal class space

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    Using Convolutional Neural Networks to Develop Starting Models for 2D Full Waveform Inversion

    Full text link
    Non-invasive subsurface imaging using full waveform inversion (FWI) has the potential to fundamentally change engineering site characterization by enabling the recovery of high resolution 2D/3D maps of subsurface stiffness. Yet, the accuracy of FWI remains quite sensitive to the choice of the initial starting model due to the complexity and non-uniqueness of the inverse problem. In response, we present the novel application of convolutional neural networks (CNNs) to transform an experimental seismic wavefield acquired using a linear array of surface sensors directly into a robust starting model for 2D FWI. We begin by describing three key steps used for developing the CNN, which include: selection of a network architecture, development of a suitable training set, and performance of network training. The ability of the trained CNN to predict a suitable starting model for 2D FWI was compared against other commonly used starting models for a classic near-surface imaging problem; the identification of an undulating, two-layer, soil-bedrock interface. The CNN developed during this study was able to predict complex 2D subsurface images of the testing set directly from their seismic wavefields with an average mean absolute percent error of 6%. When compared to other common approaches, the CNN approach was able to produce starting models with smaller seismic image and waveform misfits, both before and after FWI. The ability of the CNN to generalize to subsurface models which were dissimilar to the ones upon which it was trained was assessed using a more complex, three-layered model. While the predictive ability of the CNN was slightly reduced, it was still able to achieve seismic image and waveform misfits comparable to the other commonly used starting models. This study demonstrates that CNNs have great potential as a tool for developing good starting models for FWI ...Comment: 29 pages, 16 figures, submitted to Geophysic

    Hysteresis Modeling in Iron-Dominated Magnets Based on a Multi-Layered Narx Neural Network Approach

    Get PDF
    A full-fledged neural network modeling, based on a Multi-layered Nonlinear Autoregressive Exogenous Neural Network (NARX) architecture, is proposed for quasi-static and dynamic hysteresis loops, one of the most challenging topics for computational magnetism. This modeling approach overcomes drawbacks in attaining better than percent-level accuracy of classical and recent approaches for accelerator magnets, that combine hybridization of standard hysteretic models and neural network architectures. By means of an incremental procedure, different Deep Neural Network Architectures are selected, fine-tuned and tested in order to predict magnetic hysteresis in the context of electromagnets. Tests and results show that the proposed NARX architecture best fits the measured magnetic field behavior of a reference quadrupole at CERN. In particular, the proposed modeling framework leads to a percent error below 0.02% for the magnetic field prediction, thus outperforming state of the art approaches and paving a very promising way for future real time applications
    • 

    corecore