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A full-fledged neural network modeling, based on a Multi-layered Nonlinear Autoregressive Exogenous
Neural Network (NARX) architecture, is proposed for quasi-static and dynamic hysteresis loops, one of
the most challenging topics for computational magnetism. This modeling approach overcomes drawbacks
in attaining better than percent-level accuracy of classical and recent approaches for accelerator magnets,
that combine hybridization of standard hysteretic models and neural network architectures. By means
of an incremental procedure, different Deep Neural Network Architectures are selected, fine-tuned and
tested in order to predict magnetic hysteresis in the context of electromagnets. Tests and results show
that the proposed NARX architecture best fits the measured magnetic field behavior of a reference
quadrupole at CERN. In particular, the proposed modeling framework leads to a percent error below
0.02% for the magnetic field prediction, thus outperforming state of the art approaches and paving a
very promising way for future real time applications.

Keywords: Magnetic measurements; Multi-layered NARX; deep networks; ferromagnetic hysteresis;
model selection.

1. Introduction

Modeling of quasi-static and dynamic hysteresis
loops is one of the most challenging topics in com-
putational magnetism, mainly due to the strong

nonlinearity and history dependency shown by
ferromagnetic materials.1–7 This general problem is
commonly addressed in literature in the context of
electrical machines, which are excited by sinusoidal
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current waveforms.8–10 Conversely, more complex
excitation current waveforms I(t), used in particle
accelerators and other magnetic devices operating
cyclically, are still an open focus of scientific inter-
est. Such waveforms include quasi-periodic sequences
of trapezoidal-shaped pulses, with widely varying
slopes (i.e. current or, equivalently, field ramp-rates)
and flat-top levels. Flat-tops and flat-bottoms cor-
respond to reversal points of the hysteresis loop
and their sequence largely determines the relation-
ship B(I) between current and magnetic field. Under
these conditions, B(I) becomes much more complex
and hard to predict.11,12

In particle accelerators, the beam is accelerated
by radio frequency cavities while circulating around
a ring made by magnets, which generate a bending
field, increasing in proportion to the beam momen-
tum. Accurate knowledge of the magnetic field B(t)
at any given time during a magnetic cycle is there-
fore critical for longitudinal and transversal beam
control, power supply control, various beam diag-
nostics and qualitative feedback to operators. The
required accuracy is typically 0.01%.13 In a restricted
number of cases, conventional mathematical mod-
els can express the B(I) relationship adequately
well. An example is the semi-empirical model of
the superconducting bending dipoles of the Large
Hadron Collider, which generate a very high field
(8.4 T), relatively unaffected by perturbations.14

In the vastly more common case of iron-dominated
magnets, effects due to magnetic saturation, hystere-
sis and eddy currents may be as large as several
percent or more, and the problem becomes orders
of magnitude more difficult.11,12 For example, recent
attempts using the well-known Preisach models15,16

could not attain better than 0.2% accuracy. Also
other classes of methods, such as Jiles–Atherton dif-
ferential models,17 ultimately turn out to be unsuit-
able, due to their well-known difficulties in handling
minor hysteresis loops. As an alternative, real-time
measurements can sometimes be carried out in a
suitably equipped reference magnet, either a part of
the accelerator ring or powered in series with it. At
CERN, six of the synchrotrons function thanks to
feedback from such measurements, provided by sys-
tems known as “B-trains” (currently in the process of
being renovated).18 In general, however, this kind of
real-time measurement systems are complex, expen-
sive and sometimes very impractical to deploy, for

example owing to the lack of space for sensors close
to the beam vacuum chamber. As a result, there is
a strong incentive to investigate novel kinds of mod-
els in order to complement or even replace measure-
ments. In addition, even where real-time measure-
ment systems are already implemented, such models
may serve as a useful complementary role, for exam-
ple during periods of hardware maintenance.

Recently, more attention has been directed
towards Artificial Neural Networks (ANNs), today
used with spectacular results in a variety of domains
related to time-series prediction,19–42 but still rel-
atively unexplored in magnetic applications. In
Ref. 43, a hybrid Preisach-Neural Network model
is proposed to predict the dynamic hysteresis in
ARMCO pure iron, reaching a Normalized Root
Mean Square Error of the order of 0.7%. ANN
techniques are being used more and more often to
model magnetic hysteresis in combination with clas-
sical approaches like Preisach, Wlodarski, Chua–
Stronsmoe and Jiles–Atherton models.8,10,44 In
Refs. 45 and 46, a different hybrid perspective is pro-
posed by combining an ANN with a Fourier Descrip-
tor to evaluate simulated hysteresis loops. An inter-
esting modeling approach is reported in Ref. 47: an
NN approach for modeling dynamic hysteresis is pro-
posed by combining an array of NNs where each
NN is dedicated to a particular fixed portion of the
dynamic hysteresis loop. The whole hysteretic path
is built by the composition of the evaluations made
by different NNs. The authors simulate the behavior
of a synthetic material with a Jiles–Atherton model
and use simulated excitation curves (e.g. sinusoidal
waveforms) while the aim of our paper is to rely on
real magnetic cycles with a richer frequency content
in it. In Ref. 10, the authors study the hysteresis
behavior of a transformer core. Their focus is on
the prediction of a single hysteresis cycle, and in
general they are not able to take into account the
magnetic field response over a long period. More-
over, even in the short term case, their accuracy
does not meet the above accuracy requirements of
0.01%.8,10,16,45 In this paper, a different approach
is proposed, based on tuning a Multi-layered neural
network to fit directly the magnet response, by avoid-
ing complementary physical models. Different archi-
tectures are considered and selected according to a
compromise between the accuracy of the field estima-
tion and the level of complexity of the network. We
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show that a Multi-layered Nonlinear Autoregressive
Exogenous Neural Network (NARX), which relies on
temporal feedback to capture the underlying physics,
was the best-performing architecture. The results of
tests carried out on a dedicated experimental setup
outperform both traditional and hybrid models, sug-
gesting that this is indeed a very promising approach.
The paper is organized as follows. In Sec. 2, the
mathematical problem is stated and the proposed
NARX architecture described. In Sec. 3, the exper-
imental setup is discussed together with the prepa-
ration of the dataset used to train and test the net-
works. In Sec. 4, the model selection algorithm and
the different architectures tested are presented. In
Sec. 5, we discuss the results achieved in detail.

2. Problem Statement and
Architecture Proposal

Our problem can be formally expressed as the esti-
mation of the unknown output y as a function f of K

previous outputs, the input u and H previous inputs:

y(n) = f(y(n− 1), . . . , y(n−H),

u(n), u(n− 1), . . . , u(n−K)),
(1)

where y is the estimated magnetic field, u is the exci-
tation current and n is a discrete time index. The
model relies on two buffers, one of network outputs
and another of past observations of the input current.

The network’s predictive capability is enhanced
by endowing it with two buffers taking into account

the previous input and output of the system. These
are expected to model dynamic features that are
either time-dependent, such as eddy current decay
transients, or history-dependent, such as magnetic
hysteresis. In practice, we propose to approximate
Eq. (1) with a Multi-layered NARX model. Given a
NARX network with L layers (Fig. 1), the input can
be propagated forward through the layers in the fol-
lowing way. The output values a1

j of the A1 neurons
belonging to the first layer l = 1 of the network are
computed by means of the equations

a1
j(n) = φA1

(
H∑

h=1

WO
jhy(n− h)

+
K∑

k=0

W I
jku(n− k)

)
, (2)

where φA1 is the activation function of the neurons
of the layer 1, the weights WO

jh control the strength
of the connections from the hth output to the neu-
ron j of the layer 1 and the weights W I

jk control the
strength of the connection from the kth input to the
neuron j of the layer 1. Similarly, for each successive
layer it is possible to compute the output values of
each neuron by the equations

al
j(n) = φAl

(
Al∑
i=0

W l
jia

l−1
i (n)

)
, (3)

where l ∈ {2, . . . , L} is the layer index, φAl is the
activation function of the neurons of the lth layer,

Fig. 1. Multi-layered NARX scheme. The computation of the states al
j of the network is forward, starting from first

layer (Eq. (2)), then updating internal layers (Eq. (3)), and finally computing the output y(n) (Eq. (4)).
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and W l
ji are the weights that control the strength of

the connection from the neuron i of the layer l−1 to
the neuron j of the layer l. We use the conventional
formulation in which we set al−1

0 = 1 in order to
simulate the bias term W l

j0. The value of the output
neuron y is computed as

y(n) =
AL−1∑
i=0

WE
i aL

i (n), (4)

where we use the identity as activation function,
while the weights WE

i control the strength of the con-
nection coming from the neuron i of the layer L to the
output neuron y. In our simulation we set the acti-
vation function φAl(x) = tanh(x) for all the layers
l ∈ {1, L}. In summary, our architecture is defined
by an array of hyperparameters θ = (L,A, K, H).

2.1. Multi-layered NARX literature
background

Since the proof of universal approximation for Feed
forward48 and recurrent49 neural networks (with the
sufficient condition of one hidden layer) the major-
ity of the NN approaches focused on developing
networks in width, almost neglecting the benefits
of developing layers in depth. However, an aston-
ishing improvement of NN based system perfor-
mances was achieved when the possibility of expand-
ing layers in depth became computationally tractable
thanks to the development of new smart methods
for learning and the increased computational power
of computer machines (see Ref. 50 for a comprehen-
sive historical review). Further, when dealing with
time series, successful dynamic approaches unfold-
ing the depth of the network through time were pro-
posed, like Long-Short Memory Networks (LTSM)
and variants.51–55 In this paper, the proposed mod-
eling choice of a Multi-layered NARX network lies at
the edge between a static and a dynamic deep net-
work approach. In general, successful NARX based
approaches have been extensively studied (see, e.g.
Refs. 35 and 36). NARX models allow a sliding win-
dow operation across the feed-forward layers, with-
out relying on recurrent connections. In particular,
our modelization takes inspiration from recent ‘Jor-
dan’ NARX neural network models56,57 and it is aug-
mented with internal static layers. Although in those
models the output layer is sent back to the input
layers (that is why this kind of modelization is also

referred to as recurrent), it is worth noting that the
computation is completely forward. Consequently,
this approach avoids the shortcomings of Backprop-
agation Through Time (BPTT) learning,58 which
requires unfolding the network through time for as
many timesteps as there are in the sequence, which
significantly slows down learning and/or causes large
memory consumption. Note that the presented for-
malizations collapse to the definition of Deep Mul-
tiLayer Perceptron (MLP) (when H = K = 0) and
Deep Time Delay Neural Network (TDNN) networks
(when H = 0). Selecting a model architecture is
therefore equivalent to assigning a set of integer val-
ues to the hyperparameters θ. The selection process
is discussed in detail in Sec. 4.

3. Experimental Setup

3.1. Measurement setup

An extensive measurement campaign was performed
as a case study on a spare reference quadrupole avail-
able at CERN (Fig. 2). The measurement setup is
represented schematically in Fig. 3. The magnet was
fed by an A&D AG BIP1540 power supply, capable
of providing an output current up to 40 A and an
output voltage of 10V. To control the power sup-
ply, we used an NI PXI 461 card driven by cus-
tom C++ software based on the Flexible Framework
for Magnetic Measurements (FFMM).59 The cur-
rent was measured with a LEM IT60 ULTRASTAB
DCCT having an accuracy of 3 ppm. The magnet was
excited with ten different cycle sequences. In order
to enforce a specific initial condition (for H and B)

Fig. 2. Reference quadrupole used for the case study.
At the tip of the pole, the Hall probe based FM302 tes-
lameter provided by Projekt Elektronic GmbH was used
to measure the magnetic field.
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Fig. 3. Schematics of measurement setup.

we decided to perform a degaussing of the magnet
before starting our acquisitions.60 In this way, we
are ensuring initial conditions with H = 0A/m and
B = 0 T. The described shape of the waveforms was
designed to use curves similar to the ones actually
used in magnets for particle accelerators.61

Each sequence includes seven trapezoidal cycles
about 4 to 5 seconds long, starting from I = 0 and
reaching increasingly higher flat-top values, designed
to scan the whole interior area of a major hystere-
sis loop. The major loop corresponds to the maxi-
mum applied current of 25A and each flat-top level
represents an inversion point in the magnetic his-
tory, which determines the subsequent branch of the
hysteresis loop. The flat-top levels in the different
sequences were all different, in order to test the inter-
polating capability of the network. All different levels
are listed in Table 1, while a sample subset is plotted
in Fig. 4. The field ramp-rate, defined as the slope of

Table 1. Current cycle flat-top values of the 10 cycle
sequences tested. The role of each dataset, be it training,
validation or test is given in the second column.

Dataset Cycle index Unit

Index Type 1 2 3 4 5 6 7

1 Dtrain
L 2 5 8 10 15 20 25 A

2 Dtrain
L 1 2 6 8 12 20 25 A

3 Dtrain
L 1 5 8 10 12 21 25 A

4 Dval
L 2 4 6 10 13 18 25 A

5 Dtest
L 3 6 11 16 20 23 25 A

6 DE , D̄E 3 6 11 16 20 23 25 A
7 DE , D̄E 2 6 9 13 17 22 25 A
8 DE , D̄E 3 6 9 15 18 21 25 A
9 DE , D̄E 1 3 7 9 13 18 25 A
10 DE , D̄E 2 4 8 11 15 19 25 A

the excitation current during the ramps, is kept con-
stant for all training and test cycles, so as to min-
imize the impact of this variable on the predictive
performance of the neural network. This is because
the main objective of this paper is modeling the hys-
teretic part of the response, rather than different
dynamics, so we wanted to eliminate as much as pos-
sible any confounding variable. The magnetic field
was measured with a Hall probe-based FM302 tes-
lameter, from Projekt Elektronic GmbH, with a sen-
sitivity of 1V/T. The output voltage was acquired
with the same PXI card used to control the power
supply, with 24 bits of resolution at the raw sampling
rate of 2.5 kS/s. The probe was placed at the tip of
one of the magnet poles to measure the peak field in
the gap (proportional to the quadrupolar field gradi-
ent acting as a magnetic lens on the particle beam).
The maximum field measured was Bmax = 0.16 T.
The noise level of the measurement, estimated from
its standard deviation on the current plateaus, is
approximately 13 μT, i.e. 8.1 · 10−5 relative to the
maximum.

3.2. Magnet response

The measured relationship g between the current I

and the magnetic field B represents the so called hys-
teresis graph of the magnet:

B(I) = g(I). (5)

The relationship appears to be essentially lin-
ear, although a zoom-in reveals that the field follows
a different path when the current is reduced. The
area of the hysteresis loop is indicative of the losses,
which include a quasi-static contribution intrinsic to
the material, plus a dynamic component due to the
eddy currents, which increases with the ramp rate.
The maximum width of the loop, relative to the full
range of the field, is approximately 1% in the region
between 7 and 17A. It is possible to get an insight
into the magnetic response, using a Linear Model62

and in first approximation neglecting its nonlinear
part

B(I) = B0 + G · I + B̂(I). (6)

Consequently, we can compute B0 = 7.79 · 10−4 T
and G = 6.50 · 10−3 T/A, respectively, the offset and
gain of the least-square linear regression. B̂(I) is the
residual of the regression and contains the nonlinear

2150033-5

In
t. 

J.
 N

eu
r.

 S
ys

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 8

0.
18

3.
66

.5
4 

on
 0

8/
03

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

July 21, 2021 23:34 2150033

M. Amodeo et al.

(a) (b)

(c) (d)

Fig. 4. (Color online) Sample Plot of the current I(t) (in black) and the magnetic field, B(t) (in red) from the collected
data. The abscissa represents the time in seconds (obtained knowing the sample rate of the acquisitions of 2.5 kS/s —
corresponding to a sampling interval of 0.4 ms). The ordinate has a double scale: on the left for the excitation current
I(t) and on the right for the magnetic field B(t). Panel (a) shows the form of a whole sequence of data collected. Panel
(b) shows a selection focusing on the first set of cycles, containing seven magnetic cycles; Panels (c) and (d) represent a
further zoom on the last two and one magnetic cycle of the set of cycles, respectively.

component. This decomposition is crucial in the con-
struction of datasets used to learn and test models
on the nonlinear part of the signal.
A different representation of the magnetic behavior
as a function of the current is given in Fig. 5, in terms
of the so-called transfer function Tf , defined by the
field-to-current ratio

Tf(I) =
B(I)

I
=

B0

I
+ G +

B̂(I)
I

. (7)

In this figure, one can more clearly see how the
response switches discontinuously from the lower to
the upper branch of the hysteresis loop, as the cur-
rent starts to decrease at the end of each flat-top. The
flatness of the lower branch on the up-ramp between
about 5 and 25A corresponds to an almost con-
stant transfer function, i.e. the desired linear behav-
ior under typical operating conditions. Due to the
field level being very low, there is no visible satura-
tion leading to a reduction of the transfer function
at high current. The nonlinear component B̂ van-
ishes at the high and low reversal points of the hys-
teresis loops. As a result, the vertical asymptote for
I → 0 can be entirely attributed to the remanent

Fig. 5. Transfer function Tf (I) of the magnet, defined
by the ratio between magnetic field and excitation cur-
rent as in Eq. (7).

field B0. The transfer function B/I is equivalent to
the H-B graph and it contains the same amount of
information, since in a magnetic circuit the field H is
proportional to the excitation current I. In the con-
text of our application, the transfer function is the
preferred representation because it allows an opera-
tor to visualize more readily the degree of linearity
corresponding to a given level of excitation, perfect
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linearity corresponding of course to a constant trans-
fer function.63

3.3. Dataset preparation

The raw dataset D̄ is composed of the excitation
current and field waveforms of the 10 sequences of 7
magnetic cycles, acquired at 2.5 kS/s (sampling time
400 μs) for a total of 871 440 samples. During the net-
work architecture selection and training phases were
carried out on a reduced subset D including 87 144
samples at the actual sample rate of 250 S/s (corre-
sponding to a sampling interval of 4 ms.). We used
about one half of the subsampled dataset D, DL,
for the architecture learning and the remaining half,
DE , for the test and statistical error evaluation. The
data arrays were organized in pairs [IL(n), BL(n)]
and [IE(n), BE(n)] including the measured current
and field. The data in DL was further split into train-
ing Dtrain

L , validation Dval
L and test Dtest

L datasets
with a 60:20:20 ratio. The splitting of the dataset
is detailed in Table 1, where the sequences of flat-
top currents are also listed. It should be noted that
the training subset includes only a few of the pos-
sible transitions between different successive flat-top
levels. Each different combination is associated with
a different branch of the magnetic hysteresis loop,
and the accuracy of the inference made on the test
combinations gives a measure of the interpolating
power of the trained network. In addition, a sec-
ond version of the datasets, D̂L = [ÎL(n), B̂L(n)]

and D̂E = [ÎE(n), B̂E(n)], was created by replacing
the measured field with its nonlinear component, as
derived from Eq. (6), B̂(I) = B(I)−B0−G·I. In this
case, the magnetic field can be computed by adding
back the NN output ŷ to the previously subtracted
linear regression. The rationale of this decomposi-
tion is to isolate the physically interesting part of
the magnet’s response, focusing the training process
on a dataset having a much smaller dynamic range.

Architectures were simulated within the Neural
Network Toolbox in Matlab 2018b. The training and
simulations were performed on a computer equipped
with an Intel Core i5, Clock 3.2GHz, Ram 8GB.

4. Architecture Tuning

4.1. Model selection and evaluation

We adopted an incremental approach, by increasing
the complexity of the model progressively. First, we
considered a static structure without feedback, and
we independently optimized the number of layers L,
then the number of neurons on each layer Al. Next,
we added feedback first on the input, optimizing
K, and then on the output, optimizing H to finally
achieve a NARX structure (see Sec. 4.3). The process
was carried out on DL and also on D̂L as defined in
Sec. 3.3. This is because, besides testing the capabil-
ity of the network architecture of reconstructing the
magnetic field (B ≈ y), we also tested the capability
of obtaining B when focusing only on the learning
of its nonlinear component and reconstructing it by

Algorithm 1. Model Evaluation and Selection (M, params, D).
Require: set M of hyperparameters θj for each model to evaluate (see Table 3)

set params of simulation parameters (see Table 2)
the dataset D

Ensure: set Score of evaluations for each model inM
1: [Dtrain

L , Dval
L , Dtest

L ] = Split(DL, 60 : 20 : 20)
2: for θj ∈M do � Loop1: iterate over the set of different models
3: for i = 1 : R do � Loop2: repeat learning R times
4: repeat
5: W = train(θj , params, Dtrain

L , Dval
L )

6: until term condition (params) � Loop3: actual execution of a training instance
7: [Btest

L , Itest
L ]← Dtest

L

8: yi ← y(θj , W ; Itest
L )

9: Error(i)← RMSE(yi, B
test) � as defined in Eq. (8)

10: end for
11: Score(j) = model evaluate(Error, θj) � compute BC scores, Eq. (9)
12: end for
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adding the linear component (i.e. B ≈ B0 +Gu+ ŷ).
The optimal hyperparameters are given in Table 3
and were later used also to evaluate the models
trained on the full dataset DL. The pseudo-code rep-
resenting each step of the selection process is listed
in Algorithm 1, where the input dataset D represents
either the full or the nonlinear component only ver-
sion. The algorithm includes three main loops. The
first loop, Loop1, iterates over a set of models M,
each one defined by its own hyperparameter vector,
θj . The second loop, Loop2, trains the network and
estimates its prediction error R times on the test
dataset Dtest

L , in order to improve the statistical sig-
nificance of the results. The third loop, Loop3, is an
actual instance of training performed according to
the training parameters given in Table 2, and the
training and validation datasets, Dtrain

L and Dval
L .

During the training procedure the hyperparameters
of the model θj are kept fixed, while the connection
weights W are updated iteratively with the objective
to minimize the output reconstruction error with the
Levenberg–Marquardt (LM) method,64 until one of
the termination criteria is met. These are contained
in the function term condition and include:

• the validation error fails to decrease for maxFail

iterations,
• the maximum number of epochs for the training

(epochs) is reached and

Table 2. Parameters in input to Algorithm 1.

Params Value Description

epochs 200 Max. training epochs
maxFail 6 Max. validation failures

minGrad 1 · 10−7 Min. gradient

muMax 1 · 1010 Max. μ value
R 200 Learning repetitions

Table 3. Hyperparameters definition for the model
selection.

Neural network Multilayer Time Autoregressive
model perception delay exogenous

Hyperparameter θMLP θTDNN θNARX

L {1, . . . , 15} L̃MLP L̃MLP

A {1, . . . , 10}L ÃMLP ÃMLP

K 0 {1, . . . , 35} K̃TDNN

H 0 0 {1, . . . , 35}

• the LM damping factor μ exceeds its maximum
acceptable value (muMax). In the LM algorithm,
the factor μ switches continuously from a Newton-
like (μ ≈ 0) to a steepest gradient descent (μ �
0) optimization. Too large values of μ imply that
one is too far from a minimum and the search has
failed.

At the end of the learning phase, the validation
dataset Dval

L is used to optimize the network gener-
alization. The test dataset Dtest

L is used to evaluate
the prediction performance of the network after the
training in terms of the Root Mean Square Error
(RMSE), computed for each iteration of Loop2 as

RMSE(yi, D
test) =

√√√√ ∑
n∈N

(yi(n)−Btest(n))2

|N | , (8)

where yi = y(θj , W ; Itest
L ) is estimated according to

Eq. (1) with the current set of hyperparameters and
weights, and |N | is the number of samples of the
test dataset. To choose the best architecture it is
possible to perform a statistical model selection: we
maximized the model evidence P (D|θj), i.e. a prob-
ability term that expresses the preference shown by
the data for the jth model of hyperparameters θj .
In general, the computation of this term is analyt-
ically intractable, thus different approximations of
this term have been proposed in literature.62 Pop-
ular approximations rely on different penalization
terms of the model complexity computed as the num-
ber of weights |W | determined by specific choice of
hyperparameters θj , like Akaike Information Crite-
rion (AIC) or Bayesian Information Criterion (BIC).

For this paper, we rely on a recently proposed
information criterion, named Bridge criterion (BC),
that aims at bridging the advantages of both AIC
and BIC in the asymptotic regime.65 To this end,
the function model evaluate assigns to each hyper-
parameter θj a score based on the BC term

Score(j) = |N | ln
(

1
R

R∑
i=1

Error2(i)

)

+ |N |2/3 · (1 + 1/2 + · · ·+ 1/|W |). (9)

Thus, the minimization of the BC term corre-
sponds to the maximization of the evidence of the
jth model, ensuring a balanced model fit as the first
term in Eq. (9) weighs the reconstruction error, while
the second term penalizes the number of weights.
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Moreover, a smaller parameter space allows us to find
more stable solutions during the training phase.

4.2. Static Network Structures

We started by evaluating the performance of a static
network, without any feedback. This is the case of
a Deep MultiLayer Perceptron (MLP) Neural Net-
work, defined by hyperparameters θMLP that include
the number of hidden layers L, and the number of
neurons in each of them, Al. Following Algorithm 1,
we evaluated increasingly complex structures. Fig-
ure 6 shows the overall model selection guided by
BC scores, in four steps: first two steps for selecting
the static structure, last two steps for selecting the

input-output buffer size. In the first step, we per-
formed an overall comparison over structures with a
fixed number of nodes per layer (10) but a different
number of hidden layers (up to 15), aimed at deter-
mining the optimal depth for our neural network. In
Fig. 6(a), we show BC scores as a function of the
number of layers. It is possible to appreciate that
networks with a number of layers under 8 gave the
best BC scores. After 8 layers the BC scores increase,
meaning that the performance of the network models
is in general poorer. In Fig. 6(b), the second step of
the selection procedure is shown, in which we choose
the structures with 2 and 4 layers as suitable candi-
dates for the next selection step, since they provide
a good compromise between performance and com-
plexity, and once verified that even adding 8 layers do

(a) (b)

(c) (d)

Fig. 6. The process of model selection in four steps. On the top the static and on the bottom the dynamic hyperparameter
selection, respectively. Panel (a): firstly, once fixed the number neurons to 10 per layer, we let the number of levels vary
and compute BC scores in order to select best promising structures. Panel (b): secondly, fixing the number of the layers,
we vary the number of neurons for each layer from 1 to the maximum of 10 neurons, selecting the best 100 winning
structures. Panel (c): thirdly, we let the dimension of the input buffer vary. Panel (d): finally, we vary the dimension of
the output buffer while all other hyperparameters remain fixed.
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Table 4. Hyperparameters θ̃ selected by Algorithm 1
and used in tests shown in Sec. 5. In the last column,
we also list the corresponding number of neuron con-
nections |W |.
Hyperparameters L A K H |W |
θ̃MLP1 2 (10, 9) 0 0 129

θ̃MLP2 4 (1, 1, 1, 10) 0 0 37

θ̃TDNN1 2 (10, 9) 26 0 379

θ̃TDNN2 4 (1, 1, 1, 10) 31 0 67

θ̃NARX1 2 (10, 9) 26 31 689

θ̃NARX2 2 (7, 8) 26 17 381

θ̃NARX3 4 (1, 1, 1, 10) 31 31 98

θ̃NARX4 4 (1, 8, 5, 4) 31 31 153

not significantly improve BC scores. With these two
steps the procedure helps us select static MLP struc-
tures with hyperparameters L, A, shown in Table 4.

4.3. Dynamic network structures

We augmented the static models with temporal feed-
back. Our strategy consisted in adding feedback to
hidden layers, starting from the best static network
structures selected previously. When buffering past
observation in input, our model architecture reduces
to a deep TDNN with hyperparameters θTDNN. Dur-
ing this step of model selection, we fixed the best
hyperparameters found in the previous section for
MLP networks (θ̃MLP), while we explored the impact
of the input delay buffer length K as an additional
hyperparameter. Figures 6(c) and 6(d) show the
BC scores as a function of K and H in the range
{1, . . . , 35} for the best two- and four-layer structures
selected in Sec. 4.2. BC remains low for K between
5 and 33, with a minimum range between 25 and 32.
For higher buffer lengths the RMSE increases rather
steeply, which indicates instability. Similar behav-
ior can be appreciate for K in the range between
13 and 32, after that performance for higher buffer
lengths rapidly degrades. The resulting architecture
is a NARX with hyperparameters θNARX, includ-
ing the length H of the output buffer. Also in this
case, we fine-tuned the model with an incremental
approach: we fixed the set of optimal model hyperpa-
rameters previously selected (L, A and K) and only
varied H in the range {1, . . . , 35}. We found that the
best performances are associated with long buffers:
in Table 4 the best combinations of hyperparameters
θ̃ selected by Algorithm 1 are shown.

5. Results and Discussion

The performance of these models was evaluated on a
completely new collected dataset DE , which include
different sequences of hysteresis inversion points with
respect to the learning phase, in order to stress the
interpolating power of the networks. First, we com-
pute for each model the estimation y = y(θ, W ; IE)
given by the network on the new dataset. Then, we
evaluate the RMSE(y, DE) according to Eq. (8). In
order to facilitate comparison to the requirements,
we normalize the RMSE with respect to the maxi-
mum measured field

NRMSE(y, DE) =
RMSE(y, DE)

Bmax
· 100. (10)

We also use two other measures of performance, i.e.
the Maximum Absolute Error (MAE)

MAE(y, DE) = max{|y(n)−BE(n)|}n∈N (11)

and the Maximum Percent Error (MPE), normalized
with respect to the maximum measured field

MPE(y, DE) =
MAE(y, DE)

Bmax
· 100. (12)

The results obtained are summarized in Tables 5
and 6. In Table 5 the test dataset DE is considered
with samples at the same sample rate of the learn-
ing dataset 250 S/s, while in Table 6 the D̄E dataset
used for the final testing has been collected at the
raw sample rate of 2.5kS/s, ten time faster than the
learning dataset. In both tables we give, for each
type of model, the reference to the optimal hyper-
parameter vector along with the corresponding error
norms. The optimal hyperparameters are listed sep-
arately in Table 3. The linear regression alone gives
a relative error of the order of the percent, which
corresponds to the relative width of the hysteresis
loop. Such an error, which in other contexts might be
taken as an indication of good linearity of the mag-
net tested, is unacceptable for our application. Next,
let us consider the results of the networks trained on
the dataset DL, which are given in the upper half
of Tables 5 and 6. Both the static (MLP) and the
dynamic networks with input feedback (TDNN) per-
form as the linear regression alone. The NARX net-
works, instead, are two orders of magnitude better,
achieving a best-case NRMSE of 0.006%. The results
evaluated on the reduced dataset are about a factor
of two worse, i.e. 0.01%. Thanks to having memory
of past outputs, the NARXs are shown to be able
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Table 5. Performance comparison among the different architectures, computed on the test datasets DE at
the decimated data rate of 250 S/s. RMSE, NMRSE, MAE and MPE are shown for the Linear Regression
alone (LR), the ANNs trained on the full dataset DL and the hybrid models LR+*, combining LR plus the
ANN trained on the nonlinear component only D̂L. The reconstructed magnetic field for models LR+* is
computed by Eq. (6), in which the linear component (B0 + G · I) is computed by means of LR coefficients,
while the nonlinear component (B̂) is approximated by the corresponding network output. Corresponding
hyperparameters are given in Table 4.

Architecture Test Hyperparameters RMSE NMRSE MAE MPE
dataset [T] (%) [T] (%)

Linear Regression G, B0 9.07 · 10−04 5.67 · 10−01 2.60 · 10−03 1.61

MLP1 DE θ̃MLP1 8.70 · 10−04 5.44 · 10−01 2.60 · 10−03 1.64

MLP2 DE θ̃MLP2 8.83 · 10−04 5.52 · 10−01 2.50 · 10−03 1.55

TDNN1 DE θ̃TDNN1 7.95 · 10−04 4.97 · 10−01 1.90 · 10−03 1.21

TDNN2 DE θ̃TDNN2 8.05 · 10−04 5.03 · 10−01 2.20 · 10−03 1.39

NARX1 DE θ̃NARX1 2.12 · 10−05 1.32 · 10−02 3.36 · 10−04 2.10 · 10−01

NARX2 DE θ̃NARX2 2.13 · 10−05 1.33 · 10−02 3.17 · 10−04 1.98 · 10−01

NARX3 DE θ̃NARX3 2.05 · 10−05 1.28 · 10−02 3.11 · 10−04 1.95 · 10−01

NARX4 DE θ̃NARX4 2.05 · 10−05 1.28 · 10−02 3.12 · 10−04 1.95 · 10−01

LR+MLP1 DE G, B0, θ̃MLP1 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.16

LR+MLP2 DE G, B0, θ̃MLP2 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.17

LR+TDNN1 DE G, B0, θ̃TDNN1 8.05 · 10−04 5.03 · 10−01 1.90 · 10−03 1.21

LR+TDNN2 DE G, B0, θ̃TDNN2 7.97 · 10−04 4.98 · 10−01 1.90 · 10−03 1.20

LR+NARX1 DE G, B0, θ̃NARX1 7.99 · 10−04 4.99 · 10−01 1.90 · 10−03 1.19

LR+NARX3 DE G, B0, θ̃NARX2 7.99 · 10−04 5.00 · 10−01 1.90 · 10−03 1.19

LR+NARX3 DE G, B0, θ̃NARX3 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.20

LR+NARX4 DE G, B0, θ̃NARX4 8.01 · 10−04 5.01 · 10−01 1.90 · 10−03 1.19

to reproduce the dynamics of the magnet very accu-
rately. We must remark that the maximum length of
the output buffer, K = 35, corresponds during the
training phase to a total duration of 140 ms, much
shorter than the time span necessary to cover even
just two consecutive inversion points of the mag-
netic cycle. While in classical approaches, such as the
Preisach models, the complete sequence of inversion
points is a necessary input to reconstruct accurately
the magnetic history, here we find instead that such
information appears to be encoded implicitly by the
network, despite the shortness of the output delay
buffer. The role of the buffers might therefore be lim-
ited to the modeling of short-term dynamics, such as
the decay of eddy currents or the ripple of the power
supply. This hypothesis seems to be confirmed by the
improved performance at the higher sampling rate,
corresponding to a buffer duration of 14 ms, which
allows a finer modeling on an even shorter time-scale.
With the help of Table 7, we show a comparison of

our results with respect to those of the state of the
art in literature facing similar reconstruction prob-
lems. In Ref. 10, the authors used a Deep Neural
Network to model the magnetization curve, achiev-
ing an RMSE of 0.13%. This result is comparable
with our result for an MLP architecture (8.70 · 10−4

T), but it is higher than the RMSE obtained from
the NARX architecture (2.12 · 10−5 T). In Ref. 8,
the authors used a Preisach memory block and a
feed-forward Neural Network to magnetic hysteresis
modeling. The maximum prediction error achieved is
around 13% that is higher than our MAE reported
in Table 5. In fact, the MAE for a NARX network
is of the order of 10−4. In Ref. 16, the author used
Preisach to model the hysteretic behavior of a com-
bined magnet, reaching a relative error in the order
of 0.2%. In our case, the MPE achieved with a NARX
architecture is of about 0.2%.

In Ref. 43, the authors proposed a Preisach-
recurrent neural network model to predict the
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Table 6. Performance comparison among the different architectures, computed on the test dataset D̄E at
the full data rate of 2.5 kS/s. RMSE, NMRSE, MAE and MPE are shown for the Linear Regression alone
(LR), the ANNs trained on the full dataset DL and the hybrid models combining LR plus the ANN trained
on the nonlinear component only D̂L. The values of the corresponding hyperparameters are given in Table 4.

Test RMSE NMRSE MAE MPE
Architecture dataset Hyperparameters [T] (%) [T] (%)

Linear Regression G, B0 9.07 · 10−04 5.67 · 10−01 2.60 · 10−03 1.61

MLP1 D̄E θ̃MLP1 8.70 · 10−04 5.44 · 10−01 2.60 · 10−03 1.64

MLP2 D̄E θ̃MLP2 8.83 · 10−04 5.52 · 10−01 2.50 · 10−03 1.55

TDNN1 D̄E θ̃TDNN1 1.10 · 10−03 6.66 · 10−01 2.70 · 10−03 1.67

TDNN2 D̄E θ̃TDNN2 8.52 · 10−04 5.32 · 10−01 2.50 · 10−03 1.56

NARX1 D̄E θ̃NARX1 9.92 · 10−06 6.20 · 10−03 4.63 · 10−05 2.89 · 10−02

NARX2 D̄E θ̃NARX2 1.27 · 10−05 8.00 · 10−03 6.90 · 10−05 4.31 · 10−02

NARX3 D̄E θ̃NARX3 9.22 · 10−06 5.80 · 10−03 3.98 · 10−05 2.49 · 10−02

NARX4 D̄E θ̃NARX4 9.28 · 10−06 5.80 · 10−03 4.06 · 10−05 2.54 · 10−02

LR+MLP1 D̄E G, B0, θ̃MLP1 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.16

LR+MLP2 D̄E G, B0, θ̃MLP2 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.17

LR+TDNN1 D̄E G, B0, θ̃TDNN1 8.05 · 10−04 5.03 · 10−01 1.90 · 10−03 1.18

LR+TDNN2 D̄E G, B0, θ̃TDNN2 7.97 · 10−04 4.98 · 10−01 1.90 · 10−03 1.18

LR+NARX1 D̄E G, B0, θ̃NARX1 7.98 · 10−04 4.99 · 10−01 1.90 · 10−03 1.17

LR+NARX2 D̄E G, B0, θ̃NARX2 7.98 · 10−04 4.99 · 10−01 1.90 · 10−03 1.17

LR+NARX3 D̄E G, B0, θ̃NARX3 7.99 · 10−04 5.00 · 10−01 1.90 · 10−03 1.17

LR+NARX4 D̄E G, B0, θ̃NARX4 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.17

Table 7. Related results.

Architecture Metric Value

Deep Neural Network
(MLP with two
hidden layers),10

Root Mean Square
Error

0.13%

Preisach +
Feed-forward neural
network (one hidden
layer),8

Maximum
Absolute Error

13%

Preisach,16 Relative Error 0.2%
Preisach + Recurrent

Neural Network,43
Normalized Root

Mean Square
Error

0.7%

Neural Network,44 Relative Error < 8%
Genetic Algorithm +

Neural Network,45
Mean Square Error < 5%

dynamic hysteresis in ARMCO pure iron. The
proposed model is able to predict the magnetic
flux density of ARMCO pure iron with a Normal-
ized Root Mean Square Error (NRMSE) of about
0.7%. If we compare their result with the ones in
Table 5, we can see that the NRMSE obtained

from a NARX architecture is of the order of 10−2.
In Ref. 44, the authors presented a neural net-
work model of nonlinear hysteretic inductors, achiev-
ing a relative error less than 8%. In Table 5, the
MPE resulting from a NARX architecture is about
2 · 10−1%. Finally, in Ref. 45, the authors proposed
a combined approach (Genetic Algorithm and Neu-
ral Network) to modeling dynamic hysteresis. This
approach allows them to achieve a Mean Square
Error less than 5%. In our case, in Table 5 the RMSE
for the various architectures is shown. In particular,
for the NARX architecture, we have an RMSE of the
order of 10−5, giving therefore a better result com-
pared to the literature. An example of the nonlinear
field component B̂E (see Sec. 3.1) is plotted as a
function of the time or the current, along with the
corresponding reconstruction by a NARX network,
in Fig. 7. These plots allow to appreciate visually
the high quality of the reconstruction, which matches
the measured field closely and consistently. Let us
now consider the results of the networks trained on
the nonlinear component dataset, D̂L, (LR+∗ group)
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(a) Measured vs Estimated Field (b) Hysteresis graph

Fig. 7. (Color online) Measured (B̂E , in black) and estimated (ŷNARX with hyperparameters θ̃NARX1, in red) nonlinear
component of the field B̂ in function of time t (Panel (a)) and in function of the current I (Hysteresis graph – Panel (b)).

which are given in the bottom halves of Tables 5
and 6.

This kind of reconstruction can be considered
as an hybrid modeling of the magnetic field: a first
module corresponding to the linear regression mod-
ule is coupled with a network which models the non-
linear part only of the signal. In this case, we find a
qualitatively different result, since all tested architec-
tures learned on D̂L perform almost equally and with
performance comparable to the MLP and TDNN
networks alone, and unable to reach the better per-
formance of NARX learned on the full signal in DL.
These results confirm that avoiding pre-processing at
the same time relying complex delay structured in
NARX networks is a successful choice to capture the
full dynamic of the magnetic field. To perform a sta-
tistical evaluation among the models, we performed a
one-way analysis of variance (ANOVA) for Absolute
Errors in the reconstruction, respectively of Dataset
DE reported in Table 5 and Dataset D̄E reported
in Table 6. A first ANOVA on DE reconstruction
revealed a significant statistical effect on groups,
F [16, 754 · 103] = 13 · 103, p < 107. We also per-
formed post hoc analyses (Tukey’s test) that revealed
that all models are significantly different from Linear
Regression (our null hypothesis). From this analysis,
we appreciated that TDNN2 (best performing model
excluding NARX models) is not statistically different
from MLPs, TDNN1 and LN+TDNN2 (p > 0.01).

On the other hand, all NARXs are statistically differ-
ent from all the other models (p < 10−5) and are not
statistically different from each other (p > 0.01). The
second ANOVA on D̄E revealed again a a significant
statistical effect on groups, F (16, 754 ·103) = 14 ·103,
p < 10−7. Post hoc analyses revealed that models
augmented with linear regression (LN+∗) were not
significantly different from each other (p > 0.01).
Moreover, this LR+∗ group was not statistically dif-
ferent from at least one of the MLP group (p > 0.01).
This means that at their best they could at most
replicate the performance of MLP models and this
confirms that the learning restricted to the nonlin-
ear part only does cut off important information of
the original signal.

The statistical results on TDNN models are even
more interesting: TDNN2 is not statistically differ-
ent from MLP1 (p > 0.01) and TDNN1 is different
from all the other models being the worst one, fail-
ing to generalize the case of faster sample rate. This
is explained by observing that changing the buffer
on the input is not sufficient to the TDNN model
to let it adapt to signal when different input rates
are given. On the other hand, in the case of NARX
the buffer on input delay allows the nets to adapt
very smoothly to the new faster rate, thanks to the
buffer on internal outputs. Thus, all models in NARX
group perform better and are statistically different
from other groups (p < 10.6 · 10−6) and interestingly
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Table 8. Training and simulation times.

Training Simulation Simulation
Architecture time [s] time (DE)[s] time (D̄E) [s]

MLP1 16.88 0.40 1.08
MLP2 14.18 0.44 0.88
TDNN1 46.30 1.73 12.50
TDNN2 22.13 1.50 16.16
NARX1 125.52 2.66 25.23
NARX2 42.96 2.30 22.23
NARX3 19.91 2.91 27.98
NARX4 15.89 2.84 28.67

the different NARXs with different selected hyper-
parameters are not statistically different (p > 0.1).
It is possible to visualize the result of this second
ANOVA in Fig. 8: here we show the Absolute Error
with 95% confidence interval (straight line) for each
model. We can partition the models into four groups:
linear regression is our baseline (in gray). The only
model performing worst of this baseline is TDNN1
(pink group) that completely fails to adapt to the
new sample rate of D̄E . Then, the behavior of the
models learned on linear models (LN+∗ group) is
equiparable to the MLP networks, performing bet-
ter than LN alone (yellow group). On the other
hand, TDNN2 is slightly better than this group (blue
group). And finally, all NARXs (orange group) are
successful in adapting to the new rate and signifi-
cantly outperform the performances of all the other
groups. A final test is made computing training and
simulation time of execution of the winning archi-
tectures and results are shown in Table 8. The first
column reports the architectures on which the train-
ing and simulation times are evaluated. In particular,
for the training/simulation time evaluation we con-
sidered the neural networks trained on the dataset
DL. The second column contains the training time
for each architecture. The training time refers to the
time needed for the function Train (see line 5 in Algo-
rithm 1). The third and the fourth columns contain
the simulation time computed on the test dataset DE

at the decimated data rate of 250 S/s (see Table 5)
and the dataset D̄E) at full data rate of 2.5 kS/s

(see Table 6), respectively. The simulation time refers
to the time needed for the evaluation of the predic-
tions on all the points of the dataset (see line 8 in
Algorithm 1).

It is possible to appreciate that this result nicely
fits the complexity measure in Table 4. The more

Fig. 8. (Color online) ANOVA results on Absolute
Errors computed for the competing models on Dataset
D̄E . The horizontal lines are the 95% confidence interval
for each model. Five groups are highlighted: LR group
(gray), MLP group and LR+∗ group (yellow), TDNN1
(pink), TDNN2 (in blue) and the NARX group (orange).

complex a model is, the more execution time is
required to complete the different steps of the Algo-
rithm 1. In accordance with the complexity measure,
it is worth mentioning that deeper models of NARX
perform better than NARXs with fewer layers. On
the other hand, it should be noted that computation
occurring on the same layer can be further optimized
by processing them in parallel, thus a trade-off can be
achieved between those constraints in order to reach
the best performance in time execution.

6. Summary and Conclusions

We developed an incremental method to select an
optimal DNN architecture to predict the field gen-
erated by a magnet, when excited by a sequence
of cyclic excitation current waveforms. We tested it
experimentally on a case study in conditions repre-
sentative of those found in particle accelerators and
similar, pulsed-mode machines. The response of the
magnet tested is linear within about 1.5%, and we
focused essentially on predicting its residual nonlin-
ear component, which is dominated by ferromagnetic
hysteresis. When we trained and tested our network
directly on the raw datasets, we found that NARX
networks achieve in general the required level of per-
formance i.e. an NRMSE better than 0.01%, while
simpler architectures with buffers only on the input
(TDNN) or no buffers at all (MLP) do not.

Such excellent performance is well within our ini-
tial requirements, and paves a very promising way for
future applications in this context. We observed that
the prediction accuracy generally improves when the
network is trained on low data rate (250 S/s) signals
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and tested at higher data rate (2.5 kS/s). This may
be linked to the fact that the reduced dataset is less
affected by noise, and therefore allows the network
to better focus on capturing the underlying dynam-
ics. In the near future, we intend to investigate this
aspect by decreasing further the data rate of the
training dataset, while at the same time increasing
the interval between the samples in the output buffer
so that it may cover the time span of two or more
cycles. In this way, we aim at systematically feed-
ing the network information about the most recent
field reversal points in the hysteresis loop, which
may further improve the long-term prediction capa-
bility. We also plan to train and test NARX net-
works on a wider variety of excitation waveforms,
such as sequences of cycles with flat-tops increas-
ing or decreasing randomly, which are representative
of the most challenging actual operating conditions
of accelerator magnets. Such tests will also address
the concern that the very good results we presented
might be biased by overtraining, linked to a spe-
cific category of excitation waveforms. In addition,
in future experimental campaigns we will extend the
range of the tested currents, to ensure the introduc-
tion of relevant levels of saturation, as well as the
range of current ramp rates in order to deal with
different levels of eddy current-related effects.

In this paper, we focused on an incremental
approach that firstly optimizes the static structure
parameters (L,A) and then the time buffers (i.e.
K, H). While this approach does not ensure the find-
ing of an optimal solution, we showed that it con-
stitutes an efficient heuristic able to computation-
ally minimize the model selection procedure. Future
work will also focus on extending and refining the
model selection by including smart procedures for
parameter grid search, trainable activation functions
and sparse structure learning (see e.g. Refs. 66–70)
that would allow deeper structures to be better man-
aged. Moreover, a further improvement will be to
expand the framework in order to include classifi-
cation capabilities34,71 to identify different branches
of the hysteresis cycles in real time. Overall, in this
framework, the analysis of the simpler network solu-
tions found by the procedure could also open to the
possibility of producing even more efficient solutions,
by substituting blocks of NN operations with equiv-
alent mathematical equations or equivalent smaller
networks. Finally, as part of the renovation of the

real-time magnetic measurement systems currently
ongoing at CERN, we are implementing in FPGA
hardware a real-time version of the NARX networks
that will be able to carry out a continuous field pre-
diction, in parallel to the measurement. This facility
will provide the opportunity to gather huge amounts
of data concerning thousands of different sequences
of cycles, covering all relevant dynamic scenarios.
This will ultimately allow us to fine-tune the param-
eters of the networks, and estimate their robustness
and performance in the long term with high statisti-
cal significance.
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