216 research outputs found

    Low-complexity iterative frequency domain decision feedback equalization

    No full text
    Single-carrier transmission with frequency domain equalization (SC-FDE) offers a viable design alternative to the classic orthogonal frequency division multiplexing technique. However, SC-FDE using a linear equalizer may suffer from serious performance deterioration for transmission over severely frequency-selective fading channels. An effective method of solving this problem is to introduce non-linear decision feedback equalization (DFE) to SC-FDE. In this contribution, a low complexity iterative decision feedback equalizer operating in the frequency domain of single-carrier systems is proposed. Based on the minimum mean square error criterion, a simplified parameter estimation method is introduced to calculate the coefficients of the feed-forward and feedback filters, which significantly reduces the implementation complexity of the equalizer. Simulation results show that the performance of the proposed simplified design is similar to the traditional iterative block DFE under various multipath fading channels but it imposes a much lower complexity than the latter

    Personal area technologies for internetworked services

    Get PDF

    Convolutive superposition for multicarrier cognitive radio systems

    Full text link
    Recently, we proposed a spectrum-sharing paradigm for single-carrier cognitive radio (CR) networks, where a secondary user (SU) is able to maintain or even improve the performance of a primary user (PU) transmission, while also obtaining a low-data rate channel for its own communication. According to such a scheme, a simple multiplication is used to superimpose one SU symbol on a block of multiple PU symbols.The scope of this paper is to extend such a paradigm to a multicarrier CR network, where the PU employs an orthogonal frequency-division multiplexing (OFDM) modulation scheme. To improve its achievable data rate, besides transmitting over the subcarriers unused by the PU, the SU is also allowed to transmit multiple block-precoded symbols in parallel over the OFDM subcarriers used by the primary system. Specifically, the SU convolves its block-precoded symbols with the received PU data in the time-domain, which gives rise to the term convolutive superposition. An information-theoretic analysis of the proposed scheme is developed, which considers different amounts of network state information at the secondary transmitter, as well as different precoding strategies for the SU. Extensive simulations illustrate the merits of our analysis and designs, in comparison with conventional CR schemes, by considering as performance indicators the ergodic capacity of the considered systems.Comment: 29 pages, 8 figure

    Lightly synchronized Multipacket Reception in Machine-Type Communications Networks

    Get PDF
    Machine Type Communication (MTC) applications were designed to monitor and control elements of our surroundings and environment. MTC applications have a different set of requirements compared to the traditional communication devices, with Machine to Machine (M2M) data being mostly short, asynchronous, bursty and sometimes requiring end-to-end delays below 1ms. With the growth of MTC, the new generation of mobile communications has to be able to present different types of services with very different requirements, i.e. the same network has to be capable of "supplying" connection to the user that just wants to download a video or use social media, allowing at the same time MTC that has completely different requirements, without deteriorating both experiences. The challenges associated to the implementation of MTC require disruptive changes at the Physical (PHY) and Medium Access Control (MAC) layers, that lead to a better use of the spectrum available. The orthogonality and synchronization requirements of the PHY layer of current Long Term Evolution Advanced (LTE-A) radio access network (based on glsofdm and Single Carrier Frequency Domain Equalization (SC-FDE)) are obstacles for this new 5th Generation (5G) architecture. Generalized Frequency Division Multiplexing (GFDM) and other modulation techniques were proposed as candidates for the 5G PHY layer, however they also suffer from visible degradation when the transmitter and receiver are not synchronized, leading to a poor performance when collisions occur in an asynchronous MAC layer. This dissertation addresses the requirements of M2M traffic at the MAC layer applying multipacket reception (MPR) techniques to handle the bursty nature of the traffic and synchronization tones and optimized back-off approaches to reduce the delay. It proposes a new MAC protocol and analyses its performance analytically considering an SC-FDE modulation. The models are validated using a system level cross-layer simulator developed in MATLAB, which implements the MAC protocol and applies PHY layer performance models. The results show that the MAC’s latency depends mainly on the number of users and the load of each user, and can be controlled using these two parameters

    CP-Based SBHT-RLS Algorithms for Tracking Channel Estimates in Multicarrier Modulation Systems

    Get PDF

    Energy-efficient wideband transceiver with per-band equalisation and synchronisation

    Get PDF
    To emit in the TV white space (TVWS) spectrum, the regulator has requested very strict spectral masks, which can be fulfilled using a FFT-modulated filter-bank multi-carrier system (FBMC) to extract one or several TVWS channels in the 470--790MHz range. Such a system reduces the channel dispersion, but even with near-perfectly reconstructing filter bank, the need for equalisation and synchronisation remains. In this work, we propose a per-band equalisation and synchronisation approach, performed by a constant modulus algorithms running concurrently with a direction-directed adaptation process for faster convergence and reduced phase ambiguity. We compare symbol- and fractionally-spaced versions, and investigate their fixed-point implementation on an FPGA. We compare the performance of the different systems in terms of mean squared error, computational cost, and robustness towards noise

    Non-Orthogonal Signal and System Design for Wireless Communications

    Get PDF
    The thesis presents research in non-orthogonal multi-carrier signals, in which: (i) a new signal format termed truncated orthogonal frequency division multiplexing (TOFDM) is proposed to improve data rates in wireless communication systems, such as those used in mobile/cellular systems and wireless local area networks (LANs), and (ii) a new design and experimental implementation of a real-time spectrally efficient frequency division multiplexing (SEFDM) system are reported. This research proposes a modified version of the orthogonal frequency division multiplexing (OFDM) format, obtained by truncating OFDM symbols in the time-domain. In TOFDM, subcarriers are no longer orthogonally packed in the frequency-domain as time samples are only partially transmitted, leading to improved spectral efficiency. In this work, (i) analytical expressions are derived for the newly proposed TOFDM signal, followed by (ii) interference analysis, (iii) systems design for uncoded and coded schemes, (iv) experimental implementation and (v) performance evaluation of the new proposed signal and system, with comparisons to conventional OFDM systems. Results indicate that signals can be recovered with truncated symbol transmission. Based on the TOFDM principle, a new receiving technique, termed partial symbol recovery (PSR), is designed and implemented in software de ned radio (SDR), that allows efficient operation of two users for overlapping data, in wireless communication systems operating with collisions. The PSR technique is based on recovery of collision-free partial OFDM symbols, followed by the reconstruction of complete symbols to recover progressively the frames of two users suffering collisions. The system is evaluated in a testbed of 12-nodes using SDR platforms. The thesis also proposes channel estimation and equalization technique for non-orthogonal signals in 5G scenarios, using an orthogonal demodulator and zero padding. Finally, the implementation of complete SEFDM systems in real-time is investigated and described in detail
    corecore