352 research outputs found

    Spatial Frequency Scheduling for Uplink SC-FDMA based Linearly Precoded LTE Multiuser MIMO Systems

    Get PDF
    This paper investigates the performance of the uplink single carrier (SC) frequency division multiple access (FDMA) based linearly precoded multiuser multiple input multiple output (MIMO) systems with frequency domain packet scheduling. A mathematical expression of the received signal to interference plus noise ratio (SINR) for the studied systems is derived and a utility function based spatial frequency packet scheduling algorithms is investigated. The schedulers are shown to be able to exploit the available multiuser diversity in time, frequency and spatial domains

    Channel Estimation in Uplink of Long Term Evolution

    Get PDF
    Long Term Evolution is considered to be the fastest spreading communication standard in the world.To live up to the increasing demands of higher data rates day by day and higher multimedia services,the existing UMTS system was further upgraded to LTE.To meet their requirements novel technologies are employed in the downlink as well as uplink like Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier- Frequency Division Multiple Access (SC-FDMA).For the receiver to perform properly it should be able to recover athe transmittedadata accurately and this is done through channel estimation.Channel Estimation in LTE engages Coherent Detection where a prior knowledge of the channel is required,often known as Channel State Information (CSI).This thesis aims at studying the channel estimation methods used in LTE and evaluate their performance in various multipath models specified by ITU like Pedestrian and Vehicular.The most commonly used channel estimation algorithms are Least Squarea(LS) and Minimum MeanaSquare error (MMSE) algorithms.The performance of these estimators are evaluated in both uplink as well as Downlink in terms of the Bit Error Rate (BER).It was evaluated for OFDMA and then for SC-FDMA,further the performance was assessed in SC-FDMA at first without subcarrier Mapping and after that with subcarrier mapping schemes like Interleaved SC-FDMA (IFDMA) and Localized SC-FDMA (lFDMA).It was found from the results that the MMSE estimator performs better than the LS estimator in both the environments.And the IFDMA has a lower PAPR than LFDMA but LFDMA has a better BER performance

    Resource Allocation in Uplink Long Term Evolution

    Get PDF
    One of the most crucial goals of future cellular systems is to minimize transmission power while increasing system performance. This master thesis work presents two channel-queue-aware scheduling schemes to allocate channels among active users in uplink LTE. Transmission power, packet delays and data rates are three of the most important criteria critically affecting the resource allocation designs. Therefore, each of these two scheduling algorithms proposes a practical method that assigns resources in such a way so as to optimally maximize data rate and minimize transmission power and packet delays while ensuring the QoS requirements. After converting the resource allocation problem into an optimization problem, the objective function and associated constraints are derived. Due to the contiguity constraint, which is imposed by SC-FDMA in uplink LTE, binary integer programming is employed to solve the optimization problem. Also the heuristic algorithms that approximate optimal schemes are presented to decrease the algorithm complexity

    Information Technology

    Get PDF
    The new millennium has been labeled as the century of the personal communications revolution or more specifically, the digital wireless communications revolution. The introduction of new multimedia services has created higher loads on available radio resources. These services can be presented in different levels of quality of service. Namely, the task of the radio resource manager is to provide these levels. Radio resources are scarce and need to be shared by many users. The sharing has to be carried out in an efficient way avoiding as much as possible any waste of resources. The main contribution focus of this work is on radio resource management in opportunistic systems. In opportunistic communications dynamic rate and power allocation may be performed over the dimensions of time, frequency and space in a wireless system. In this work a number of these allocation schemes are proposed. A downlink scheduler is introduced in this work that controls the activity of the users. The scheduler is a simple integral controller that controls the activity of users, increasing or decreasing it depending on the degree of proximity to a requested quality of service level. The scheduler is designed to be a best effort scheduler; that is, in the event the requested quality of service (QoS) cannot be attained, users are always guaranteed the basic QoS level provided by a proportional fair scheduler. In a proportional fair scheduler, the user with the best rate quality factor is selected. The rate quality here is the instantaneous achievable rate divided by the average throughput Uplink scheduling is more challenging than its downlink counterpart due to signalling restrictions and additional constraints on resource allocations. For instance, in long term evolution systems, single carrier FDMA is to be utilized which requires the frequency domain resource allocation to be done in such a way that a user could only be allocated subsequent bands. We suggest for the uplink a scheduler that follows a heuristic approach in its decision. The scheduler is mainly based on the gradient algorithm that maximizes the gradient of a certain utility. The utility could be a function of any QoS. In addition, an optimal uplink scheduler for the same system is presented. This optimal scheduler is valid in theory only, nevertheless, it provides a considerable benchmark for evaluation of performance for the heuristic scheduler as well as other algorithms of the same system. A study is also made for the feedback information in a multi-carrier system. In a multi-carrier system, reporting the channel state information (CSI) of every subcarrier will result in huge overhead and consequent waste in bandwidth. In this work the subcarriers are grouped into subbands which are in turn grouped into blocks and a study is made to find the minimum amount of information for the adaptive modulation and coding (AMC) of the blocks. The thesis also deals with admission control and proposes an opportunistic admission controller. The controller gradually integrates a new user requesting admission into the system. The system is probed to examine the effect of the new user on existing connections. The user is finally fully admitted if by the end of the probing, the quality of service (QoS) of existing connections did not drop below a certain threshold. It is imperative to mention that the research work of this thesis is mainly focused on non-real time applications.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Adaptive channel estimation for LTE uplink

    Get PDF
    Third generation partnership project (3GPP) long term evolution (LTE) uses single carrier frequency division multiple access (SC-FDMA) in uplink transmission and orthogonal frequency division multiple access (OFDMA) scheme for the downlink. A variable step size based least mean squares (LMS) algorithm is formulated for a single carrier frequency division multiple access (SC-FDMA) system, in its channel estimation (CE). The weighting coefficients on the channel condition can be updated using this unbiased CE method. Channel and noise statistics information are not essential. Rather, it uses a phase weighting scheme to eliminate the signal fluctuations due to noise and decision errors. The convergence towards the true channel coefficient is guaranteed. The proposed algorithm is compared with the existing algorithms for BER and MSE performance in different channel environments

    Collaborative modulation multiple access for single hop and multihop networks

    Get PDF
    While the bandwidth available for wireless networks is limited, the world has seen an unprecedented growth in the number of mobile subscribers and an ever increasing demand for high data rates. Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users that can be served simultaneously are primary goals in the design of wireless systems. To achieve these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the functionalities of adaptive modulation and multiple access called collaborative modulation multiple access (CMMA) is proposed. CMMA enables multiple users to access the network simultaneously and share the same bandwidth even when only a single receive antenna is available and in the presence of high channel correlation. Instead of competing for resources, users in CMMA share resources collaboratively by employing unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are designed to insure that the received signal formed from the superposition of all users’ signals belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the minimum Euclidian distance (dmin) of the CC and insure a minimum BER performance is maintained. Users collaboratively precode their transmitted signal by performing truncated channel inversion and phase rotation using channel state information (CSI ) obtained from a periodic common pilot to insure that their combined signal at the BS belongs to the CC known at the BS which in turn performs a simple joint maximum likelihood detection without the need for CSI. The coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any time without extra power or bandwidth but on the expense of graceful degradation in BER performance. To improve the BER performance of CMMA while preserving its precoding and detection structure and without the need for pilot-aided channel estimation, a new selective diversity combining scheme called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing fairness and diversity gain for various users with different transmit powers and channel conditions by selecting a single antenna out of a group of L available antennas that minimises the total transmit power required for precoding at any one time. A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under different level of channel correlations which shows that both offer high capacity gain and resilience to channel correlation. SC-CMMA capacity even increase with high channel correlation between users’ channels. CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) in fading environments hence a hybrid approach combining both collaborative coding and modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of subgroups where users within a subgroup are assigned the same modulation set and different multiple access codes. H-CMMA adjusts the dmin of the received CC by varying the number of subgroups which in turn varies the number of unique constellation points for the same number of users and average total power. Therefore H-CMMA can accommodate many users with different rates while flexibly managing the complexity, rate and BER performance depending on the SNR. Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser diversity gain that arises from users’ channel independence. To avoid the complexity and excessive feedback associated with the dynamic update of the CC, the BS takes into account the independence of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged thereafter. However UMS are no longer associated with users, instead channel gain’s probability density function is divided into regions with identical probability and each UMS is associated with a specific region. This will simplify scheduling as users can initially chose their UMS based on their CSI and the BS will only need to resolve any collision when the channels of two or more users are located at the same region. Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low feedback and high spectral efficiency by restricting relaying to a single route with the best overall channel. Two possible variations of CM are proposed depending on whether CSI available only at the users or just at the BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route selection algorithm for DMF based on maximising dmin of random CC is also proposed using a novel fast low-complexity multi-stage sphere based algorithm to calculate the dmin at the relay of random CC that is used for both relay selection and detection
    corecore