6,847 research outputs found

    Cross-Paced Representation Learning with Partial Curricula for Sketch-based Image Retrieval

    Get PDF
    In this paper we address the problem of learning robust cross-domain representations for sketch-based image retrieval (SBIR). While most SBIR approaches focus on extracting low- and mid-level descriptors for direct feature matching, recent works have shown the benefit of learning coupled feature representations to describe data from two related sources. However, cross-domain representation learning methods are typically cast into non-convex minimization problems that are difficult to optimize, leading to unsatisfactory performance. Inspired by self-paced learning, a learning methodology designed to overcome convergence issues related to local optima by exploiting the samples in a meaningful order (i.e. easy to hard), we introduce the cross-paced partial curriculum learning (CPPCL) framework. Compared with existing self-paced learning methods which only consider a single modality and cannot deal with prior knowledge, CPPCL is specifically designed to assess the learning pace by jointly handling data from dual sources and modality-specific prior information provided in the form of partial curricula. Additionally, thanks to the learned dictionaries, we demonstrate that the proposed CPPCL embeds robust coupled representations for SBIR. Our approach is extensively evaluated on four publicly available datasets (i.e. CUFS, Flickr15K, QueenMary SBIR and TU-Berlin Extension datasets), showing superior performance over competing SBIR methods

    Deep Learning for Free-Hand Sketch: A Survey

    Get PDF
    Free-hand sketches are highly illustrative, and have been widely used by humans to depict objects or stories from ancient times to the present. The recent prevalence of touchscreen devices has made sketch creation a much easier task than ever and consequently made sketch-oriented applications increasingly popular. The progress of deep learning has immensely benefited free-hand sketch research and applications. This paper presents a comprehensive survey of the deep learning techniques oriented at free-hand sketch data, and the applications that they enable. The main contents of this survey include: (i) A discussion of the intrinsic traits and unique challenges of free-hand sketch, to highlight the essential differences between sketch data and other data modalities, e.g., natural photos. (ii) A review of the developments of free-hand sketch research in the deep learning era, by surveying existing datasets, research topics, and the state-of-the-art methods through a detailed taxonomy and experimental evaluation. (iii) Promotion of future work via a discussion of bottlenecks, open problems, and potential research directions for the community.Comment: This paper is accepted by IEEE TPAM

    LiveSketch: Query Perturbations for Guided Sketch-based Visual Search

    Get PDF
    LiveSketch is a novel algorithm for searching large image collections using hand-sketched queries. LiveSketch tackles the inherent ambiguity of sketch search by creating visual suggestions that augment the query as it is drawn, making query specification an iterative rather than one-shot process that helps disambiguate users' search intent. Our technical contributions are: a triplet convnet architecture that incorporates an RNN based variational autoencoder to search for images using vector (stroke-based) queries; real-time clustering to identify likely search intents (and so, targets within the search embedding); and the use of backpropagation from those targets to perturb the input stroke sequence, so suggesting alterations to the query in order to guide the search. We show improvements in accuracy and time-to-task over contemporary baselines using a 67M image corpus.Comment: Accepted to CVPR 201

    An analysis of the use of graphics for information retrieval

    Get PDF
    Several research groups have addressed the problem of retrieving vector graphics. This work has, however, focused either on domain-dependent areas or was based on very simple graphics languages. Here we take a fresh look at the issue of graphics retrieval in general and in particular at the tasks which retrieval systems must support. The paper presents a series of case studies which explored the needs of professionals in the hope that these needs can help direct future graphics IR research. Suggested modelling techniques for some of the graphic collections are also presented

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    Human Motion Retrieval Using Video or Drawn Sketch

    Get PDF
    The importance of motion retrieval is increasing now a days. The majority of existing motion retrieval labor intensive, there has been a recent paradigm move in the animation industry with an increasing use of pre-recorded movement of animating exclusive figures. An essential need to use motion catch data is an efficient method for listing and accessing movements. I n this work, a novel sketching interface for interpreting the problem is provided. This simple strategy allows the user to determine the necessary movement by drawing several movement swings over a attracted personality, which needs less effort and extends the users expressiveness. To support the real-time interface, a specific development of the movements and the hand-drawn question is needed. Here we are implementing the Conjugate Gradient method for retrieving motion from hand drawn sketch and video. It is an optimization and prominent iterative method. It is fast and uses a small amount of storage

    Object detection and activity recognition in digital image and video libraries

    Get PDF
    This thesis is a comprehensive study of object-based image and video retrieval, specifically for car and human detection and activity recognition purposes. The thesis focuses on the problem of connecting low level features to high level semantics by developing relational object and activity presentations. With the rapid growth of multimedia information in forms of digital image and video libraries, there is an increasing need for intelligent database management tools. The traditional text based query systems based on manual annotation process are impractical for today\u27s large libraries requiring an efficient information retrieval system. For this purpose, a hierarchical information retrieval system is proposed where shape, color and motion characteristics of objects of interest are captured in compressed and uncompressed domains. The proposed retrieval method provides object detection and activity recognition at different resolution levels from low complexity to low false rates. The thesis first examines extraction of low level features from images and videos using intensity, color and motion of pixels and blocks. Local consistency based on these features and geometrical characteristics of the regions is used to group object parts. The problem of managing the segmentation process is solved by a new approach that uses object based knowledge in order to group the regions according to a global consistency. A new model-based segmentation algorithm is introduced that uses a feedback from relational representation of the object. The selected unary and binary attributes are further extended for application specific algorithms. Object detection is achieved by matching the relational graphs of objects with the reference model. The major advantages of the algorithm can be summarized as improving the object extraction by reducing the dependence on the low level segmentation process and combining the boundary and region properties. The thesis then addresses the problem of object detection and activity recognition in compressed domain in order to reduce computational complexity. New algorithms for object detection and activity recognition in JPEG images and MPEG videos are developed. It is shown that significant information can be obtained from the compressed domain in order to connect to high level semantics. Since our aim is to retrieve information from images and videos compressed using standard algorithms such as JPEG and MPEG, our approach differentiates from previous compressed domain object detection techniques where the compression algorithms are governed by characteristics of object of interest to be retrieved. An algorithm is developed using the principal component analysis of MPEG motion vectors to detect the human activities; namely, walking, running, and kicking. Object detection in JPEG compressed still images and MPEG I frames is achieved by using DC-DCT coefficients of the luminance and chrominance values in the graph based object detection algorithm. The thesis finally addresses the problem of object detection in lower resolution and monochrome images. Specifically, it is demonstrated that the structural information of human silhouettes can be captured from AC-DCT coefficients
    • …
    corecore