7 research outputs found

    Vertex-regular 11-factorizations in infinite graphs

    Full text link
    The existence of 11-factorizations of an infinite complete equipartite graph Km[n]K_m[n] (with mm parts of size nn) admitting a vertex-regular automorphism group GG is known only when n=1n=1 and mm is countable (that is, for countable complete graphs) and, in addition, GG is a finitely generated abelian group GG of order mm. In this paper, we show that a vertex-regular 11-factorization of Km[n]K_m[n] under the group GG exists if and only if GG has a subgroup HH of order nn whose index in GG is mm. Furthermore, we provide a sufficient condition for an infinite Cayley graph to have a regular 11-factorization. Finally, we construct 1-factorizations that contain a given subfactorization, both having a vertex-regular automorphism group

    On the existence spectrum for sharply transitive G-designs, G a [k]-matching

    Get PDF
    In this paper we consider decompositions of the complete graph Kv into matchings of uniform cardinality k. They can only exist when k is an admissible value, that is a divisor of v(v−1)/2 with 1≤k≤v/2. The decompositions are required to admit an automorphism group Γ acting sharply transitively on the set of vertices. Here Γ is assumed to be either non-cyclic abelian or dihedral and we obtain necessary conditions for the existence of the decomposition when k is an admissible value with 1<k<v/2. Differently from the case where Γ is a cyclic group, these conditions do exclude existence in specific cases. On the other hand we produce several constructions for a wide range of admissible values, in particular for every admissible value of k when v is odd and Γ is an arbitrary group of odd order possessing a subgroup of order gcd(k,v)

    Quaternionic 1-Factorizations and Complete Sets of Rainbow Spanning Trees

    Get PDF
    A 1-factorization F of a complete graph K2n is said to be G-regular, or regular under G, if G is an automorphism group of F acting sharply transitively on the vertex-set. The problem of determining which groups can realize such a situation dates back to a result by Hartman and Rosa (Eur J Comb 6:45–48, 1985) on cyclic groups and it is still open when n is even, although several classes of groups were tested in the recent past. It has been recently proved, see Rinaldi (Australas J Comb 80(2):178–196, 2021) and Mazzuoccolo et al. (Discret Math 342(4):1006–1016, 2019), that a G-regular 1-factorization, together with a complete set of rainbow spanning trees, exists for each group G of order 2n, n odd. The existence for each even n&gt;2 was proved when either G is cyclic and n is not a power of 2, or when G is a dihedral group. Explicit constructions were given in all these cases. In this paper we extend this result and give explicit constructions when n&gt;2 is even and G is either abelian but not cyclic, dicyclic, or a non cyclic 2-group with a cyclic subgroup of index 2

    Sharply transitive 1-factorizations of complete multipartite graphs

    Get PDF
    Given a finite group G of even order, which graphs T have a 1-factorization admitting G as an automorphism group with a sharply transitive action on the vertex-set? Starting from this question we prove some general results and develop an exhustive analysis when T is a complete multipartite graph and G is cyclic

    Sharply transitive 1-factorizations of complete multipartite graphs

    Get PDF
    Given a finite group G of even order, which graphs T have a 1-factorization admitting G as an automorphism group with a sharply transitive action on the vertex-set? Starting from this question we prove some general results and develop an exhustive analysis when T is a complete multipartite graph and G is cyclic

    Frattini-based starters in 2-groups

    No full text

    Frattini-based starters in 2-groups

    No full text
    Let G be a group of order 2^t , with t >3. We prove a sufficient condition for the existence of a one-factorization of a completegraph, admitting G as an automorphism group acting sharply transitively on the vertex-set
    corecore