2,700 research outputs found

    Laplacian Distribution and Domination

    Get PDF
    Let mG(I)m_G(I) denote the number of Laplacian eigenvalues of a graph GG in an interval II, and let γ(G)\gamma(G) denote its domination number. We extend the recent result mG[0,1)γ(G)m_G[0,1) \leq \gamma(G), and show that isolate-free graphs also satisfy γ(G)mG[2,n]\gamma(G) \leq m_G[2,n]. In pursuit of better understanding Laplacian eigenvalue distribution, we find applications for these inequalities. We relate these spectral parameters with the approximability of γ(G)\gamma(G), showing that γ(G)mG[0,1)∉O(logn)\frac{\gamma(G)}{m_G[0,1)} \not\in O(\log n). However, γ(G)mG[2,n](c+1)γ(G)\gamma(G) \leq m_G[2, n] \leq (c + 1) \gamma(G) for cc-cyclic graphs, c1c \geq 1. For trees TT, γ(T)mT[2,n]2γ(G)\gamma(T) \leq m_T[2, n] \leq 2 \gamma(G)

    Dominating Set Games

    Get PDF
    In this paper we study cooperative cost games arising from domination problems on graphs.We introduce three games to model the cost allocation problem and we derive a necessary and su cient condition for the balancedness of all three games.Furthermore we study concavity of these games.game theory;cost allocation;cooperative games

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klogn)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight λ12(1ε)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(logn)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(logn)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation
    corecore