377 research outputs found

    Fractional clique decompositions of dense graphs

    Get PDF
    For each r≥4r\ge 4, we show that any graph GG with minimum degree at least (1−1/100r)∣G∣(1-1/100r)|G| has a fractional KrK_r-decomposition. This improves the best previous bounds on the minimum degree required to guarantee a fractional KrK_r-decomposition given by Dukes (for small rr) and Barber, K\"uhn, Lo, Montgomery and Osthus (for large rr), giving the first bound that is tight up to the constant multiple of rr (seen, for example, by considering Tur\'an graphs). In combination with work by Glock, K\"uhn, Lo, Montgomery and Osthus, this shows that, for any graph FF with chromatic number χ(F)≥4\chi(F)\ge 4, and any ε>0\varepsilon>0, any sufficiently large graph GG with minimum degree at least (1−1/100χ(F)+ε)∣G∣(1-1/100\chi(F)+\varepsilon)|G| has, subject to some further simple necessary divisibility conditions, an (exact) FF-decomposition.Comment: 15 pages, 1 figure, submitte

    Monochromatic Clique Decompositions of Graphs

    Get PDF
    Let GG be a graph whose edges are coloured with kk colours, and H=(H1,…,Hk)\mathcal H=(H_1,\dots , H_k) be a kk-tuple of graphs. A monochromatic H\mathcal H-decomposition of GG is a partition of the edge set of GG such that each part is either a single edge or forms a monochromatic copy of HiH_i in colour ii, for some 1≤i≤k1\le i\le k. Let ϕk(n,H)\phi_{k}(n,\mathcal H) be the smallest number ϕ\phi, such that, for every order-nn graph and every kk-edge-colouring, there is a monochromatic H\mathcal H-decomposition with at most ϕ\phi elements. Extending the previous results of Liu and Sousa ["Monochromatic KrK_r-decompositions of graphs", Journal of Graph Theory}, 76:89--100, 2014], we solve this problem when each graph in H\mathcal H is a clique and n≥n0(H)n\ge n_0(\mathcal H) is sufficiently large.Comment: 14 pages; to appear in J Graph Theor

    Clique decompositions of multipartite graphs and completion of Latin squares

    Get PDF
    Our main result essentially reduces the problem of finding an edge-decomposition of a balanced r-partite graph of large minimum degree into r-cliques to the problem of finding a fractional r-clique decomposition or an approximate one. Together with very recent results of Bowditch and Dukes as well as Montgomery on fractional decompositions into triangles and cliques respectively, this gives the best known bounds on the minimum degree which ensures an edge-decomposition of an r-partite graph into r-cliques (subject to trivially necessary divisibility conditions). The case of triangles translates into the setting of partially completed Latin squares and more generally the case of r-cliques translates into the setting of partially completed mutually orthogonal Latin squares.Comment: 40 pages. To appear in Journal of Combinatorial Theory, Series

    The existence of designs via iterative absorption: hypergraph FF-designs for arbitrary FF

    Full text link
    We solve the existence problem for FF-designs for arbitrary rr-uniform hypergraphs~FF. This implies that given any rr-uniform hypergraph~FF, the trivially necessary divisibility conditions are sufficient to guarantee a decomposition of any sufficiently large complete rr-uniform hypergraph into edge-disjoint copies of~FF, which answers a question asked e.g.~by Keevash. The graph case r=2r=2 was proved by Wilson in 1975 and forms one of the cornerstones of design theory. The case when~FF is complete corresponds to the existence of block designs, a problem going back to the 19th century, which was recently settled by Keevash. In particular, our argument provides a new proof of the existence of block designs, based on iterative absorption (which employs purely probabilistic and combinatorial methods). Our main result concerns decompositions of hypergraphs whose clique distribution fulfills certain regularity constraints. Our argument allows us to employ a `regularity boosting' process which frequently enables us to satisfy these constraints even if the clique distribution of the original hypergraph does not satisfy them. This enables us to go significantly beyond the setting of quasirandom hypergraphs considered by Keevash. In particular, we obtain a resilience version and a decomposition result for hypergraphs of large minimum degree.Comment: This version combines the two manuscripts `The existence of designs via iterative absorption' (arXiv:1611.06827v1) and the subsequent `Hypergraph F-designs for arbitrary F' (arXiv:1706.01800) into a single paper, which will appear in the Memoirs of the AM

    Edge-decompositions of graphs with high minimum degree

    Get PDF
    A fundamental theorem of Wilson states that, for every graph FF, every sufficiently large FF-divisible clique has an FF-decomposition. Here a graph GG is FF-divisible if e(F)e(F) divides e(G)e(G) and the greatest common divisor of the degrees of FF divides the greatest common divisor of the degrees of GG, and GG has an FF-decomposition if the edges of GG can be covered by edge-disjoint copies of FF. We extend this result to graphs GG which are allowed to be far from complete. In particular, together with a result of Dross, our results imply that every sufficiently large K3K_3-divisible graph of minimum degree at least 9n/10+o(n)9n/10+o(n) has a K3K_3-decomposition. This significantly improves previous results towards the long-standing conjecture of Nash-Williams that every sufficiently large K3K_3-divisible graph with minimum degree at least 3n/43n/4 has a K3K_3-decomposition. We also obtain the asymptotically correct minimum degree thresholds of 2n/3+o(n)2n/3 +o(n) for the existence of a C4C_4-decomposition, and of n/2+o(n)n/2+o(n) for the existence of a C2ℓC_{2\ell}-decomposition, where ℓ≥3\ell\ge 3. Our main contribution is a general `iterative absorption' method which turns an approximate or fractional decomposition into an exact one. In particular, our results imply that in order to prove an asymptotic version of Nash-Williams' conjecture, it suffices to show that every K3K_3-divisible graph with minimum degree at least 3n/4+o(n)3n/4+o(n) has an approximate K3K_3-decomposition,Comment: 41 pages. This version includes some minor corrections, updates and improvement

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ≥1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r≥(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,…,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ∑ie(Hi)≤(1−o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,…,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r≥(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ
    • …
    corecore