423 research outputs found

    Fractional Path Coloring in Bounded Degree Trees with Applications

    Get PDF
    OPTx-editorial-board=yes, OPTx-proceedings=yes, OPTx-international-audience=yesInternational audienceThis paper studies the natural linear programming relaxation of the path coloring problem. We prove constructively that finding an optimal fractional path coloring is Fixed Parameter Tractable (FPT), with the degree of the tree as parameter: the fractional coloring of paths in a bounded degree trees can be done in a time which is linear in the size of the tree, quadratic in the load of the set of paths, while exponential in the degree of the tree. We give an algorithm based on the generation of an efficient polynomial size linear program. Our algorithm is able to explore in polynomial time the exponential number of different fractional colorings, thanks to the notion of trace of a coloring that we introduce. We further give an upper bound on the cost of such a coloring in binary trees and extend this algorithm to bounded degree graphs with bounded treewidth. Finally, we also show some relationships between the integral and fractional problems, and derive a (1 + 5/3e) ~= 1.61 approximation algorithm for the path coloring problem in bounded degree trees, improving on existing results. This classic combinatorial problem finds applications in the minimization of the number of wavelengths in wavelength division multiplexing (WDM) optical networks

    Fractional path coloring on bounded degree trees

    Get PDF
    International audienceThis paper addresses the natural relaxation of the path coloring problem, in which one needs to color directed paths on a symmetric directed graph with a minimum number of colors, in such a way that paths using the same arc of the graph have different colors. This classic combinatorial problem finds applications in the minimization of the number of wavelengths in wavelength division multiplexing (wdm) all-optical networks

    Graph Theory

    Get PDF
    Highlights of this workshop on structural graph theory included new developments on graph and matroid minors, continuous structures arising as limits of finite graphs, and new approaches to higher graph connectivity via tree structures

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Network Coding Fundamentals

    Get PDF
    Network coding is an elegant and novel technique introduced at the turn of the millennium to improve network throughput and performance. It is expected to be a critical technology for networks of the future. This tutorial addresses the first most natural questions one would ask about this new technique: how network coding works and what are its benefits, how network codes are designed and how much it costs to deploy networks implementing such codes, and finally, whether there are methods to deal with cycles and delay that are present in all real networks. A companion issue deals primarily with applications of network coding

    The Moser-Tardos Framework with Partial Resampling

    Full text link
    The resampling algorithm of Moser \& Tardos is a powerful approach to develop constructive versions of the Lov\'{a}sz Local Lemma (LLL). We generalize this to partial resampling: when a bad event holds, we resample an appropriately-random subset of the variables that define this event, rather than the entire set as in Moser & Tardos. This is particularly useful when the bad events are determined by sums of random variables. This leads to several improved algorithmic applications in scheduling, graph transversals, packet routing etc. For instance, we settle a conjecture of Szab\'{o} & Tardos (2006) on graph transversals asymptotically, and obtain improved approximation ratios for a packet routing problem of Leighton, Maggs, & Rao (1994)

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..
    corecore