11 research outputs found

    Analysis of New Type of Second-order Fractional Linear Multi-step Method with Improved Stability

    Get PDF
    We present and investigate a new type of implicit fractional linear multi-step method of order two for fractional initial value problems. The method is obtained from the second-order superconvergence of the GrĂŒnwald-Letnikov approximation of the fractional derivative at a non-integer shift point. The method coincides with the backward difference method of order two for the classical initial value problem when the order of the derivative is one. The weight coefficients of the proposed method are obtained from the GrĂŒnwald weights and are hence computationally efficient compared with that of the fractional backward difference formula of order two. The stability properties are analyzed and it is shown that the stability region of the method is larger than that of the fractional Adams-Moulton method of order two and the fractional trapezoidal method. Numerical results and illustrations are presented to justify the analytical theories

    A fractional B-spline collocation method for the numerical solution of fractional predator-prey models

    Get PDF
    We present a collocation method based on fractional B-splines for the solution of fractional differential problems. The key-idea is to use the space generated by the fractional B-splines, i.e., piecewise polynomials of noninteger degree, as approximating space. Then, in the collocation step the fractional derivative of the approximating function is approximated accurately and efficiently by an exact differentiation rule that involves the generalized finite difference operator. To show the effectiveness of the method for the solution of nonlinear dynamical systems of fractional order, we solved the fractional Lotka-Volterra model and a fractional predator-pray model with variable coefficients. The numerical tests show that the method we proposed is accurate while keeping a low computational cost

    Efficient multistep methods for tempered fractional calculus: Algorithms and Simulations

    Full text link
    In this work, we extend the fractional linear multistep methods in [C. Lubich, SIAM J. Math. Anal., 17 (1986), pp.704--719] to the tempered fractional integral and derivative operators in the sense that the tempered fractional derivative operator is interpreted in terms of the Hadamard finite-part integral. We develop two fast methods, Fast Method I and Fast Method II, with linear complexity to calculate the discrete convolution for the approximation of the (tempered) fractional operator. Fast Method I is based on a local approximation for the contour integral that represents the convolution weight. Fast Method II is based on a globally uniform approximation of the trapezoidal rule for the integral on the real line. Both methods are efficient, but numerical experimentation reveals that Fast Method II outperforms Fast Method I in terms of accuracy, efficiency, and coding simplicity. The memory requirement and computational cost of Fast Method II are O(Q)O(Q) and O(QnT)O(Qn_T), respectively, where nTn_T is the number of the final time steps and QQ is the number of quadrature points used in the trapezoidal rule. The effectiveness of the fast methods is verified through a series of numerical examples for long-time integration, including a numerical study of a fractional reaction-diffusion model

    The Use of Cubic Splines in the Numerical Solution of Fractional Differential Equations

    Get PDF
    Fractional calculus became a vital tool in describing many phenomena appeared in physics, chemistry as well as engineering fields. Analytical solution of many applications, where the fractional differential equations appear, cannot be established. Therefore, cubic polynomial spline-function-based method combined with shooting method is considered to find approximate solution for a class of fractional boundary value problems (FBVPs). Convergence analysis of the method is considered. Some illustrative examples are presented

    A new class of semi-implicit methods with linear complexity for nonlinear fractional differential equations

    Full text link
    We propose a new class of semi-implicit methods for solving nonlinear fractional differential equations and study their stability. Several versions of our new schemes are proved to be unconditionally stable by choosing suitable parameters. Subsequently, we develop an efficient strategy to calculate the discrete convolution for the approximation of the fractional operator in the semi-implicit method and we derive an error bound of the fast convolution. The memory requirement and computational cost of the present semi-implicit methods with a fast convolution are about O(Nlog⁥nT)O(N\log n_T) and O(NnTlog⁥nT)O(Nn_T\log n_T), respectively, where NN is a suitable positive integer and nTn_T is the final number of time steps. Numerical simulations, including the solution of a system of two nonlinear fractional diffusion equations with different fractional orders in two-dimensions, are presented to verify the effectiveness of the semi-implicit methods.Comment: 25 pages, 10 figure

    Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives

    Get PDF
    Nonlinear fractional differential equations and chaotic systems can be modeled with variable-order differential operators. We propose a generalized numerical scheme to simulate variable-order fractional differential operators. Fractional calculus' fundamental theorem and Lagrange polynomial interpolation are used. Two methods, Atangana-Baleanu-Caputo and Atangana-Seda derivatives, were used to solve a chaotic Newton-Leipnik system problem with fractional operators. Our scheme examined the existence and uniqueness of the solution. We analyze the model qualitatively using its equivalent integral through an iterative convergence sequence. This novel method is illustrated with numerical examples. Simulated and analytical results agree. We contribute to real-world mathematical applications. Finally, we applied a numerical successive approximation method to solve the fractional model

    Fractional calculus: numerical methods and SIR models

    Get PDF
    Fractional calculus is ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. The idea of generalizing differential operators to a non-integer order, in particular to the order 1/2, first appears in the correspondence of Leibniz with L’Hopital (1695), Johann Bernoulli (1695), and John Wallis (1697) as a mere question or maybe even play of thoughts. In the following three hundred years a lot of mathematicians contributed to the fractional calculus: Laplace (1812), Lacroix (1812), Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand and Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), and many others. Yet, it is only after the First Conference on Fractional Calculus and its applications that the fractional calculus becomes one of the most intensively developing areas of mathematical analysis. Recently, many mathematicians and applied researchers have tried to model real processes using the fractional calculus. This is because of the fact that the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time which can be successfully achieved by using fractional calculus. In other words, the nature of the definition of the fractional derivatives have provided an excellent instrument for the modeling of memory and hereditary properties of various materials and processes

    Insights from the parallel implementation of efficient algorithms for the fractional calculus

    Get PDF
    This thesis concerns the development of parallel algorithms to solve fractional differential equations using a numerical approach. The methodology adopted is to adapt existing numerical schemes and to develop prototype parallel programs using the MatLab Parallel Computing Toolbox (MPCT). The approach is to build on existing insights from parallel implementation of ordinary differential equations methods and to test a range of potential candidates for parallel implementation in the fractional case. As a consequence of the work, new insights on the use of MPCT for prototyping are presented, alongside conclusions and algorithms for the effective implementation of parallel methods for the fractional calculus. The principal parallel approaches considered in the work include: - A Runge-Kutta Method for Ordinary Differential Equations including the application of an adapted Richardson Extrapolation Scheme - An implementation of the Diethelm-Chern Algorithm for Fractional Differential Equations - A parallel version of the well-established Fractional Adams Method for Fractional Differential Equations - The adaptation for parallel implementation of Lubich's Fractional Multistep Method for Fractional Differential Equations An important aspect of the work is an improved understanding of the comparative diffi culty of using MPCT for obtaining fair comparisons of parallel implementation. We present details of experimental results which are not satisfactory, and we explain how the problems may be overcome to give meaningful experimental results. Therefore, an important aspect of the conclusions of this work is the advice for other users of MPCT who may be planning to use the package as a prototyping tool for parallel algorithm development: by understanding how implicit multithreading operates, controls can be put in place to allow like-for-like performance comparisons between sequential and parallel programs.Ford, Nevill

    Fractional Adams-Moulton methods

    No full text
    In the simulation of dynamical systems exhibiting an ultraslow decay, differential equations of fractional order have been successfully proposed. In this paper we consider the problem of numerically solving fractional differential equations by means of a generalization of k-step Adams-Moulton multistep methods. Our investigation is focused on stability properties and we determine intervals for the fractional order for which methods are at least A(pi/2)-stable. Moreover we prove the A-stable character of k-step methods for k = 0 and k = 1. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved
    corecore