1,075 research outputs found

    Symmetric Subresultants and Applications

    Get PDF
    Schur's transforms of a polynomial are used to count its roots in the unit disk. These are generalized them by introducing the sequence of symmetric sub-resultants of two polynomials. Although they do have a determinantal definition, we show that they satisfy a structure theorem which allows us to compute them with a type of Euclidean division. As a consequence, a fast algorithm based on a dichotomic process and FFT is designed. We prove also that these symmetric sub-resultants have a deep link with Toeplitz matrices. Finally, we propose a new algorithm of inversion for such matrices. It has the same cost as those already known, however it is fraction-free and consequently well adapted to computer algebra

    Cumulants, lattice paths, and orthogonal polynomials

    Get PDF
    A formula expressing free cumulants in terms of the Jacobi parameters of the corresponding orthogonal polynomials is derived. It combines Flajolet's theory of continued fractions and Lagrange inversion. For the converse we discuss Gessel-Viennot theory to express Hankel determinants in terms of various cumulants.Comment: 11 pages, AMS LaTeX, uses pstricks; revised according to referee's suggestions, in particular cut down last section and corrected some wrong attribution

    Fast computation of the matrix exponential for a Toeplitz matrix

    Full text link
    The computation of the matrix exponential is a ubiquitous operation in numerical mathematics, and for a general, unstructured n×nn\times n matrix it can be computed in O(n3)\mathcal{O}(n^3) operations. An interesting problem arises if the input matrix is a Toeplitz matrix, for example as the result of discretizing integral equations with a time invariant kernel. In this case it is not obvious how to take advantage of the Toeplitz structure, as the exponential of a Toeplitz matrix is, in general, not a Toeplitz matrix itself. The main contribution of this work are fast algorithms for the computation of the Toeplitz matrix exponential. The algorithms have provable quadratic complexity if the spectrum is real, or sectorial, or more generally, if the imaginary parts of the rightmost eigenvalues do not vary too much. They may be efficient even outside these spectral constraints. They are based on the scaling and squaring framework, and their analysis connects classical results from rational approximation theory to matrices of low displacement rank. As an example, the developed methods are applied to Merton's jump-diffusion model for option pricing

    From approximating to interpolatory non-stationary subdivision schemes with the same generation properties

    Full text link
    In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work [C.Conti, L.Gemignani, L.Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971-1987] to full generality by removing additional assumptions on the input symbols. For the so obtained interpolatory schemes we prove that they are capable of reproducing the same exponential polynomial space as the one generated by the original approximating scheme. Moreover, we specialize the computational methods for the case of symbols obtained by shifted non-stationary affine combinations of exponential B-splines, that are at the basis of most non-stationary subdivision schemes. In this case we find that the associated family of interpolatory symbols can be determined to satisfy a suitable set of generalized interpolating conditions at the set of the zeros (with reversed signs) of the input symbol. Finally, we discuss some computational examples by showing that the proposed approach can yield novel smooth non-stationary interpolatory subdivision schemes possessing very interesting reproduction properties
    • …
    corecore