4 research outputs found

    On the Porous Structuring using Unit Cells

    Get PDF
    Abstract This study presents the characteristics of the eleven commonly used porous structures. The structures are designed using ten different unit cells. Some of the unit cells consist of free-form surfaces (e.g., triply periodic minimal surface). Some of them are straightforward in design (e.g., honeycomb structure). Some of them have a hybrid structure. The 3D CAD models of the structures are created using commercially available CAD software. The finite element analysis is conducted for each structure to know how it behaves under a static load. The structures are also manufactured using a 3D printer to confirm the manufacturability of them. It is found that some of the structures are easy to manufacture, and some are not. Particularly, metal-alloy-printed structures need a minimal thickness. However, the structures' printed or virtual models are evaluated by determining their respective mass, production cost, production time, Mises stress, and surface area. Using the values of mass, production time and cost, Mises stress, and surface area, the optimal structure is identified. Thus, the outcomes of this study can help identify the optimal porous structure for a given purpose

    COVID-2019 Impacts on Education Systems and Future of Higher Education

    Get PDF
    The rapid outbreak of the COVID-19 has presented unprecedented challenges on education systems. Closing schools and universities and cancelling face-to-face activities have become a COVID-19 inevitable reality in most parts of the world. To be business-as-usual, many higher education providers have taken steps toward digital transformation, and implementing a range of remote teaching, learning and assessment approaches. This book provides timely research on COVID-19 impacts on education systems and seeks to bring together scholars, educators, policymakers and practitioners to collectively and critically identify, investigate and share best practices that lead to rethinking and reframing the way we deliver education in future

    Fractals and additive manufacturing

    No full text
    Fractal geometry can create virtual models of complex shapes as CAD data, and from these additive manufacturing can directly create physical models. The virtual-model-building capacity of fractal geometry and the physical-model-building capacity of additive manufacturing can be integrated to deal with the design and manufacturing of complex shapes. This study deals with the manufacture of fractal shapes using commercially available additive manufacturing facilities and 3D CAD packages. Particular interest is paid to building physical models of an IFS-created fractal after remodeling it for manufacturing. This article introduces three remodeling methodologies based on binary-grid, convex/concave-hull, and line-model techniques. The measurements of the manufactured fractal shapes are also reported, and the degree of accuracy that can be achieved by the currently available technology is shown. © 2016, Fuji Technology Press. All rights reserved

    Fractals and Additive Manufacturing

    No full text
    corecore